xref: /openbmc/linux/arch/arm64/kvm/hyp/vgic-v3-sr.c (revision 09a4f6f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012-2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/adjust_pc.h>
8 
9 #include <linux/compiler.h>
10 #include <linux/irqchip/arm-gic-v3.h>
11 #include <linux/kvm_host.h>
12 
13 #include <asm/kvm_emulate.h>
14 #include <asm/kvm_hyp.h>
15 #include <asm/kvm_mmu.h>
16 
17 #define vtr_to_max_lr_idx(v)		((v) & 0xf)
18 #define vtr_to_nr_pre_bits(v)		((((u32)(v) >> 26) & 7) + 1)
19 #define vtr_to_nr_apr_regs(v)		(1 << (vtr_to_nr_pre_bits(v) - 5))
20 
21 static u64 __gic_v3_get_lr(unsigned int lr)
22 {
23 	switch (lr & 0xf) {
24 	case 0:
25 		return read_gicreg(ICH_LR0_EL2);
26 	case 1:
27 		return read_gicreg(ICH_LR1_EL2);
28 	case 2:
29 		return read_gicreg(ICH_LR2_EL2);
30 	case 3:
31 		return read_gicreg(ICH_LR3_EL2);
32 	case 4:
33 		return read_gicreg(ICH_LR4_EL2);
34 	case 5:
35 		return read_gicreg(ICH_LR5_EL2);
36 	case 6:
37 		return read_gicreg(ICH_LR6_EL2);
38 	case 7:
39 		return read_gicreg(ICH_LR7_EL2);
40 	case 8:
41 		return read_gicreg(ICH_LR8_EL2);
42 	case 9:
43 		return read_gicreg(ICH_LR9_EL2);
44 	case 10:
45 		return read_gicreg(ICH_LR10_EL2);
46 	case 11:
47 		return read_gicreg(ICH_LR11_EL2);
48 	case 12:
49 		return read_gicreg(ICH_LR12_EL2);
50 	case 13:
51 		return read_gicreg(ICH_LR13_EL2);
52 	case 14:
53 		return read_gicreg(ICH_LR14_EL2);
54 	case 15:
55 		return read_gicreg(ICH_LR15_EL2);
56 	}
57 
58 	unreachable();
59 }
60 
61 static void __gic_v3_set_lr(u64 val, int lr)
62 {
63 	switch (lr & 0xf) {
64 	case 0:
65 		write_gicreg(val, ICH_LR0_EL2);
66 		break;
67 	case 1:
68 		write_gicreg(val, ICH_LR1_EL2);
69 		break;
70 	case 2:
71 		write_gicreg(val, ICH_LR2_EL2);
72 		break;
73 	case 3:
74 		write_gicreg(val, ICH_LR3_EL2);
75 		break;
76 	case 4:
77 		write_gicreg(val, ICH_LR4_EL2);
78 		break;
79 	case 5:
80 		write_gicreg(val, ICH_LR5_EL2);
81 		break;
82 	case 6:
83 		write_gicreg(val, ICH_LR6_EL2);
84 		break;
85 	case 7:
86 		write_gicreg(val, ICH_LR7_EL2);
87 		break;
88 	case 8:
89 		write_gicreg(val, ICH_LR8_EL2);
90 		break;
91 	case 9:
92 		write_gicreg(val, ICH_LR9_EL2);
93 		break;
94 	case 10:
95 		write_gicreg(val, ICH_LR10_EL2);
96 		break;
97 	case 11:
98 		write_gicreg(val, ICH_LR11_EL2);
99 		break;
100 	case 12:
101 		write_gicreg(val, ICH_LR12_EL2);
102 		break;
103 	case 13:
104 		write_gicreg(val, ICH_LR13_EL2);
105 		break;
106 	case 14:
107 		write_gicreg(val, ICH_LR14_EL2);
108 		break;
109 	case 15:
110 		write_gicreg(val, ICH_LR15_EL2);
111 		break;
112 	}
113 }
114 
115 static void __vgic_v3_write_ap0rn(u32 val, int n)
116 {
117 	switch (n) {
118 	case 0:
119 		write_gicreg(val, ICH_AP0R0_EL2);
120 		break;
121 	case 1:
122 		write_gicreg(val, ICH_AP0R1_EL2);
123 		break;
124 	case 2:
125 		write_gicreg(val, ICH_AP0R2_EL2);
126 		break;
127 	case 3:
128 		write_gicreg(val, ICH_AP0R3_EL2);
129 		break;
130 	}
131 }
132 
133 static void __vgic_v3_write_ap1rn(u32 val, int n)
134 {
135 	switch (n) {
136 	case 0:
137 		write_gicreg(val, ICH_AP1R0_EL2);
138 		break;
139 	case 1:
140 		write_gicreg(val, ICH_AP1R1_EL2);
141 		break;
142 	case 2:
143 		write_gicreg(val, ICH_AP1R2_EL2);
144 		break;
145 	case 3:
146 		write_gicreg(val, ICH_AP1R3_EL2);
147 		break;
148 	}
149 }
150 
151 static u32 __vgic_v3_read_ap0rn(int n)
152 {
153 	u32 val;
154 
155 	switch (n) {
156 	case 0:
157 		val = read_gicreg(ICH_AP0R0_EL2);
