xref: /openbmc/linux/arch/arm64/kvm/hyp/pgtable.c (revision ece68749)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 
15 #define KVM_PTE_TYPE			BIT(1)
16 #define KVM_PTE_TYPE_BLOCK		0
17 #define KVM_PTE_TYPE_PAGE		1
18 #define KVM_PTE_TYPE_TABLE		1
19 
20 #define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)
21 
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO	3
25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW	1
26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)
29 
30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)
36 
37 #define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 51)
38 
39 #define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)
40 
41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)
42 
43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)
44 
45 #define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
46 					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
47 					 KVM_PTE_LEAF_ATTR_HI_S2_XN)
48 
49 #define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
50 #define KVM_MAX_OWNER_ID		1
51 
52 /*
53  * Used to indicate a pte for which a 'break-before-make' sequence is in
54  * progress.
55  */
56 #define KVM_INVALID_PTE_LOCKED		BIT(10)
57 
58 struct kvm_pgtable_walk_data {
59 	struct kvm_pgtable_walker	*walker;
60 
61 	const u64			start;
62 	u64				addr;
63 	const u64			end;
64 };
65 
66 static bool kvm_phys_is_valid(u64 phys)
67 {
68 	return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
69 }
70 
71 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
72 {
73 	u64 granule = kvm_granule_size(ctx->level);
74 
75 	if (!kvm_level_supports_block_mapping(ctx->level))
76 		return false;
77 
78 	if (granule > (ctx->end - ctx->addr))
79 		return false;
80 
81 	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
82 		return false;
83 
84 	return IS_ALIGNED(ctx->addr, granule);
85 }
86 
87 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
88 {
89 	u64 shift = kvm_granule_shift(level);
90 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
91 
92 	return (data->addr >> shift) & mask;
93 }
94 
95 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
96 {
97 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
98 	u64 mask = BIT(pgt->ia_bits) - 1;
99 
100 	return (addr & mask) >> shift;
101 }
102 
103 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
104 {
105 	struct kvm_pgtable pgt = {
106 		.ia_bits	= ia_bits,
107 		.start_level	= start_level,
108 	};
109 
110 	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
111 }
112 
113 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
114 {
115 	if (level == KVM_PGTABLE_MAX_LEVELS - 1)
116 		return false;
117 
118 	if (!kvm_pte_valid(pte))
119 		return false;
120 
121 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
122 }
123 
124 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
125 {
126 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
127 }
128 
129 static void kvm_clear_pte(kvm_pte_t *ptep)
130 {
131 	WRITE_ONCE(*ptep, 0);
132 }
133 
134 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
135 {
136 	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
137 
138 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
139 	pte |= KVM_PTE_VALID;
140 	return pte;
141 }
142 
143 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
144 {
145 	kvm_pte_t pte = kvm_phys_to_pte(pa);
146 	u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
147 							   KVM_PTE_TYPE_BLOCK;
148 
149 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
150 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
151 	pte |= KVM_PTE_VALID;
152 
153 	return pte;
154 }
155 
156 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
157 {
158 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
159 }
160 
161 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
162 				  const struct kvm_pgtable_visit_ctx *ctx,
163 				  enum kvm_pgtable_walk_flags visit)
164 {
165 	struct kvm_pgtable_walker *walker = data->walker;
166 
167 	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
168 	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
169 	return walker->cb(ctx, visit);
170 }
171 
172 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
173 				      int r)
174 {
175 	/*
176 	 * Visitor callbacks return EAGAIN when the conditions that led to a
177 	 * fault are no longer reflected in the page tables due to a race to
178 	 * update a PTE. In the context of a fault handler this is interpreted
179 	 * as a signal to retry guest execution.
180 	 *
181 	 * Ignore the return code altogether for walkers outside a fault handler
182 	 * (e.g. write protecting a range of memory) and chug along with the
183 	 * page table walk.
