xref: /openbmc/linux/arch/arm64/kvm/hyp/pgtable.c (revision e7f127b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 
15 #define KVM_PTE_TYPE			BIT(1)
16 #define KVM_PTE_TYPE_BLOCK		0
17 #define KVM_PTE_TYPE_PAGE		1
18 #define KVM_PTE_TYPE_TABLE		1
19 
20 #define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)
21 
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO	3
25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW	1
26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)
29 
30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)
36 
37 #define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 51)
38 
39 #define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)
40 
41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)
42 
43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)
44 
45 #define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
46 					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
47 					 KVM_PTE_LEAF_ATTR_HI_S2_XN)
48 
49 #define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
50 #define KVM_MAX_OWNER_ID		1
51 
52 struct kvm_pgtable_walk_data {
53 	struct kvm_pgtable		*pgt;
54 	struct kvm_pgtable_walker	*walker;
55 
56 	u64				addr;
57 	u64				end;
58 };
59 
60 #define KVM_PHYS_INVALID (-1ULL)
61 
62 static bool kvm_phys_is_valid(u64 phys)
63 {
64 	return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_PARANGE_MAX));
65 }
66 
67 static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
68 {
69 	u64 granule = kvm_granule_size(level);
70 
71 	if (!kvm_level_supports_block_mapping(level))
72 		return false;
73 
74 	if (granule > (end - addr))
75 		return false;
76 
77 	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
78 		return false;
79 
80 	return IS_ALIGNED(addr, granule);
81 }
82 
83 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
84 {
85 	u64 shift = kvm_granule_shift(level);
86 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
87 
88 	return (data->addr >> shift) & mask;
89 }
90 
91 static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
92 {
93 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
94 	u64 mask = BIT(pgt->ia_bits) - 1;
95 
96 	return (addr & mask) >> shift;
97 }
98 
99 static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
100 {
101 	return __kvm_pgd_page_idx(data->pgt, data->addr);
102 }
103 
104 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
105 {
106 	struct kvm_pgtable pgt = {
107 		.ia_bits	= ia_bits,
108 		.start_level	= start_level,
109 	};
110 
111 	return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
112 }
113 
114 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
115 {
116 	if (level == KVM_PGTABLE_MAX_LEVELS - 1)
117 		return false;
118 
119 	if (!kvm_pte_valid(pte))
120 		return false;
121 
122 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
123 }
124 
125 static kvm_pte_t kvm_phys_to_pte(u64 pa)
126 {
127 	kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;
128 
129 	if (PAGE_SHIFT == 16)
130 		pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
131 
132 	return pte;
133 }
134 
135 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
136 {
137 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
138 }
139 
140 static void kvm_clear_pte(kvm_pte_t *ptep)
141 {
142 	WRITE_ONCE(*ptep, 0);
143 }
144 
145 static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp,
146 			      struct kvm_pgtable_mm_ops *mm_ops)
147 {
148 	kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
149 
150 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
151 	pte |= KVM_PTE_VALID;
152 
153 	WARN_ON(kvm_pte_valid(old));
154 	smp_store_release(ptep, pte);
155 }
156 
157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
158 {
159 	kvm_pte_t pte = kvm_phys_to_pte(pa);
160 	u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
161 							   KVM_PTE_TYPE_BLOCK;
162 
163 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
164 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
165 	pte |= KVM_PTE_VALID;
166 
167 	return pte;
168 }
169 
170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
171 {
172 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
173 }
174 
175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
176 				  u32 level, kvm_pte_t *ptep,
177 				  enum kvm_pgtable_walk_flags flag)
178 {
179 	struct kvm_pgtable_walker *walker = data->walker;
180 	return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
181 }
182 
183 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
184 			      kvm_pte_t *pgtable, u32 level);