158 		break;
159 	case 1:
160 		val = read_gicreg(ICH_AP0R1_EL2);
161 		break;
162 	case 2:
163 		val = read_gicreg(ICH_AP0R2_EL2);
164 		break;
165 	case 3:
166 		val = read_gicreg(ICH_AP0R3_EL2);
167 		break;
168 	default:
169 		unreachable();
170 	}
171 
172 	return val;
173 }
174 
175 static u32 __vgic_v3_read_ap1rn(int n)
176 {
177 	u32 val;
178 
179 	switch (n) {
180 	case 0:
181 		val = read_gicreg(ICH_AP1R0_EL2);
182 		break;
183 	case 1:
184 		val = read_gicreg(ICH_AP1R1_EL2);
185 		break;
186 	case 2:
187 		val = read_gicreg(ICH_AP1R2_EL2);
188 		break;
189 	case 3:
190 		val = read_gicreg(ICH_AP1R3_EL2);
191 		break;
192 	default:
193 		unreachable();
194 	}
195 
196 	return val;
197 }
198 
199 void __vgic_v3_save_state(struct vgic_v3_cpu_if *cpu_if)
200 {
201 	u64 used_lrs = cpu_if->used_lrs;
202 
203 	/*
204 	 * Make sure stores to the GIC via the memory mapped interface
205 	 * are now visible to the system register interface when reading the
206 	 * LRs, and when reading back the VMCR on non-VHE systems.
207 	 */
208 	if (used_lrs || !has_vhe()) {
209 		if (!cpu_if->vgic_sre) {
210 			dsb(sy);
211 			isb();
212 		}
213 	}
214 
215 	if (used_lrs || cpu_if->its_vpe.its_vm) {
216 		int i;
217 		u32 elrsr;
218 
219 		elrsr = read_gicreg(ICH_ELRSR_EL2);
220 
221 		write_gicreg(cpu_if->vgic_hcr & ~ICH_HCR_EN, ICH_HCR_EL2);
222 
223 		for (i = 0; i < used_lrs; i++) {
224 			if (elrsr & (1 << i))
225 				cpu_if->vgic_lr[i] &= ~ICH_LR_STATE;
226 			else
227 				cpu_if->vgic_lr[i] = __gic_v3_get_lr(i);
228 
229 			__gic_v3_set_lr(0, i);
230 		}
231 	}
232 }
233 
234 void __vgic_v3_restore_state(struct vgic_v3_cpu_if *cpu_if)
235 {
236 	u64 used_lrs = cpu_if->used_lrs;
237 	int i;
238 
239 	if (used_lrs || cpu_if->its_vpe.its_vm) {
240 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
241 
242 		for (i = 0; i < used_lrs; i++)
243 			__gic_v3_set_lr(cpu_if->vgic_lr[i], i);
244 	}
245 
246 	/*
247 	 * Ensure that writes to the LRs, and on non-VHE systems ensure that
248 	 * the write to the VMCR in __vgic_v3_activate_traps(), will have
249 	 * reached the (re)distributors. This ensure the guest will read the
250 	 * correct values from the memory-mapped interface.
251 	 */
252 	if (used_lrs || !has_vhe()) {
253 		if (!cpu_if->vgic_sre) {
254 			isb();
255 			dsb(sy);
256 		}
257 	}
258 }
259 
260 void __vgic_v3_activate_traps(struct vgic_v3_cpu_if *cpu_if)
261 {
262 	/*
263 	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
264 	 * Group0 interrupt (as generated in GICv2 mode) to be
265 	 * delivered as a FIQ to the guest, with potentially fatal
266 	 * consequences. So we must make sure that ICC_SRE_EL1 has
267 	 * been actually programmed with the value we want before
268 	 * starting to mess with the rest of the GIC, and VMCR_EL2 in
269 	 * particular.  This logic must be called before
270 	 * __vgic_v3_restore_state().
271 	 */
272 	if (!cpu_if->vgic_sre) {
273 		write_gicreg(0, ICC_SRE_EL1);
274 		isb();
275 		write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);
276 
277 
278 		if (has_vhe()) {
279 			/*
280 			 * Ensure that the write to the VMCR will have reached
281 			 * the (re)distributors. This ensure the guest will
282 			 * read the correct values from the memory-mapped
283 			 * interface.
284 			 */
285 			isb();
286 			dsb(sy);
287 		}
288 	}
289 
290 	/*
291 	 * Prevent the guest from touching the GIC system registers if
292 	 * SRE isn't enabled for GICv3 emulation.