184 	 */
185 	if (r == -EAGAIN)
186 		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
187 
188 	return !r;
189 }
190 
191 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
192 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level);
193 
194 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
195 				      struct kvm_pgtable_mm_ops *mm_ops,
196 				      kvm_pteref_t pteref, u32 level)
197 {
198 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
199 	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
200 	struct kvm_pgtable_visit_ctx ctx = {
201 		.ptep	= ptep,
202 		.old	= READ_ONCE(*ptep),
203 		.arg	= data->walker->arg,
204 		.mm_ops	= mm_ops,
205 		.start	= data->start,
206 		.addr	= data->addr,
207 		.end	= data->end,
208 		.level	= level,
209 		.flags	= flags,
210 	};
211 	int ret = 0;
212 	kvm_pteref_t childp;
213 	bool table = kvm_pte_table(ctx.old, level);
214 
215 	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE))
216 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
217 
218 	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
219 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
220 		ctx.old = READ_ONCE(*ptep);
221 		table = kvm_pte_table(ctx.old, level);
222 	}
223 
224 	if (!kvm_pgtable_walk_continue(data->walker, ret))
225 		goto out;
226 
227 	if (!table) {
228 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
229 		data->addr += kvm_granule_size(level);
230 		goto out;
231 	}
232 
233 	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
234 	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
235 	if (!kvm_pgtable_walk_continue(data->walker, ret))
236 		goto out;
237 
238 	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
239 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
240 
241 out:
242 	if (kvm_pgtable_walk_continue(data->walker, ret))
243 		return 0;
244 
245 	return ret;
246 }
247 
248 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
249 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level)
250 {
251 	u32 idx;
252 	int ret = 0;
253 
254 	if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
255 		return -EINVAL;
256 
257 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
258 		kvm_pteref_t pteref = &pgtable[idx];
259 
260 		if (data->addr >= data->end)
261 			break;
262 
263 		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
264 		if (ret)
265 			break;
266 	}
267 
268 	return ret;
269 }
270 
271 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
272 {
273 	u32 idx;
274 	int ret = 0;
275 	u64 limit = BIT(pgt->ia_bits);
276 
277 	if (data->addr > limit || data->end > limit)
278 		return -ERANGE;
279 
280 	if (!pgt->pgd)
281 		return -EINVAL;
282 
283 	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
284 		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
285 
286 		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
287 		if (ret)
288 			break;
289 	}
290 
291 	return ret;
292 }
293 
294 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
295 		     struct kvm_pgtable_walker *walker)
296 {
297 	struct kvm_pgtable_walk_data walk_data = {
298 		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
299 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
300 		.end	= PAGE_ALIGN(walk_data.addr + size),
301 		.walker	= walker,
302 	};
303 	int r;
304 
305 	r = kvm_pgtable_walk_begin(walker);
306 	if (r)
307 		return r;
308 
309 	r = _kvm_pgtable_walk(pgt, &walk_data);
310 	kvm_pgtable_walk_end(walker);
311 
312 	return r;
313 }
314 
315 struct leaf_walk_data {
316 	kvm_pte_t	pte;
317 	u32		level;
318 };
319 
320 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
321 		       enum kvm_pgtable_walk_flags visit)
322 {
323 	struct leaf_walk_data *data = ctx->arg;
324 
325 	data->pte   = ctx->old;
326 	data->level = ctx->level;
327 
328 	return 0;
329 }
330 
331 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
332 			 kvm_pte_t *ptep, u32 *level)
333 {
334 	struct leaf_walk_data data;
335 	struct kvm_pgtable_walker walker = {
336 		.cb	= leaf_walker,
337 		.flags	= KVM_PGTABLE_WALK_LEAF,
338 		.arg	= &data,
339 	};
340 	int ret;
341 
342 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
343 			       PAGE_SIZE, &walker);
344 	if (!ret) {
345 		if (ptep)
346 			*ptep  = data.pte;
347 		if (level)
348 			*level = data.level;
349 	}
350 
351 	return ret;
352 }
353 
354 struct hyp_map_data {
355 	const u64			phys;
356 	kvm_pte_t			attr;
357 };
358 
359 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
360 {
361 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
362 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
363 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
364 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
365 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
366 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