185 
186 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
187 				      kvm_pte_t *ptep, u32 level)
188 {
189 	int ret = 0;
190 	u64 addr = data->addr;
191 	kvm_pte_t *childp, pte = *ptep;
192 	bool table = kvm_pte_table(pte, level);
193 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
194 
195 	if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
196 		ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
197 					     KVM_PGTABLE_WALK_TABLE_PRE);
198 	}
199 
200 	if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
201 		ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
202 					     KVM_PGTABLE_WALK_LEAF);
203 		pte = *ptep;
204 		table = kvm_pte_table(pte, level);
205 	}
206 
207 	if (ret)
208 		goto out;
209 
210 	if (!table) {
211 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
212 		data->addr += kvm_granule_size(level);
213 		goto out;
214 	}
215 
216 	childp = kvm_pte_follow(pte, data->pgt->mm_ops);
217 	ret = __kvm_pgtable_walk(data, childp, level + 1);
218 	if (ret)
219 		goto out;
220 
221 	if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
222 		ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
223 					     KVM_PGTABLE_WALK_TABLE_POST);
224 	}
225 
226 out:
227 	return ret;
228 }
229 
230 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
231 			      kvm_pte_t *pgtable, u32 level)
232 {
233 	u32 idx;
234 	int ret = 0;
235 
236 	if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
237 		return -EINVAL;
238 
239 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
240 		kvm_pte_t *ptep = &pgtable[idx];
241 
242 		if (data->addr >= data->end)
243 			break;
244 
245 		ret = __kvm_pgtable_visit(data, ptep, level);
246 		if (ret)
247 			break;
248 	}
249 
250 	return ret;
251 }
252 
253 static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
254 {
255 	u32 idx;
256 	int ret = 0;
257 	struct kvm_pgtable *pgt = data->pgt;
258 	u64 limit = BIT(pgt->ia_bits);
259 
260 	if (data->addr > limit || data->end > limit)
261 		return -ERANGE;
262 
263 	if (!pgt->pgd)
264 		return -EINVAL;
265 
266 	for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
267 		kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];
268 
269 		ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
270 		if (ret)
271 			break;
272 	}
273 
274 	return ret;
275 }
276 
277 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
278 		     struct kvm_pgtable_walker *walker)
279 {
280 	struct kvm_pgtable_walk_data walk_data = {
281 		.pgt	= pgt,
282 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
283 		.end	= PAGE_ALIGN(walk_data.addr + size),
284 		.walker	= walker,
285 	};
286 
287 	return _kvm_pgtable_walk(&walk_data);
288 }
289 
290 struct leaf_walk_data {
291 	kvm_pte_t	pte;
292 	u32		level;
293 };
294 
295 static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
296 		       enum kvm_pgtable_walk_flags flag, void * const arg)
297 {
298 	struct leaf_walk_data *data = arg;
299 
300 	data->pte   = *ptep;
301 	data->level = level;
302 
303 	return 0;
304 }
305 
306 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
307 			 kvm_pte_t *ptep, u32 *level)
308 {
309 	struct leaf_walk_data data;
310 	struct kvm_pgtable_walker walker = {
311 		.cb	= leaf_walker,
312 		.flags	= KVM_PGTABLE_WALK_LEAF,
313 		.arg	= &data,
314 	};
315 	int ret;
316 
317 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
318 			       PAGE_SIZE, &walker);
319 	if (!ret) {
320 		if (ptep)
321 			*ptep  = data.pte;
322 		if (level)
323 			*level = data.level;
324 	}
325 
326 	return ret;
327 }
328 
329 struct hyp_map_data {
330 	u64				phys;
331 	kvm_pte_t			attr;
332 	struct kvm_pgtable_mm_ops	*mm_ops;
333 };
334 
335 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
336 {
337 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
338 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
339 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
340 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
341 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
342 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
343 
344 	if (!(prot & KVM_PGTABLE_PROT_R))
345 		return -EINVAL;
346 
347 	if (prot & KVM_PGTABLE_PROT_X) {
348 		if (prot & KVM_PGTABLE_PROT_W)
349 			return -EINVAL;
350 
351 		if (device)
352 			return -EINVAL;
353 	} else {
354 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
355 	}
356 
357 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
358 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