293 	 */
294 	write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
295 		     ICC_SRE_EL2);
296 
297 	/*
298 	 * If we need to trap system registers, we must write
299 	 * ICH_HCR_EL2 anyway, even if no interrupts are being
300 	 * injected,
301 	 */
302 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
303 	    cpu_if->its_vpe.its_vm)
304 		write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
305 }
306 
307 void __vgic_v3_deactivate_traps(struct vgic_v3_cpu_if *cpu_if)
308 {
309 	u64 val;
310 
311 	if (!cpu_if->vgic_sre) {
312 		cpu_if->vgic_vmcr = read_gicreg(ICH_VMCR_EL2);
313 	}
314 
315 	val = read_gicreg(ICC_SRE_EL2);
316 	write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
317 
318 	if (!cpu_if->vgic_sre) {
319 		/* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
320 		isb();
321 		write_gicreg(1, ICC_SRE_EL1);
322 	}
323 
324 	/*
325 	 * If we were trapping system registers, we enabled the VGIC even if
326 	 * no interrupts were being injected, and we disable it again here.
327 	 */
328 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) ||
329 	    cpu_if->its_vpe.its_vm)
330 		write_gicreg(0, ICH_HCR_EL2);
331 }
332 
333 void __vgic_v3_save_aprs(struct vgic_v3_cpu_if *cpu_if)
334 {
335 	u64 val;
336 	u32 nr_pre_bits;
337 
338 	val = read_gicreg(ICH_VTR_EL2);
339 	nr_pre_bits = vtr_to_nr_pre_bits(val);
340 
341 	switch (nr_pre_bits) {
342 	case 7:
343 		cpu_if->vgic_ap0r[3] = __vgic_v3_read_ap0rn(3);
344 		cpu_if->vgic_ap0r[2] = __vgic_v3_read_ap0rn(2);
345 		fallthrough;
346 	case 6:
347 		cpu_if->vgic_ap0r[1] = __vgic_v3_read_ap0rn(1);
348 		fallthrough;
349 	default:
350 		cpu_if->vgic_ap0r[0] = __vgic_v3_read_ap0rn(0);
351 	}
352 
353 	switch (nr_pre_bits) {
354 	case 7:
355 		cpu_if->vgic_ap1r[3] = __vgic_v3_read_ap1rn(3);
356 		cpu_if->vgic_ap1r[2] = __vgic_v3_read_ap1rn(2);
357 		fallthrough;
358 	case 6:
359 		cpu_if->vgic_ap1r[1] = __vgic_v3_read_ap1rn(1);
360 		fallthrough;
361 	default:
362 		cpu_if->vgic_ap1r[0] = __vgic_v3_read_ap1rn(0);
363 	}
364 }
365 
366 void __vgic_v3_restore_aprs(struct vgic_v3_cpu_if *cpu_if)
367 {
368 	u64 val;
369 	u32 nr_pre_bits;
370 
371 	val = read_gicreg(ICH_VTR_EL2);
372 	nr_pre_bits = vtr_to_nr_pre_bits(val);
373 
374 	switch (nr_pre_bits) {
375 	case 7:
376 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[3], 3);
377 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[2], 2);
378 		fallthrough;
379 	case 6:
380 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[1], 1);
381 		fallthrough;
382 	default:
383 		__vgic_v3_write_ap0rn(cpu_if->vgic_ap0r[0], 0);
384 	}
385 
386 	switch (nr_pre_bits) {
387 	case 7:
388 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[3], 3);
389 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[2], 2);
390 		fallthrough;
391 	case 6:
392 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[1], 1);
393 		fallthrough;
394 	default:
395 		__vgic_v3_write_ap1rn(cpu_if->vgic_ap1r[0], 0);
396 	}
397 }
398 
399 void __vgic_v3_init_lrs(void)
400 {
401 	int max_lr_idx = vtr_to_max_lr_idx(read_gicreg(ICH_VTR_EL2));
402 	int i;
403 
404 	for (i = 0; i <= max_lr_idx; i++)
405 		__gic_v3_set_lr(0, i);
406 }
407 
408 u64 __vgic_v3_get_ich_vtr_el2(void)
409 {
410 	return read_gicreg(ICH_VTR_EL2);
411 }
412 
413 u64 __vgic_v3_read_vmcr(void)
414 {
415 	return read_gicreg(ICH_VMCR_EL2);
416 }
417 
418 void __vgic_v3_write_vmcr(u32 vmcr)
419 {
420 	write_gicreg(vmcr, ICH_VMCR_EL2);
421 }
422 
423 static int __vgic_v3_bpr_min(void)
424 {
425 	/* See Pseudocode for VPriorityGroup */
426 	return 8 - vtr_to_nr_pre_bits(read_gicreg(ICH_VTR_EL2));
427 }
428 
429 static int __vgic_v3_get_group(struct kvm_vcpu *vcpu)
430 {
431 	u32 esr = kvm_vcpu_get_esr(vcpu);