367 
368 	if (!(prot & KVM_PGTABLE_PROT_R))
369 		return -EINVAL;
370 
371 	if (prot & KVM_PGTABLE_PROT_X) {
372 		if (prot & KVM_PGTABLE_PROT_W)
373 			return -EINVAL;
374 
375 		if (device)
376 			return -EINVAL;
377 	} else {
378 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
379 	}
380 
381 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
382 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
383 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
384 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
385 	*ptep = attr;
386 
387 	return 0;
388 }
389 
390 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
391 {
392 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
393 	u32 ap;
394 
395 	if (!kvm_pte_valid(pte))
396 		return prot;
397 
398 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
399 		prot |= KVM_PGTABLE_PROT_X;
400 
401 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
402 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
403 		prot |= KVM_PGTABLE_PROT_R;
404 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
405 		prot |= KVM_PGTABLE_PROT_RW;
406 
407 	return prot;
408 }
409 
410 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
411 				    struct hyp_map_data *data)
412 {
413 	u64 phys = data->phys + (ctx->addr - ctx->start);
414 	kvm_pte_t new;
415 
416 	if (!kvm_block_mapping_supported(ctx, phys))
417 		return false;
418 
419 	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
420 	if (ctx->old == new)
421 		return true;
422 	if (!kvm_pte_valid(ctx->old))
423 		ctx->mm_ops->get_page(ctx->ptep);
424 	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
425 		return false;
426 
427 	smp_store_release(ctx->ptep, new);
428 	return true;
429 }
430 
431 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
432 			  enum kvm_pgtable_walk_flags visit)
433 {
434 	kvm_pte_t *childp, new;
435 	struct hyp_map_data *data = ctx->arg;
436 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
437 
438 	if (hyp_map_walker_try_leaf(ctx, data))
439 		return 0;
440 
441 	if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
442 		return -EINVAL;
443 
444 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
445 	if (!childp)
446 		return -ENOMEM;
447 
448 	new = kvm_init_table_pte(childp, mm_ops);
449 	mm_ops->get_page(ctx->ptep);
450 	smp_store_release(ctx->ptep, new);
451 
452 	return 0;
453 }
454 
455 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
456 			enum kvm_pgtable_prot prot)
457 {
458 	int ret;
459 	struct hyp_map_data map_data = {
460 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
461 	};
462 	struct kvm_pgtable_walker walker = {
463 		.cb	= hyp_map_walker,
464 		.flags	= KVM_PGTABLE_WALK_LEAF,
465 		.arg	= &map_data,
466 	};
467 
468 	ret = hyp_set_prot_attr(prot, &map_data.attr);
469 	if (ret)
470 		return ret;
471 
472 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
473 	dsb(ishst);
474 	isb();
475 	return ret;
476 }
477 
478 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
479 			    enum kvm_pgtable_walk_flags visit)
480 {
481 	kvm_pte_t *childp = NULL;
482 	u64 granule = kvm_granule_size(ctx->level);
483 	u64 *unmapped = ctx->arg;
484 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
485 
486 	if (!kvm_pte_valid(ctx->old))
487 		return -EINVAL;
488 
489 	if (kvm_pte_table(ctx->old, ctx->level)) {
490 		childp = kvm_pte_follow(ctx->old, mm_ops);
491 
492 		if (mm_ops->page_count(childp) != 1)
493 			return 0;
494 
495 		kvm_clear_pte(ctx->ptep);
496 		dsb(ishst);
497 		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
498 	} else {
499 		if (ctx->end - ctx->addr < granule)
500 			return -EINVAL;
501 
502 		kvm_clear_pte(ctx->ptep);
503 		dsb(ishst);
504 		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
505 		*unmapped += granule;
506 	}
507 
508 	dsb(ish);
509 	isb();
510 	mm_ops->put_page(ctx->ptep);
511 
512 	if (childp)
513 		mm_ops->put_page(childp);
514 
515 	return 0;
516 }
517 
518 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
519 {
520 	u64 unmapped = 0;
521 	struct kvm_pgtable_walker walker = {
522 		.cb	= hyp_unmap_walker,
523 		.arg	= &unmapped,
524 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
525 	};
526 
527 	if (!pgt->mm_ops->page_count)
528 		return 0;
529 
530 	kvm_pgtable_walk(pgt, addr, size, &walker);
531 	return unmapped;
532 }
533 
534 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
535 			 struct kvm_pgtable_mm_ops *mm_ops)
536 {
537 	u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
538 
539 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
540 	if (!pgt->pgd)
541 		return -ENOMEM;
542 
543 	pgt->ia_bits		= va_bits;
544 	pgt->start_level	= KVM_PGTABLE_MAX_LEVELS - levels;
545 	pgt->mm_ops		= mm_ops;
546 	pgt->mmu		= NULL;
547 	pgt->force_pte_cb	= NULL;
548 
549 	return 0;
550 }