359 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
360 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
361 	*ptep = attr;
362 
363 	return 0;
364 }
365 
366 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
367 {
368 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
369 	u32 ap;
370 
371 	if (!kvm_pte_valid(pte))
372 		return prot;
373 
374 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
375 		prot |= KVM_PGTABLE_PROT_X;
376 
377 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
378 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
379 		prot |= KVM_PGTABLE_PROT_R;
380 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
381 		prot |= KVM_PGTABLE_PROT_RW;
382 
383 	return prot;
384 }
385 
386 static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
387 				    kvm_pte_t *ptep, struct hyp_map_data *data)
388 {
389 	kvm_pte_t new, old = *ptep;
390 	u64 granule = kvm_granule_size(level), phys = data->phys;
391 
392 	if (!kvm_block_mapping_supported(addr, end, phys, level))
393 		return false;
394 
395 	data->phys += granule;
396 	new = kvm_init_valid_leaf_pte(phys, data->attr, level);
397 	if (old == new)
398 		return true;
399 	if (!kvm_pte_valid(old))
400 		data->mm_ops->get_page(ptep);
401 	else if (WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
402 		return false;
403 
404 	smp_store_release(ptep, new);
405 	return true;
406 }
407 
408 static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
409 			  enum kvm_pgtable_walk_flags flag, void * const arg)
410 {
411 	kvm_pte_t *childp;
412 	struct hyp_map_data *data = arg;
413 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
414 
415 	if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
416 		return 0;
417 
418 	if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
419 		return -EINVAL;
420 
421 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
422 	if (!childp)
423 		return -ENOMEM;
424 
425 	kvm_set_table_pte(ptep, childp, mm_ops);
426 	mm_ops->get_page(ptep);
427 	return 0;
428 }
429 
430 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
431 			enum kvm_pgtable_prot prot)
432 {
433 	int ret;
434 	struct hyp_map_data map_data = {
435 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
436 		.mm_ops	= pgt->mm_ops,
437 	};
438 	struct kvm_pgtable_walker walker = {
439 		.cb	= hyp_map_walker,
440 		.flags	= KVM_PGTABLE_WALK_LEAF,
441 		.arg	= &map_data,
442 	};
443 
444 	ret = hyp_set_prot_attr(prot, &map_data.attr);
445 	if (ret)
446 		return ret;
447 
448 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
449 	dsb(ishst);
450 	isb();
451 	return ret;
452 }
453 
454 struct hyp_unmap_data {
455 	u64				unmapped;
456 	struct kvm_pgtable_mm_ops	*mm_ops;
457 };
458 
459 static int hyp_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
460 			    enum kvm_pgtable_walk_flags flag, void * const arg)
461 {
462 	kvm_pte_t pte = *ptep, *childp = NULL;
463 	u64 granule = kvm_granule_size(level);
464 	struct hyp_unmap_data *data = arg;
465 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
466 
467 	if (!kvm_pte_valid(pte))
468 		return -EINVAL;
469 
470 	if (kvm_pte_table(pte, level)) {
471 		childp = kvm_pte_follow(pte, mm_ops);
472 
473 		if (mm_ops->page_count(childp) != 1)
474 			return 0;
475 
476 		kvm_clear_pte(ptep);
477 		dsb(ishst);
478 		__tlbi_level(vae2is, __TLBI_VADDR(addr, 0), level);
479 	} else {
480 		if (end - addr < granule)
481 			return -EINVAL;
482 
483 		kvm_clear_pte(ptep);
484 		dsb(ishst);
485 		__tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level);
486 		data->unmapped += granule;
487 	}
488 
489 	dsb(ish);
490 	isb();
491 	mm_ops->put_page(ptep);
492 
493 	if (childp)
494 		mm_ops->put_page(childp);
495 
496 	return 0;
497 }
498 
499 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
500 {
501 	struct hyp_unmap_data unmap_data = {
502 		.mm_ops	= pgt->mm_ops,
503 	};
504 	struct kvm_pgtable_walker walker = {
505 		.cb	= hyp_unmap_walker,
506 		.arg	= &unmap_data,
507 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
508 	};
509 
510 	if (!pgt->mm_ops->page_count)
511 		return 0;
512 
513 	kvm_pgtable_walk(pgt, addr, size, &walker);
514 	return unmap_data.unmapped;
515 }
516 
517 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
518 			 struct kvm_pgtable_mm_ops *mm_ops)
519 {
520 	u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
521 
522 	pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
523 	if (!pgt->pgd)
524 		return -ENOMEM;
525 
526 	pgt->ia_bits		= va_bits;
527 	pgt->start_level	= KVM_PGTABLE_MAX_LEVELS - levels;