432 	u8 crm = (esr & ESR_ELx_SYS64_ISS_CRM_MASK) >> ESR_ELx_SYS64_ISS_CRM_SHIFT;
433 
434 	return crm != 8;
435 }
436 
437 #define GICv3_IDLE_PRIORITY	0xff
438 
439 static int __vgic_v3_highest_priority_lr(struct kvm_vcpu *vcpu, u32 vmcr,
440 					 u64 *lr_val)
441 {
442 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
443 	u8 priority = GICv3_IDLE_PRIORITY;
444 	int i, lr = -1;
445 
446 	for (i = 0; i < used_lrs; i++) {
447 		u64 val = __gic_v3_get_lr(i);
448 		u8 lr_prio = (val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
449 
450 		/* Not pending in the state? */
451 		if ((val & ICH_LR_STATE) != ICH_LR_PENDING_BIT)
452 			continue;
453 
454 		/* Group-0 interrupt, but Group-0 disabled? */
455 		if (!(val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG0_MASK))
456 			continue;
457 
458 		/* Group-1 interrupt, but Group-1 disabled? */
459 		if ((val & ICH_LR_GROUP) && !(vmcr & ICH_VMCR_ENG1_MASK))
460 			continue;
461 
462 		/* Not the highest priority? */
463 		if (lr_prio >= priority)
464 			continue;
465 
466 		/* This is a candidate */
467 		priority = lr_prio;
468 		*lr_val = val;
469 		lr = i;
470 	}
471 
472 	if (lr == -1)
473 		*lr_val = ICC_IAR1_EL1_SPURIOUS;
474 
475 	return lr;
476 }
477 
478 static int __vgic_v3_find_active_lr(struct kvm_vcpu *vcpu, int intid,
479 				    u64 *lr_val)
480 {
481 	unsigned int used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
482 	int i;
483 
484 	for (i = 0; i < used_lrs; i++) {
485 		u64 val = __gic_v3_get_lr(i);
486 
487 		if ((val & ICH_LR_VIRTUAL_ID_MASK) == intid &&
488 		    (val & ICH_LR_ACTIVE_BIT)) {
489 			*lr_val = val;
490 			return i;
491 		}
492 	}
493 
494 	*lr_val = ICC_IAR1_EL1_SPURIOUS;
495 	return -1;
496 }
497 
498 static int __vgic_v3_get_highest_active_priority(void)
499 {
500 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
501 	u32 hap = 0;
502 	int i;
503 
504 	for (i = 0; i < nr_apr_regs; i++) {
505 		u32 val;
506 
507 		/*
508 		 * The ICH_AP0Rn_EL2 and ICH_AP1Rn_EL2 registers
509 		 * contain the active priority levels for this VCPU
510 		 * for the maximum number of supported priority
511 		 * levels, and we return the full priority level only
512 		 * if the BPR is programmed to its minimum, otherwise
513 		 * we return a combination of the priority level and
514 		 * subpriority, as determined by the setting of the
515 		 * BPR, but without the full subpriority.
516 		 */
517 		val  = __vgic_v3_read_ap0rn(i);
518 		val |= __vgic_v3_read_ap1rn(i);
519 		if (!val) {
520 			hap += 32;
521 			continue;
522 		}
523 
524 		return (hap + __ffs(val)) << __vgic_v3_bpr_min();
525 	}
526 
527 	return GICv3_IDLE_PRIORITY;
528 }
529 
530 static unsigned int __vgic_v3_get_bpr0(u32 vmcr)
531 {
532 	return (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
533 }
534 
535 static unsigned int __vgic_v3_get_bpr1(u32 vmcr)
536 {
537 	unsigned int bpr;
538 
539 	if (vmcr & ICH_VMCR_CBPR_MASK) {
540 		bpr = __vgic_v3_get_bpr0(vmcr);
541 		if (bpr < 7)
542 			bpr++;
543 	} else {
544 		bpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
545 	}
546 
547 	return bpr;
548 }
549 
550 /*
551  * Convert a priority to a preemption level, taking the relevant BPR
552  * into account by zeroing the sub-priority bits.
553  */
554 static u8 __vgic_v3_pri_to_pre(u8 pri, u32 vmcr, int grp)
555 {
556 	unsigned int bpr;
557 
558 	if (!grp)
559 		bpr = __vgic_v3_get_bpr0(vmcr) + 1;
560 	else
561 		bpr = __vgic_v3_get_bpr1(vmcr);
562 
563 	return pri & (GENMASK(7, 0) << bpr);
564 }
565 
566 /*
567  * The priority value is independent of any of the BPR values, so we
568  * normalize it using the minimal BPR value. This guarantees that no
569  * matter what the guest does with its BPR, we can always set/get the
570  * same value of a priority.