551 
552 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
553 			   enum kvm_pgtable_walk_flags visit)
554 {
555 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
556 
557 	if (!kvm_pte_valid(ctx->old))
558 		return 0;
559 
560 	mm_ops->put_page(ctx->ptep);
561 
562 	if (kvm_pte_table(ctx->old, ctx->level))
563 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
564 
565 	return 0;
566 }
567 
568 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
569 {
570 	struct kvm_pgtable_walker walker = {
571 		.cb	= hyp_free_walker,
572 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
573 	};
574 
575 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
576 	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
577 	pgt->pgd = NULL;
578 }
579 
580 struct stage2_map_data {
581 	const u64			phys;
582 	kvm_pte_t			attr;
583 	u8				owner_id;
584 
585 	kvm_pte_t			*anchor;
586 	kvm_pte_t			*childp;
587 
588 	struct kvm_s2_mmu		*mmu;
589 	void				*memcache;
590 
591 	/* Force mappings to page granularity */
592 	bool				force_pte;
593 };
594 
595 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
596 {
597 	u64 vtcr = VTCR_EL2_FLAGS;
598 	u8 lvls;
599 
600 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
601 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
602 	/*
603 	 * Use a minimum 2 level page table to prevent splitting
604 	 * host PMD huge pages at stage2.
605 	 */
606 	lvls = stage2_pgtable_levels(phys_shift);
607 	if (lvls < 2)
608 		lvls = 2;
609 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
610 
611 #ifdef CONFIG_ARM64_HW_AFDBM
612 	/*
613 	 * Enable the Hardware Access Flag management, unconditionally
614 	 * on all CPUs. The features is RES0 on CPUs without the support
615 	 * and must be ignored by the CPUs.
616 	 */
617 	vtcr |= VTCR_EL2_HA;
618 #endif /* CONFIG_ARM64_HW_AFDBM */
619 
620 	/* Set the vmid bits */
621 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
622 		VTCR_EL2_VS_16BIT :
623 		VTCR_EL2_VS_8BIT;
624 
625 	return vtcr;
626 }
627 
628 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
629 {
630 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
631 		return false;
632 
633 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
634 }
635 
636 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
637 
638 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
639 				kvm_pte_t *ptep)
640 {
641 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
642 	kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
643 			    KVM_S2_MEMATTR(pgt, NORMAL);
644 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
645 
646 	if (!(prot & KVM_PGTABLE_PROT_X))
647 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
648 	else if (device)
649 		return -EINVAL;
650 
651 	if (prot & KVM_PGTABLE_PROT_R)
652 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
653 
654 	if (prot & KVM_PGTABLE_PROT_W)
655 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
656 
657 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
658 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
659 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
660 	*ptep = attr;
661 
662 	return 0;
663 }
664 
665 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
666 {
667 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
668 
669 	if (!kvm_pte_valid(pte))
670 		return prot;
671 
672 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
673 		prot |= KVM_PGTABLE_PROT_R;
674 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
675 		prot |= KVM_PGTABLE_PROT_W;
676 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
677 		prot |= KVM_PGTABLE_PROT_X;
678 
679 	return prot;
680 }
681 
682 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
683 {
684 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
685 		return true;
686 
687 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
688 }
689 
690 static bool stage2_pte_is_counted(kvm_pte_t pte)
691 {
692 	/*
693 	 * The refcount tracks valid entries as well as invalid entries if they
694 	 * encode ownership of a page to another entity than the page-table
695 	 * owner, whose id is 0.
696 	 */
697 	return !!pte;
698 }
699 
700 static bool stage2_pte_is_locked(kvm_pte_t pte)
701 {
702 	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
703 }
704 
705 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
706 {
707 	if (!kvm_pgtable_walk_shared(ctx)) {
708 		WRITE_ONCE(*ctx->ptep, new);
709 		return true;
710 	}
711 
712 	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
713 }
714 
715 /**
716  * stage2_try_break_pte() - Invalidates a pte according to the
717  *			    'break-before-make' requirements of the
718  *			    architecture.
719  *
720  * @ctx: context of the visited pte.
721  * @mmu: stage-2 mmu
722  *
723  * Returns: true if the pte was successfully broken.