528 	pgt->mm_ops		= mm_ops;
529 	pgt->mmu		= NULL;
530 	pgt->force_pte_cb	= NULL;
531 
532 	return 0;
533 }
534 
535 static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
536 			   enum kvm_pgtable_walk_flags flag, void * const arg)
537 {
538 	struct kvm_pgtable_mm_ops *mm_ops = arg;
539 	kvm_pte_t pte = *ptep;
540 
541 	if (!kvm_pte_valid(pte))
542 		return 0;
543 
544 	mm_ops->put_page(ptep);
545 
546 	if (kvm_pte_table(pte, level))
547 		mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
548 
549 	return 0;
550 }
551 
552 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
553 {
554 	struct kvm_pgtable_walker walker = {
555 		.cb	= hyp_free_walker,
556 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
557 		.arg	= pgt->mm_ops,
558 	};
559 
560 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
561 	pgt->mm_ops->put_page(pgt->pgd);
562 	pgt->pgd = NULL;
563 }
564 
565 struct stage2_map_data {
566 	u64				phys;
567 	kvm_pte_t			attr;
568 	u8				owner_id;
569 
570 	kvm_pte_t			*anchor;
571 	kvm_pte_t			*childp;
572 
573 	struct kvm_s2_mmu		*mmu;
574 	void				*memcache;
575 
576 	struct kvm_pgtable_mm_ops	*mm_ops;
577 
578 	/* Force mappings to page granularity */
579 	bool				force_pte;
580 };
581 
582 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
583 {
584 	u64 vtcr = VTCR_EL2_FLAGS;
585 	u8 lvls;
586 
587 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
588 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
589 	/*
590 	 * Use a minimum 2 level page table to prevent splitting
591 	 * host PMD huge pages at stage2.
592 	 */
593 	lvls = stage2_pgtable_levels(phys_shift);
594 	if (lvls < 2)
595 		lvls = 2;
596 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
597 
598 	/*
599 	 * Enable the Hardware Access Flag management, unconditionally
600 	 * on all CPUs. The features is RES0 on CPUs without the support
601 	 * and must be ignored by the CPUs.
602 	 */
603 	vtcr |= VTCR_EL2_HA;
604 
605 	/* Set the vmid bits */
606 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
607 		VTCR_EL2_VS_16BIT :
608 		VTCR_EL2_VS_8BIT;
609 
610 	return vtcr;
611 }
612 
613 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
614 {
615 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
616 		return false;
617 
618 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
619 }
620 
621 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
622 
623 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
624 				kvm_pte_t *ptep)
625 {
626 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
627 	kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
628 			    KVM_S2_MEMATTR(pgt, NORMAL);
629 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
630 
631 	if (!(prot & KVM_PGTABLE_PROT_X))
632 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
633 	else if (device)
634 		return -EINVAL;
635 
636 	if (prot & KVM_PGTABLE_PROT_R)
637 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
638 
639 	if (prot & KVM_PGTABLE_PROT_W)
640 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
641 
642 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
643 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
644 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
645 	*ptep = attr;
646 
647 	return 0;
648 }
649 
650 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
651 {
652 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
653 
654 	if (!kvm_pte_valid(pte))
655 		return prot;
656 
657 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
658 		prot |= KVM_PGTABLE_PROT_R;
659 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
660 		prot |= KVM_PGTABLE_PROT_W;
661 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
662 		prot |= KVM_PGTABLE_PROT_X;
663 
664 	return prot;
665 }
666 
667 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
668 {
669 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
670 		return true;
671 
672 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
673 }
674 
675 static bool stage2_pte_is_counted(kvm_pte_t pte)
676 {
677 	/*
678 	 * The refcount tracks valid entries as well as invalid entries if they
679 	 * encode ownership of a page to another entity than the page-table
680 	 * owner, whose id is 0.
681 	 */
682 	return !!pte;
683 }
684 
685 static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr,
686 			   u32 level, struct kvm_pgtable_mm_ops *mm_ops)
687 {
688 	/*
689 	 * Clear the existing PTE, and perform break-before-make with
690 	 * TLB maintenance if it was valid.