571  */
572 static void __vgic_v3_set_active_priority(u8 pri, u32 vmcr, int grp)
573 {
574 	u8 pre, ap;
575 	u32 val;
576 	int apr;
577 
578 	pre = __vgic_v3_pri_to_pre(pri, vmcr, grp);
579 	ap = pre >> __vgic_v3_bpr_min();
580 	apr = ap / 32;
581 
582 	if (!grp) {
583 		val = __vgic_v3_read_ap0rn(apr);
584 		__vgic_v3_write_ap0rn(val | BIT(ap % 32), apr);
585 	} else {
586 		val = __vgic_v3_read_ap1rn(apr);
587 		__vgic_v3_write_ap1rn(val | BIT(ap % 32), apr);
588 	}
589 }
590 
591 static int __vgic_v3_clear_highest_active_priority(void)
592 {
593 	u8 nr_apr_regs = vtr_to_nr_apr_regs(read_gicreg(ICH_VTR_EL2));
594 	u32 hap = 0;
595 	int i;
596 
597 	for (i = 0; i < nr_apr_regs; i++) {
598 		u32 ap0, ap1;
599 		int c0, c1;
600 
601 		ap0 = __vgic_v3_read_ap0rn(i);
602 		ap1 = __vgic_v3_read_ap1rn(i);
603 		if (!ap0 && !ap1) {
604 			hap += 32;
605 			continue;
606 		}
607 
608 		c0 = ap0 ? __ffs(ap0) : 32;
609 		c1 = ap1 ? __ffs(ap1) : 32;
610 
611 		/* Always clear the LSB, which is the highest priority */
612 		if (c0 < c1) {
613 			ap0 &= ~BIT(c0);
614 			__vgic_v3_write_ap0rn(ap0, i);
615 			hap += c0;
616 		} else {
617 			ap1 &= ~BIT(c1);
618 			__vgic_v3_write_ap1rn(ap1, i);
619 			hap += c1;
620 		}
621 
622 		/* Rescale to 8 bits of priority */
623 		return hap << __vgic_v3_bpr_min();
624 	}
625 
626 	return GICv3_IDLE_PRIORITY;
627 }
628 
629 static void __vgic_v3_read_iar(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
630 {
631 	u64 lr_val;
632 	u8 lr_prio, pmr;
633 	int lr, grp;
634 
635 	grp = __vgic_v3_get_group(vcpu);
636 
637 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
638 	if (lr < 0)
639 		goto spurious;
640 
641 	if (grp != !!(lr_val & ICH_LR_GROUP))
642 		goto spurious;
643 
644 	pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
645 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
646 	if (pmr <= lr_prio)
647 		goto spurious;
648 
649 	if (__vgic_v3_get_highest_active_priority() <= __vgic_v3_pri_to_pre(lr_prio, vmcr, grp))
650 		goto spurious;
651 
652 	lr_val &= ~ICH_LR_STATE;
653 	/* No active state for LPIs */
654 	if ((lr_val & ICH_LR_VIRTUAL_ID_MASK) <= VGIC_MAX_SPI)
655 		lr_val |= ICH_LR_ACTIVE_BIT;
656 	__gic_v3_set_lr(lr_val, lr);
657 	__vgic_v3_set_active_priority(lr_prio, vmcr, grp);
658 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
659 	return;
660 
661 spurious:
662 	vcpu_set_reg(vcpu, rt, ICC_IAR1_EL1_SPURIOUS);
663 }
664 
665 static void __vgic_v3_clear_active_lr(int lr, u64 lr_val)
666 {
667 	lr_val &= ~ICH_LR_ACTIVE_BIT;
668 	if (lr_val & ICH_LR_HW) {
669 		u32 pid;
670 
671 		pid = (lr_val & ICH_LR_PHYS_ID_MASK) >> ICH_LR_PHYS_ID_SHIFT;
672 		gic_write_dir(pid);
673 	}
674 
675 	__gic_v3_set_lr(lr_val, lr);
676 }
677 
678 static void __vgic_v3_bump_eoicount(void)
679 {
680 	u32 hcr;
681 
682 	hcr = read_gicreg(ICH_HCR_EL2);
683 	hcr += 1 << ICH_HCR_EOIcount_SHIFT;
684 	write_gicreg(hcr, ICH_HCR_EL2);
685 }
686 
687 static void __vgic_v3_write_dir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
688 {
689 	u32 vid = vcpu_get_reg(vcpu, rt);
690 	u64 lr_val;
691 	int lr;
692 
693 	/* EOImode == 0, nothing to be done here */
694 	if (!(vmcr & ICH_VMCR_EOIM_MASK))
695 		return;
696 
697 	/* No deactivate to be performed on an LPI */
698 	if (vid >= VGIC_MIN_LPI)
699 		return;
700 
701 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
702 	if (lr == -1) {
703 		__vgic_v3_bump_eoicount();
704 		return;
705 	}
706 
707 	__vgic_v3_clear_active_lr(lr, lr_val);