724  *
725  * If the removed pte was valid, performs the necessary serialization and TLB
726  * invalidation for the old value. For counted ptes, drops the reference count
727  * on the containing table page.
728  */
729 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
730 				 struct kvm_s2_mmu *mmu)
731 {
732 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
733 
734 	if (stage2_pte_is_locked(ctx->old)) {
735 		/*
736 		 * Should never occur if this walker has exclusive access to the
737 		 * page tables.
738 		 */
739 		WARN_ON(!kvm_pgtable_walk_shared(ctx));
740 		return false;
741 	}
742 
743 	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
744 		return false;
745 
746 	/*
747 	 * Perform the appropriate TLB invalidation based on the evicted pte
748 	 * value (if any).
749 	 */
750 	if (kvm_pte_table(ctx->old, ctx->level))
751 		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
752 	else if (kvm_pte_valid(ctx->old))
753 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level);
754 
755 	if (stage2_pte_is_counted(ctx->old))
756 		mm_ops->put_page(ctx->ptep);
757 
758 	return true;
759 }
760 
761 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
762 {
763 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
764 
765 	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
766 
767 	if (stage2_pte_is_counted(new))
768 		mm_ops->get_page(ctx->ptep);
769 
770 	smp_store_release(ctx->ptep, new);
771 }
772 
773 static void stage2_put_pte(const struct kvm_pgtable_visit_ctx *ctx, struct kvm_s2_mmu *mmu,
774 			   struct kvm_pgtable_mm_ops *mm_ops)
775 {
776 	/*
777 	 * Clear the existing PTE, and perform break-before-make with
778 	 * TLB maintenance if it was valid.
779 	 */
780 	if (kvm_pte_valid(ctx->old)) {
781 		kvm_clear_pte(ctx->ptep);
782 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level);
783 	}
784 
785 	mm_ops->put_page(ctx->ptep);
786 }
787 
788 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
789 {
790 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
791 	return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
792 }
793 
794 static bool stage2_pte_executable(kvm_pte_t pte)
795 {
796 	return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
797 }
798 
799 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
800 				       const struct stage2_map_data *data)
801 {
802 	u64 phys = data->phys;
803 
804 	/*
805 	 * Stage-2 walks to update ownership data are communicated to the map
806 	 * walker using an invalid PA. Avoid offsetting an already invalid PA,
807 	 * which could overflow and make the address valid again.
808 	 */
809 	if (!kvm_phys_is_valid(phys))
810 		return phys;
811 
812 	/*
813 	 * Otherwise, work out the correct PA based on how far the walk has
814 	 * gotten.
815 	 */
816 	return phys + (ctx->addr - ctx->start);
817 }
818 
819 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
820 					struct stage2_map_data *data)
821 {
822 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
823 
824 	if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1)))
825 		return false;
826 
827 	return kvm_block_mapping_supported(ctx, phys);
828 }
829 
830 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
831 				      struct stage2_map_data *data)
832 {
833 	kvm_pte_t new;
834 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
835 	u64 granule = kvm_granule_size(ctx->level);
836 	struct kvm_pgtable *pgt = data->mmu->pgt;
837 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
838 
839 	if (!stage2_leaf_mapping_allowed(ctx, data))
840 		return -E2BIG;
841 
842 	if (kvm_phys_is_valid(phys))
843 		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
844 	else
845 		new = kvm_init_invalid_leaf_owner(data->owner_id);
846 
847 	/*
848 	 * Skip updating the PTE if we are trying to recreate the exact
849 	 * same mapping or only change the access permissions. Instead,
850 	 * the vCPU will exit one more time from guest if still needed
851 	 * and then go through the path of relaxing permissions.