691 	 */
692 	if (kvm_pte_valid(*ptep)) {
693 		kvm_clear_pte(ptep);
694 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
695 	}
696 
697 	mm_ops->put_page(ptep);
698 }
699 
700 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
701 {
702 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
703 	return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
704 }
705 
706 static bool stage2_pte_executable(kvm_pte_t pte)
707 {
708 	return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
709 }
710 
711 static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level,
712 					struct stage2_map_data *data)
713 {
714 	if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1)))
715 		return false;
716 
717 	return kvm_block_mapping_supported(addr, end, data->phys, level);
718 }
719 
720 static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
721 				      kvm_pte_t *ptep,
722 				      struct stage2_map_data *data)
723 {
724 	kvm_pte_t new, old = *ptep;
725 	u64 granule = kvm_granule_size(level), phys = data->phys;
726 	struct kvm_pgtable *pgt = data->mmu->pgt;
727 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
728 
729 	if (!stage2_leaf_mapping_allowed(addr, end, level, data))
730 		return -E2BIG;
731 
732 	if (kvm_phys_is_valid(phys))
733 		new = kvm_init_valid_leaf_pte(phys, data->attr, level);
734 	else
735 		new = kvm_init_invalid_leaf_owner(data->owner_id);
736 
737 	if (stage2_pte_is_counted(old)) {
738 		/*
739 		 * Skip updating the PTE if we are trying to recreate the exact
740 		 * same mapping or only change the access permissions. Instead,
741 		 * the vCPU will exit one more time from guest if still needed
742 		 * and then go through the path of relaxing permissions.
743 		 */
744 		if (!stage2_pte_needs_update(old, new))
745 			return -EAGAIN;
746 
747 		stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
748 	}
749 
750 	/* Perform CMOs before installation of the guest stage-2 PTE */
751 	if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
752 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
753 						granule);
754 
755 	if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
756 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
757 
758 	smp_store_release(ptep, new);
759 	if (stage2_pte_is_counted(new))
760 		mm_ops->get_page(ptep);
761 	if (kvm_phys_is_valid(phys))
762 		data->phys += granule;
763 	return 0;
764 }
765 
766 static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
767 				     kvm_pte_t *ptep,
768 				     struct stage2_map_data *data)
769 {
770 	if (data->anchor)
771 		return 0;
772 
773 	if (!stage2_leaf_mapping_allowed(addr, end, level, data))
774 		return 0;
775 
776 	data->childp = kvm_pte_follow(*ptep, data->mm_ops);
777 	kvm_clear_pte(ptep);
778 
779 	/*
780 	 * Invalidate the whole stage-2, as we may have numerous leaf
781 	 * entries below us which would otherwise need invalidating
782 	 * individually.
783 	 */
784 	kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
785 	data->anchor = ptep;
786 	return 0;
787 }
788 
789 static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
790 				struct stage2_map_data *data)
791 {
792 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
793 	kvm_pte_t *childp, pte = *ptep;
794 	int ret;
795 
796 	if (data->anchor) {
797 		if (stage2_pte_is_counted(pte))
798 			mm_ops->put_page(ptep);
799 
800 		return 0;
801 	}
802 
803 	ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data);
804 	if (ret != -E2BIG)
805 		return ret;
806 
807 	if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
808 		return -EINVAL;
809 
810 	if (!data->memcache)
811 		return -ENOMEM;
812 
813 	childp = mm_ops->zalloc_page(data->memcache);
814 	if (!childp)
815 		return -ENOMEM;
816 
817 	/*
818 	 * If we've run into an existing block mapping then replace it with
819 	 * a table. Accesses beyond 'end' that fall within the new table
820 	 * will be mapped lazily.