708 }
709 
710 static void __vgic_v3_write_eoir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
711 {
712 	u32 vid = vcpu_get_reg(vcpu, rt);
713 	u64 lr_val;
714 	u8 lr_prio, act_prio;
715 	int lr, grp;
716 
717 	grp = __vgic_v3_get_group(vcpu);
718 
719 	/* Drop priority in any case */
720 	act_prio = __vgic_v3_clear_highest_active_priority();
721 
722 	/* If EOIing an LPI, no deactivate to be performed */
723 	if (vid >= VGIC_MIN_LPI)
724 		return;
725 
726 	/* EOImode == 1, nothing to be done here */
727 	if (vmcr & ICH_VMCR_EOIM_MASK)
728 		return;
729 
730 	lr = __vgic_v3_find_active_lr(vcpu, vid, &lr_val);
731 	if (lr == -1) {
732 		__vgic_v3_bump_eoicount();
733 		return;
734 	}
735 
736 	lr_prio = (lr_val & ICH_LR_PRIORITY_MASK) >> ICH_LR_PRIORITY_SHIFT;
737 
738 	/* If priorities or group do not match, the guest has fscked-up. */
739 	if (grp != !!(lr_val & ICH_LR_GROUP) ||
740 	    __vgic_v3_pri_to_pre(lr_prio, vmcr, grp) != act_prio)
741 		return;
742 
743 	/* Let's now perform the deactivation */
744 	__vgic_v3_clear_active_lr(lr, lr_val);
745 }
746 
747 static void __vgic_v3_read_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
748 {
749 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG0_MASK));
750 }
751 
752 static void __vgic_v3_read_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
753 {
754 	vcpu_set_reg(vcpu, rt, !!(vmcr & ICH_VMCR_ENG1_MASK));
755 }
756 
757 static void __vgic_v3_write_igrpen0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
758 {
759 	u64 val = vcpu_get_reg(vcpu, rt);
760 
761 	if (val & 1)
762 		vmcr |= ICH_VMCR_ENG0_MASK;
763 	else
764 		vmcr &= ~ICH_VMCR_ENG0_MASK;
765 
766 	__vgic_v3_write_vmcr(vmcr);
767 }
768 
769 static void __vgic_v3_write_igrpen1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
770 {
771 	u64 val = vcpu_get_reg(vcpu, rt);
772 
773 	if (val & 1)
774 		vmcr |= ICH_VMCR_ENG1_MASK;
775 	else
776 		vmcr &= ~ICH_VMCR_ENG1_MASK;
777 
778 	__vgic_v3_write_vmcr(vmcr);
779 }
780 
781 static void __vgic_v3_read_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
782 {
783 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr0(vmcr));
784 }
785 
786 static void __vgic_v3_read_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
787 {
788 	vcpu_set_reg(vcpu, rt, __vgic_v3_get_bpr1(vmcr));
789 }
790 
791 static void __vgic_v3_write_bpr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
792 {
793 	u64 val = vcpu_get_reg(vcpu, rt);
794 	u8 bpr_min = __vgic_v3_bpr_min() - 1;
795 
796 	/* Enforce BPR limiting */
797 	if (val < bpr_min)
798 		val = bpr_min;
799 
800 	val <<= ICH_VMCR_BPR0_SHIFT;
801 	val &= ICH_VMCR_BPR0_MASK;
802 	vmcr &= ~ICH_VMCR_BPR0_MASK;
803 	vmcr |= val;
804 
805 	__vgic_v3_write_vmcr(vmcr);
806 }
807 
808 static void __vgic_v3_write_bpr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
809 {
810 	u64 val = vcpu_get_reg(vcpu, rt);
811 	u8 bpr_min = __vgic_v3_bpr_min();
812 
813 	if (vmcr & ICH_VMCR_CBPR_MASK)
814 		return;
815 
816 	/* Enforce BPR limiting */
817 	if (val < bpr_min)
818 		val = bpr_min;
819 
820 	val <<= ICH_VMCR_BPR1_SHIFT;
821 	val &= ICH_VMCR_BPR1_MASK;
822 	vmcr &= ~ICH_VMCR_BPR1_MASK;
823 	vmcr |= val;
824 
825 	__vgic_v3_write_vmcr(vmcr);
826 }
827 
828 static void __vgic_v3_read_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
829 {
830 	u32 val;
831 
832 	if (!__vgic_v3_get_group(vcpu))
833 		val = __vgic_v3_read_ap0rn(n);
834 	else
835 		val = __vgic_v3_read_ap1rn(n);