852 	 */
853 	if (!stage2_pte_needs_update(ctx->old, new))
854 		return -EAGAIN;
855 
856 	if (!stage2_try_break_pte(ctx, data->mmu))
857 		return -EAGAIN;
858 
859 	/* Perform CMOs before installation of the guest stage-2 PTE */
860 	if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
861 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
862 						granule);
863 
864 	if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
865 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
866 
867 	stage2_make_pte(ctx, new);
868 
869 	return 0;
870 }
871 
872 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
873 				     struct stage2_map_data *data)
874 {
875 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
876 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
877 	int ret;
878 
879 	if (!stage2_leaf_mapping_allowed(ctx, data))
880 		return 0;
881 
882 	ret = stage2_map_walker_try_leaf(ctx, data);
883 	if (ret)
884 		return ret;
885 
886 	mm_ops->free_removed_table(childp, ctx->level);
887 	return 0;
888 }
889 
890 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
891 				struct stage2_map_data *data)
892 {
893 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
894 	kvm_pte_t *childp, new;
895 	int ret;
896 
897 	ret = stage2_map_walker_try_leaf(ctx, data);
898 	if (ret != -E2BIG)
899 		return ret;
900 
901 	if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
902 		return -EINVAL;
903 
904 	if (!data->memcache)
905 		return -ENOMEM;
906 
907 	childp = mm_ops->zalloc_page(data->memcache);
908 	if (!childp)
909 		return -ENOMEM;
910 
911 	if (!stage2_try_break_pte(ctx, data->mmu)) {
912 		mm_ops->put_page(childp);
913 		return -EAGAIN;
914 	}
915 
916 	/*
917 	 * If we've run into an existing block mapping then replace it with
918 	 * a table. Accesses beyond 'end' that fall within the new table
919 	 * will be mapped lazily.
920 	 */
921 	new = kvm_init_table_pte(childp, mm_ops);
922 	stage2_make_pte(ctx, new);
923 
924 	return 0;
925 }
926 
927 /*
928  * The TABLE_PRE callback runs for table entries on the way down, looking
929  * for table entries which we could conceivably replace with a block entry
930  * for this mapping. If it finds one it replaces the entry and calls
931  * kvm_pgtable_mm_ops::free_removed_table() to tear down the detached table.
932  *
933  * Otherwise, the LEAF callback performs the mapping at the existing leaves
934  * instead.
935  */
936 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
937 			     enum kvm_pgtable_walk_flags visit)
938 {
939 	struct stage2_map_data *data = ctx->arg;
940 
941 	switch (visit) {
942 	case KVM_PGTABLE_WALK_TABLE_PRE:
943 		return stage2_map_walk_table_pre(ctx, data);
944 	case KVM_PGTABLE_WALK_LEAF:
945 		return stage2_map_walk_leaf(ctx, data);
946 	default:
947 		return -EINVAL;
948 	}
949 }
950 
951 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
952 			   u64 phys, enum kvm_pgtable_prot prot,
953 			   void *mc, enum kvm_pgtable_walk_flags flags)
954 {
955 	int ret;
956 	struct stage2_map_data map_data = {
957 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
958 		.mmu		= pgt->mmu,
959 		.memcache	= mc,
960 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
961 	};
962 	struct kvm_pgtable_walker walker = {
963 		.cb		= stage2_map_walker,
964 		.flags		= flags |
965 				  KVM_PGTABLE_WALK_TABLE_PRE |
966 				  KVM_PGTABLE_WALK_LEAF,
967 		.arg		= &map_data,
968 	};
969 
970 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
971 		return -EINVAL;
972 
973 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
974 	if (ret)
975 		return ret;
976 
977 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
978 	dsb(ishst);
979 	return ret;
980 }
981 
982 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
983 				 void *mc, u8 owner_id)
984 {
985 	int ret;
986 	struct stage2_map_data map_data = {
987 		.phys		= KVM_PHYS_INVALID,
988 		.mmu		= pgt->mmu,
989 		.memcache	= mc,
990 		.owner_id	= owner_id,
991 		.force_pte	= true,
992 	};
993 	struct kvm_pgtable_walker walker = {
994 		.cb		= stage2_map_walker,
995 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
996 				  KVM_PGTABLE_WALK_LEAF,
997 		.arg		= &map_data,
998 	};
999 
1000 	if (owner_id > KVM_MAX_OWNER_ID)
1001 		return -EINVAL;
1002 
1003 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1004 	return ret;
1005 }
1006 
1007 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1008 			       enum kvm_pgtable_walk_flags visit)
1009 {
1010 	struct kvm_pgtable *pgt = ctx->arg;
1011 	struct kvm_s2_mmu *mmu = pgt->mmu;
1012 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1013 	kvm_pte_t *childp = NULL;
1014 	bool need_flush = false;
1015 
1016 	if (!kvm_pte_valid(ctx->old)) {
1017 		if (stage2_pte_is_counted(ctx->old)) {
1018 			kvm_clear_pte(ctx->ptep);
1019 			mm_ops->put_page(ctx->ptep);
1020 		}
1021 		return 0;
1022 	}
1023 
1024 	if (kvm_pte_table(ctx->old, ctx->level)) {
1025 		childp = kvm_pte_follow(ctx->old, mm_ops);
1026 
1027 		if (mm_ops->page_count(childp) != 1)
1028 			return 0;
1029 	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1030 		need_flush = !stage2_has_fwb(pgt);
1031 	}
1032 
1033 	/*
1034 	 * This is similar to the map() path in that we unmap the entire
1035 	 * block entry and rely on the remaining portions being faulted
1036 	 * back lazily.