821 	 */
822 	if (stage2_pte_is_counted(pte))
823 		stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
824 
825 	kvm_set_table_pte(ptep, childp, mm_ops);
826 	mm_ops->get_page(ptep);
827 
828 	return 0;
829 }
830 
831 static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
832 				      kvm_pte_t *ptep,
833 				      struct stage2_map_data *data)
834 {
835 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
836 	kvm_pte_t *childp;
837 	int ret = 0;
838 
839 	if (!data->anchor)
840 		return 0;
841 
842 	if (data->anchor == ptep) {
843 		childp = data->childp;
844 		data->anchor = NULL;
845 		data->childp = NULL;
846 		ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
847 	} else {
848 		childp = kvm_pte_follow(*ptep, mm_ops);
849 	}
850 
851 	mm_ops->put_page(childp);
852 	mm_ops->put_page(ptep);
853 
854 	return ret;
855 }
856 
857 /*
858  * This is a little fiddly, as we use all three of the walk flags. The idea
859  * is that the TABLE_PRE callback runs for table entries on the way down,
860  * looking for table entries which we could conceivably replace with a
861  * block entry for this mapping. If it finds one, then it sets the 'anchor'
862  * field in 'struct stage2_map_data' to point at the table entry, before
863  * clearing the entry to zero and descending into the now detached table.
864  *
865  * The behaviour of the LEAF callback then depends on whether or not the
866  * anchor has been set. If not, then we're not using a block mapping higher
867  * up the table and we perform the mapping at the existing leaves instead.
868  * If, on the other hand, the anchor _is_ set, then we drop references to
869  * all valid leaves so that the pages beneath the anchor can be freed.
870  *
871  * Finally, the TABLE_POST callback does nothing if the anchor has not
872  * been set, but otherwise frees the page-table pages while walking back up
873  * the page-table, installing the block entry when it revisits the anchor
874  * pointer and clearing the anchor to NULL.
875  */
876 static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
877 			     enum kvm_pgtable_walk_flags flag, void * const arg)
878 {
879 	struct stage2_map_data *data = arg;
880 
881 	switch (flag) {
882 	case KVM_PGTABLE_WALK_TABLE_PRE:
883 		return stage2_map_walk_table_pre(addr, end, level, ptep, data);
884 	case KVM_PGTABLE_WALK_LEAF:
885 		return stage2_map_walk_leaf(addr, end, level, ptep, data);
886 	case KVM_PGTABLE_WALK_TABLE_POST:
887 		return stage2_map_walk_table_post(addr, end, level, ptep, data);
888 	}
889 
890 	return -EINVAL;
891 }
892 
893 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
894 			   u64 phys, enum kvm_pgtable_prot prot,
895 			   void *mc)
896 {
897 	int ret;
898 	struct stage2_map_data map_data = {
899 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
900 		.mmu		= pgt->mmu,
901 		.memcache	= mc,
902 		.mm_ops		= pgt->mm_ops,
903 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
904 	};
905 	struct kvm_pgtable_walker walker = {
906 		.cb		= stage2_map_walker,
907 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
908 				  KVM_PGTABLE_WALK_LEAF |
909 				  KVM_PGTABLE_WALK_TABLE_POST,
910 		.arg		= &map_data,
911 	};
912 
913 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
914 		return -EINVAL;
915 
916 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
917 	if (ret)
918 		return ret;
919 
920 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
921 	dsb(ishst);
922 	return ret;
923 }
924 
925 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
926 				 void *mc, u8 owner_id)
927 {
928 	int ret;
929 	struct stage2_map_data map_data = {
930 		.phys		= KVM_PHYS_INVALID,
931 		.mmu		= pgt->mmu,
932 		.memcache	= mc,
933 		.mm_ops		= pgt->mm_ops,
934 		.owner_id	= owner_id,
935 		.force_pte	= true,
936 	};
937 	struct kvm_pgtable_walker walker = {
938 		.cb		= stage2_map_walker,
939 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
940 				  KVM_PGTABLE_WALK_LEAF |
941 				  KVM_PGTABLE_WALK_TABLE_POST,
942 		.arg		= &map_data,
943 	};
944 
945 	if (owner_id > KVM_MAX_OWNER_ID)
946 		return -EINVAL;
947 
948 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
949 	return ret;
950 }
951 
952 static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
953 			       enum kvm_pgtable_walk_flags flag,
954 			       void * const arg)
955 {
956 	struct kvm_pgtable *pgt = arg;
957 	struct kvm_s2_mmu *mmu = pgt->mmu;
958 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
959 	kvm_pte_t pte = *ptep, *childp = NULL;
960 	bool need_flush = false;
961 
962 	if (!kvm_pte_valid(pte)) {
963 		if (stage2_pte_is_counted(pte)) {
964 			kvm_clear_pte(ptep);
965 			mm_ops->put_page(ptep);
966 		}
967 		return 0;
968 	}
969 
970 	if (kvm_pte_table(pte, level)) {
971 		childp = kvm_pte_follow(pte, mm_ops);
972 
973 		if (mm_ops->page_count(childp) != 1)
974 			return 0;
975 	} else if (stage2_pte_cacheable(pgt, pte)) {
976 		need_flush = !stage2_has_fwb(pgt);
977 	}
978 
979 	/*
980 	 * This is similar to the map() path in that we unmap the entire
981 	 * block entry and rely on the remaining portions being faulted
982 	 * back lazily.