836 
837 	vcpu_set_reg(vcpu, rt, val);
838 }
839 
840 static void __vgic_v3_write_apxrn(struct kvm_vcpu *vcpu, int rt, int n)
841 {
842 	u32 val = vcpu_get_reg(vcpu, rt);
843 
844 	if (!__vgic_v3_get_group(vcpu))
845 		__vgic_v3_write_ap0rn(val, n);
846 	else
847 		__vgic_v3_write_ap1rn(val, n);
848 }
849 
850 static void __vgic_v3_read_apxr0(struct kvm_vcpu *vcpu,
851 					    u32 vmcr, int rt)
852 {
853 	__vgic_v3_read_apxrn(vcpu, rt, 0);
854 }
855 
856 static void __vgic_v3_read_apxr1(struct kvm_vcpu *vcpu,
857 					    u32 vmcr, int rt)
858 {
859 	__vgic_v3_read_apxrn(vcpu, rt, 1);
860 }
861 
862 static void __vgic_v3_read_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
863 {
864 	__vgic_v3_read_apxrn(vcpu, rt, 2);
865 }
866 
867 static void __vgic_v3_read_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
868 {
869 	__vgic_v3_read_apxrn(vcpu, rt, 3);
870 }
871 
872 static void __vgic_v3_write_apxr0(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
873 {
874 	__vgic_v3_write_apxrn(vcpu, rt, 0);
875 }
876 
877 static void __vgic_v3_write_apxr1(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
878 {
879 	__vgic_v3_write_apxrn(vcpu, rt, 1);
880 }
881 
882 static void __vgic_v3_write_apxr2(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
883 {
884 	__vgic_v3_write_apxrn(vcpu, rt, 2);
885 }
886 
887 static void __vgic_v3_write_apxr3(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
888 {
889 	__vgic_v3_write_apxrn(vcpu, rt, 3);
890 }
891 
892 static void __vgic_v3_read_hppir(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
893 {
894 	u64 lr_val;
895 	int lr, lr_grp, grp;
896 
897 	grp = __vgic_v3_get_group(vcpu);
898 
899 	lr = __vgic_v3_highest_priority_lr(vcpu, vmcr, &lr_val);
900 	if (lr == -1)
901 		goto spurious;
902 
903 	lr_grp = !!(lr_val & ICH_LR_GROUP);
904 	if (lr_grp != grp)
905 		lr_val = ICC_IAR1_EL1_SPURIOUS;
906 
907 spurious:
908 	vcpu_set_reg(vcpu, rt, lr_val & ICH_LR_VIRTUAL_ID_MASK);
909 }
910 
911 static void __vgic_v3_read_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
912 {
913 	vmcr &= ICH_VMCR_PMR_MASK;
914 	vmcr >>= ICH_VMCR_PMR_SHIFT;
915 	vcpu_set_reg(vcpu, rt, vmcr);
916 }
917 
918 static void __vgic_v3_write_pmr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
919 {
920 	u32 val = vcpu_get_reg(vcpu, rt);
921 
922 	val <<= ICH_VMCR_PMR_SHIFT;
923 	val &= ICH_VMCR_PMR_MASK;
924 	vmcr &= ~ICH_VMCR_PMR_MASK;
925 	vmcr |= val;
926 
927 	write_gicreg(vmcr, ICH_VMCR_EL2);
928 }
929 
930 static void __vgic_v3_read_rpr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
931 {
932 	u32 val = __vgic_v3_get_highest_active_priority();
933 	vcpu_set_reg(vcpu, rt, val);
934 }
935 
936 static void __vgic_v3_read_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
937 {
938 	u32 vtr, val;
939 
940 	vtr = read_gicreg(ICH_VTR_EL2);
941 	/* PRIbits */
942 	val = ((vtr >> 29) & 7) << ICC_CTLR_EL1_PRI_BITS_SHIFT;
943 	/* IDbits */
944 	val |= ((vtr >> 23) & 7) << ICC_CTLR_EL1_ID_BITS_SHIFT;
945 	/* SEIS */
946 	val |= ((vtr >> 22) & 1) << ICC_CTLR_EL1_SEIS_SHIFT;
947 	/* A3V */
948 	val |= ((vtr >> 21) & 1) << ICC_CTLR_EL1_A3V_SHIFT;
949 	/* EOImode */
950 	val |= ((vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT) << ICC_CTLR_EL1_EOImode_SHIFT;
951 	/* CBPR */
952 	val |= (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
953 
954 	vcpu_set_reg(vcpu, rt, val);
955 }
956 
957 static void __vgic_v3_write_ctlr(struct kvm_vcpu *vcpu, u32 vmcr, int rt)