1037 	 */
1038 	stage2_put_pte(ctx, mmu, mm_ops);
1039 
1040 	if (need_flush && mm_ops->dcache_clean_inval_poc)
1041 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1042 					       kvm_granule_size(ctx->level));
1043 
1044 	if (childp)
1045 		mm_ops->put_page(childp);
1046 
1047 	return 0;
1048 }
1049 
1050 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1051 {
1052 	struct kvm_pgtable_walker walker = {
1053 		.cb	= stage2_unmap_walker,
1054 		.arg	= pgt,
1055 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1056 	};
1057 
1058 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1059 }
1060 
1061 struct stage2_attr_data {
1062 	kvm_pte_t			attr_set;
1063 	kvm_pte_t			attr_clr;
1064 	kvm_pte_t			pte;
1065 	u32				level;
1066 };
1067 
1068 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1069 			      enum kvm_pgtable_walk_flags visit)
1070 {
1071 	kvm_pte_t pte = ctx->old;
1072 	struct stage2_attr_data *data = ctx->arg;
1073 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1074 
1075 	if (!kvm_pte_valid(ctx->old))
1076 		return -EAGAIN;
1077 
1078 	data->level = ctx->level;
1079 	data->pte = pte;
1080 	pte &= ~data->attr_clr;
1081 	pte |= data->attr_set;
1082 
1083 	/*
1084 	 * We may race with the CPU trying to set the access flag here,
1085 	 * but worst-case the access flag update gets lost and will be
1086 	 * set on the next access instead.
1087 	 */
1088 	if (data->pte != pte) {
1089 		/*
1090 		 * Invalidate instruction cache before updating the guest
1091 		 * stage-2 PTE if we are going to add executable permission.
1092 		 */
1093 		if (mm_ops->icache_inval_pou &&
1094 		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1095 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1096 						  kvm_granule_size(ctx->level));
1097 
1098 		if (!stage2_try_set_pte(ctx, pte))
1099 			return -EAGAIN;
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1106 				    u64 size, kvm_pte_t attr_set,
1107 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1108 				    u32 *level, enum kvm_pgtable_walk_flags flags)
1109 {
1110 	int ret;
1111 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1112 	struct stage2_attr_data data = {
1113 		.attr_set	= attr_set & attr_mask,
1114 		.attr_clr	= attr_clr & attr_mask,
1115 	};
1116 	struct kvm_pgtable_walker walker = {
1117 		.cb		= stage2_attr_walker,
1118 		.arg		= &data,
1119 		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1120 	};
1121 
1122 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1123 	if (ret)
1124 		return ret;
1125 
1126 	if (orig_pte)
1127 		*orig_pte = data.pte;
1128 
1129 	if (level)
1130 		*level = data.level;
1131 	return 0;
1132 }
1133 
1134 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1135 {
1136 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1137 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1138 					NULL, NULL, 0);
1139 }
1140 
1141 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1142 {
1143 	kvm_pte_t pte = 0;
1144 	int ret;
1145 
1146 	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1147 				       &pte, NULL,
1148 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1149 				       KVM_PGTABLE_WALK_SHARED);
1150 	if (!ret)
1151 		dsb(ishst);
1152 
1153 	return pte;
1154 }
1155 
1156 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
1157 {
1158 	kvm_pte_t pte = 0;
1159 	stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
1160 				 &pte, NULL, 0);
1161 	/*
1162 	 * "But where's the TLBI?!", you scream.
1163 	 * "Over in the core code", I sigh.