983 	 */
984 	stage2_put_pte(ptep, mmu, addr, level, mm_ops);
985 
986 	if (need_flush) {
987 		kvm_pte_t *pte_follow = kvm_pte_follow(pte, mm_ops);
988 
989 		dcache_clean_inval_poc((unsigned long)pte_follow,
990 				    (unsigned long)pte_follow +
991 					    kvm_granule_size(level));
992 	}
993 
994 	if (childp)
995 		mm_ops->put_page(childp);
996 
997 	return 0;
998 }
999 
1000 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1001 {
1002 	struct kvm_pgtable_walker walker = {
1003 		.cb	= stage2_unmap_walker,
1004 		.arg	= pgt,
1005 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1006 	};
1007 
1008 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1009 }
1010 
1011 struct stage2_attr_data {
1012 	kvm_pte_t			attr_set;
1013 	kvm_pte_t			attr_clr;
1014 	kvm_pte_t			pte;
1015 	u32				level;
1016 	struct kvm_pgtable_mm_ops	*mm_ops;
1017 };
1018 
1019 static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1020 			      enum kvm_pgtable_walk_flags flag,
1021 			      void * const arg)
1022 {
1023 	kvm_pte_t pte = *ptep;
1024 	struct stage2_attr_data *data = arg;
1025 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
1026 
1027 	if (!kvm_pte_valid(pte))
1028 		return 0;
1029 
1030 	data->level = level;
1031 	data->pte = pte;
1032 	pte &= ~data->attr_clr;
1033 	pte |= data->attr_set;
1034 
1035 	/*
1036 	 * We may race with the CPU trying to set the access flag here,
1037 	 * but worst-case the access flag update gets lost and will be
1038 	 * set on the next access instead.
1039 	 */
1040 	if (data->pte != pte) {
1041 		/*
1042 		 * Invalidate instruction cache before updating the guest
1043 		 * stage-2 PTE if we are going to add executable permission.
1044 		 */
1045 		if (mm_ops->icache_inval_pou &&
1046 		    stage2_pte_executable(pte) && !stage2_pte_executable(*ptep))
1047 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1048 						  kvm_granule_size(level));
1049 		WRITE_ONCE(*ptep, pte);
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1056 				    u64 size, kvm_pte_t attr_set,
1057 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1058 				    u32 *level)
1059 {
1060 	int ret;
1061 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1062 	struct stage2_attr_data data = {
1063 		.attr_set	= attr_set & attr_mask,
1064 		.attr_clr	= attr_clr & attr_mask,
1065 		.mm_ops		= pgt->mm_ops,
1066 	};
1067 	struct kvm_pgtable_walker walker = {
1068 		.cb		= stage2_attr_walker,
1069 		.arg		= &data,
1070 		.flags		= KVM_PGTABLE_WALK_LEAF,
1071 	};
1072 
1073 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1074 	if (ret)
1075 		return ret;
1076 
1077 	if (orig_pte)
1078 		*orig_pte = data.pte;
1079 
1080 	if (level)
1081 		*level = data.level;
1082 	return 0;
1083 }
1084 
1085 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1086 {
1087 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1088 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1089 					NULL, NULL);
1090 }
1091 
1092 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1093 {
1094 	kvm_pte_t pte = 0;
1095 	stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1096 				 &pte, NULL);
1097 	dsb(ishst);
1098 	return pte;
1099 }
1100 
1101 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
1102 {
1103 	kvm_pte_t pte = 0;
1104 	stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
1105 				 &pte, NULL);
1106 	/*
1107 	 * "But where's the TLBI?!", you scream.