958 {
959 	u32 val = vcpu_get_reg(vcpu, rt);
960 
961 	if (val & ICC_CTLR_EL1_CBPR_MASK)
962 		vmcr |= ICH_VMCR_CBPR_MASK;
963 	else
964 		vmcr &= ~ICH_VMCR_CBPR_MASK;
965 
966 	if (val & ICC_CTLR_EL1_EOImode_MASK)
967 		vmcr |= ICH_VMCR_EOIM_MASK;
968 	else
969 		vmcr &= ~ICH_VMCR_EOIM_MASK;
970 
971 	write_gicreg(vmcr, ICH_VMCR_EL2);
972 }
973 
974 int __vgic_v3_perform_cpuif_access(struct kvm_vcpu *vcpu)
975 {
976 	int rt;
977 	u32 esr;
978 	u32 vmcr;
979 	void (*fn)(struct kvm_vcpu *, u32, int);
980 	bool is_read;
981 	u32 sysreg;
982 
983 	esr = kvm_vcpu_get_esr(vcpu);
984 	if (vcpu_mode_is_32bit(vcpu)) {
985 		if (!kvm_condition_valid(vcpu)) {
986 			__kvm_skip_instr(vcpu);
987 			return 1;
988 		}
989 
990 		sysreg = esr_cp15_to_sysreg(esr);
991 	} else {
992 		sysreg = esr_sys64_to_sysreg(esr);
993 	}
994 
995 	is_read = (esr & ESR_ELx_SYS64_ISS_DIR_MASK) == ESR_ELx_SYS64_ISS_DIR_READ;
996 
997 	switch (sysreg) {
998 	case SYS_ICC_IAR0_EL1:
999 	case SYS_ICC_IAR1_EL1:
1000 		if (unlikely(!is_read))
1001 			return 0;
1002 		fn = __vgic_v3_read_iar;
1003 		break;
1004 	case SYS_ICC_EOIR0_EL1:
1005 	case SYS_ICC_EOIR1_EL1:
1006 		if (unlikely(is_read))
1007 			return 0;
1008 		fn = __vgic_v3_write_eoir;
1009 		break;
1010 	case SYS_ICC_IGRPEN1_EL1:
1011 		if (is_read)
1012 			fn = __vgic_v3_read_igrpen1;
1013 		else
1014 			fn = __vgic_v3_write_igrpen1;
1015 		break;
1016 	case SYS_ICC_BPR1_EL1:
1017 		if (is_read)
1018 			fn = __vgic_v3_read_bpr1;
1019 		else
1020 			fn = __vgic_v3_write_bpr1;
1021 		break;
1022 	case SYS_ICC_AP0Rn_EL1(0):
1023 	case SYS_ICC_AP1Rn_EL1(0):
1024 		if (is_read)
1025 			fn = __vgic_v3_read_apxr0;
1026 		else
1027 			fn = __vgic_v3_write_apxr0;
1028 		break;
1029 	case SYS_ICC_AP0Rn_EL1(1):
1030 	case SYS_ICC_AP1Rn_EL1(1):
1031 		if (is_read)
1032 			fn = __vgic_v3_read_apxr1;
1033 		else
1034 			fn = __vgic_v3_write_apxr1;
1035 		break;
1036 	case SYS_ICC_AP0Rn_EL1(2):
1037 	case SYS_ICC_AP1Rn_EL1(2):
1038 		if (is_read)
1039 			fn = __vgic_v3_read_apxr2;
1040 		else
1041 			fn = __vgic_v3_write_apxr2;
1042 		break;
1043 	case SYS_ICC_AP0Rn_EL1(3):
1044 	case SYS_ICC_AP1Rn_EL1(3):
1045 		if (is_read)
1046 			fn = __vgic_v3_read_apxr3;
1047 		else
1048 			fn = __vgic_v3_write_apxr3;
1049 		break;
1050 	case SYS_ICC_HPPIR0_EL1:
1051 	case SYS_ICC_HPPIR1_EL1:
1052 		if (unlikely(!is_read))
1053 			return 0;
1054 		fn = __vgic_v3_read_hppir;
1055 		break;
1056 	case SYS_ICC_IGRPEN0_EL1:
1057 		if (is_read)
1058 			fn = __vgic_v3_read_igrpen0;
1059 		else
1060 			fn = __vgic_v3_write_igrpen0;
1061 		break;
1062 	case SYS_ICC_BPR0_EL1:
1063 		if (is_read)
1064 			fn = __vgic_v3_read_bpr0;
1065 		else
1066 			fn = __vgic_v3_write_bpr0;
1067 		break;
1068 	case SYS_ICC_DIR_EL1:
1069 		if (unlikely(is_read))
1070 			return 0;
1071 		fn = __vgic_v3_write_dir;
1072 		break;
1073 	case SYS_ICC_RPR_EL1:
1074 		if (unlikely(!is_read))
1075 			return 0;
1076 		fn = __vgic_v3_read_rpr;
1077 		break;
1078 	case SYS_ICC_CTLR_EL1:
1079 		if (is_read)
1080 			fn = __vgic_v3_read_ctlr;
1081 		else
1082 			fn = __vgic_v3_write_ctlr;
1083 		break;
1084 	case SYS_ICC_PMR_EL1:
1085 		if (is_read)
1086 			fn = __vgic_v3_read_pmr;
1087 		else
1088 			fn = __vgic_v3_write_pmr;
1089 		break;
1090 	default:
1091 		return 0;
1092 	}
1093 
1094 	vmcr = __vgic_v3_read_vmcr();
1095 	rt = kvm_vcpu_sys_get_rt(vcpu);
1096 	fn(vcpu, vmcr, rt);
1097 
1098 	__kvm_skip_instr(vcpu);
1099 
1100 	return 1;
1101 }
1102