1164 	 *
1165 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1166 	 */
1167 	return pte;
1168 }
1169 
1170 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
1171 {
1172 	kvm_pte_t pte = 0;
1173 	stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL, 0);
1174 	return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
1175 }
1176 
1177 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1178 				   enum kvm_pgtable_prot prot)
1179 {
1180 	int ret;
1181 	u32 level;
1182 	kvm_pte_t set = 0, clr = 0;
1183 
1184 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1185 		return -EINVAL;
1186 
1187 	if (prot & KVM_PGTABLE_PROT_R)
1188 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1189 
1190 	if (prot & KVM_PGTABLE_PROT_W)
1191 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1192 
1193 	if (prot & KVM_PGTABLE_PROT_X)
1194 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1195 
1196 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1197 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1198 				       KVM_PGTABLE_WALK_SHARED);
1199 	if (!ret)
1200 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
1201 	return ret;
1202 }
1203 
1204 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1205 			       enum kvm_pgtable_walk_flags visit)
1206 {
1207 	struct kvm_pgtable *pgt = ctx->arg;
1208 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1209 
1210 	if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
1211 		return 0;
1212 
1213 	if (mm_ops->dcache_clean_inval_poc)
1214 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1215 					       kvm_granule_size(ctx->level));
1216 	return 0;
1217 }
1218 
1219 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1220 {
1221 	struct kvm_pgtable_walker walker = {
1222 		.cb	= stage2_flush_walker,
1223 		.flags	= KVM_PGTABLE_WALK_LEAF,
1224 		.arg	= pgt,
1225 	};
1226 
1227 	if (stage2_has_fwb(pgt))
1228 		return 0;
1229 
1230 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1231 }
1232 
1233 
1234 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1235 			      struct kvm_pgtable_mm_ops *mm_ops,
1236 			      enum kvm_pgtable_stage2_flags flags,
1237 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1238 {
1239 	size_t pgd_sz;
1240 	u64 vtcr = mmu->arch->vtcr;
1241 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1242 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1243 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1244 
1245 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1246 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1247 	if (!pgt->pgd)
1248 		return -ENOMEM;
1249 
1250 	pgt->ia_bits		= ia_bits;
1251 	pgt->start_level	= start_level;
1252 	pgt->mm_ops		= mm_ops;
1253 	pgt->mmu		= mmu;
1254 	pgt->flags		= flags;
1255 	pgt->force_pte_cb	= force_pte_cb;
1256 
1257 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1258 	dsb(ishst);
1259 	return 0;
1260 }
1261 
1262 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1263 {
1264 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1265 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1266 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1267 
1268 	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1269 }
1270 
1271 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1272 			      enum kvm_pgtable_walk_flags visit)
1273 {
1274 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1275 
1276 	if (!stage2_pte_is_counted(ctx->old))
1277 		return 0;
1278 
1279 	mm_ops->put_page(ctx->ptep);
1280 
1281 	if (kvm_pte_table(ctx->old, ctx->level))
1282 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1283 
1284 	return 0;
1285 }
1286 
1287 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1288 {
1289 	size_t pgd_sz;
1290 	struct kvm_pgtable_walker walker = {
1291 		.cb	= stage2_free_walker,
1292 		.flags	= KVM_PGTABLE_WALK_LEAF |
1293 			  KVM_PGTABLE_WALK_TABLE_POST,
1294 	};
1295 
1296 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1297 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1298 	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1299 	pgt->pgd = NULL;
1300 }
1301 
1302 void kvm_pgtable_stage2_free_removed(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level)
1303 {
1304 	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1305 	struct kvm_pgtable_walker walker = {
1306 		.cb	= stage2_free_walker,
1307 		.flags	= KVM_PGTABLE_WALK_LEAF |
1308 			  KVM_PGTABLE_WALK_TABLE_POST,
1309 	};
1310 	struct kvm_pgtable_walk_data data = {
1311 		.walker	= &walker,
1312 
1313 		/*
1314 		 * At this point the IPA really doesn't matter, as the page
1315 		 * table being traversed has already been removed from the stage
1316 		 * 2. Set an appropriate range to cover the entire page table.
1317 		 */
1318 		.addr	= 0,
1319 		.end	= kvm_granule_size(level),
1320 	};
1321 
1322 	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1323 }
1324