1108 	 * "Over in the core code", I sigh.
1109 	 *
1110 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1111 	 */
1112 	return pte;
1113 }
1114 
1115 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
1116 {
1117 	kvm_pte_t pte = 0;
1118 	stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
1119 	return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
1120 }
1121 
1122 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1123 				   enum kvm_pgtable_prot prot)
1124 {
1125 	int ret;
1126 	u32 level;
1127 	kvm_pte_t set = 0, clr = 0;
1128 
1129 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1130 		return -EINVAL;
1131 
1132 	if (prot & KVM_PGTABLE_PROT_R)
1133 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1134 
1135 	if (prot & KVM_PGTABLE_PROT_W)
1136 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1137 
1138 	if (prot & KVM_PGTABLE_PROT_X)
1139 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1140 
1141 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
1142 	if (!ret)
1143 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
1144 	return ret;
1145 }
1146 
1147 static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1148 			       enum kvm_pgtable_walk_flags flag,
1149 			       void * const arg)
1150 {
1151 	struct kvm_pgtable *pgt = arg;
1152 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1153 	kvm_pte_t pte = *ptep;
1154 	kvm_pte_t *pte_follow;
1155 
1156 	if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pgt, pte))
1157 		return 0;
1158 
1159 	pte_follow = kvm_pte_follow(pte, mm_ops);
1160 	dcache_clean_inval_poc((unsigned long)pte_follow,
1161 			    (unsigned long)pte_follow +
1162 				    kvm_granule_size(level));
1163 	return 0;
1164 }
1165 
1166 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1167 {
1168 	struct kvm_pgtable_walker walker = {
1169 		.cb	= stage2_flush_walker,
1170 		.flags	= KVM_PGTABLE_WALK_LEAF,
1171 		.arg	= pgt,
1172 	};
1173 
1174 	if (stage2_has_fwb(pgt))
1175 		return 0;
1176 
1177 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1178 }
1179 
1180 
1181 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1182 			      struct kvm_pgtable_mm_ops *mm_ops,
1183 			      enum kvm_pgtable_stage2_flags flags,
1184 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1185 {
1186 	size_t pgd_sz;
1187 	u64 vtcr = mmu->arch->vtcr;
1188 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1189 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1190 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1191 
1192 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1193 	pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz);
1194 	if (!pgt->pgd)
1195 		return -ENOMEM;
1196 
1197 	pgt->ia_bits		= ia_bits;
1198 	pgt->start_level	= start_level;
1199 	pgt->mm_ops		= mm_ops;
1200 	pgt->mmu		= mmu;
1201 	pgt->flags		= flags;
1202 	pgt->force_pte_cb	= force_pte_cb;
1203 
1204 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1205 	dsb(ishst);
1206 	return 0;
1207 }
1208 
1209 static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1210 			      enum kvm_pgtable_walk_flags flag,
1211 			      void * const arg)
1212 {
1213 	struct kvm_pgtable_mm_ops *mm_ops = arg;
1214 	kvm_pte_t pte = *ptep;
1215 
1216 	if (!stage2_pte_is_counted(pte))
1217 		return 0;
1218 
1219 	mm_ops->put_page(ptep);
1220 
1221 	if (kvm_pte_table(pte, level))
1222 		mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
1223 
1224 	return 0;
1225 }
1226 
1227 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1228 {
1229 	size_t pgd_sz;
1230 	struct kvm_pgtable_walker walker = {
1231 		.cb	= stage2_free_walker,
1232 		.flags	= KVM_PGTABLE_WALK_LEAF |
1233 			  KVM_PGTABLE_WALK_TABLE_POST,
1234 		.arg	= pgt->mm_ops,
1235 	};
1236 
1237 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1238 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1239 	pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz);
1240 	pgt->pgd = NULL;
1241 }
1242