xref: /openbmc/linux/arch/arm64/kvm/hyp/pgtable.c (revision b3b984dc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 
15 #define KVM_PTE_TYPE			BIT(1)
16 #define KVM_PTE_TYPE_BLOCK		0
17 #define KVM_PTE_TYPE_PAGE		1
18 #define KVM_PTE_TYPE_TABLE		1
19 
20 #define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)
21 
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO	3
25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW	1
26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)
29 
30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)
36 
37 #define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 51)
38 
39 #define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)
40 
41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)
42 
43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)
44 
45 #define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
46 					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
47 					 KVM_PTE_LEAF_ATTR_HI_S2_XN)
48 
49 #define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
50 #define KVM_MAX_OWNER_ID		1
51 
52 /*
53  * Used to indicate a pte for which a 'break-before-make' sequence is in
54  * progress.
55  */
56 #define KVM_INVALID_PTE_LOCKED		BIT(10)
57 
58 struct kvm_pgtable_walk_data {
59 	struct kvm_pgtable_walker	*walker;
60 
61 	const u64			start;
62 	u64				addr;
63 	const u64			end;
64 };
65 
66 static bool kvm_phys_is_valid(u64 phys)
67 {
68 	return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
69 }
70 
71 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
72 {
73 	u64 granule = kvm_granule_size(ctx->level);
74 
75 	if (!kvm_level_supports_block_mapping(ctx->level))
76 		return false;
77 
78 	if (granule > (ctx->end - ctx->addr))
79 		return false;
80 
81 	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
82 		return false;
83 
84 	return IS_ALIGNED(ctx->addr, granule);
85 }
86 
87 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
88 {
89 	u64 shift = kvm_granule_shift(level);
90 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
91 
92 	return (data->addr >> shift) & mask;
93 }
94 
95 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
96 {
97 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
98 	u64 mask = BIT(pgt->ia_bits) - 1;
99 
100 	return (addr & mask) >> shift;
101 }
102 
103 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
104 {
105 	struct kvm_pgtable pgt = {
106 		.ia_bits	= ia_bits,
107 		.start_level	= start_level,
108 	};
109 
110 	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
111 }
112 
113 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
114 {
115 	if (level == KVM_PGTABLE_MAX_LEVELS - 1)
116 		return false;
117 
118 	if (!kvm_pte_valid(pte))
119 		return false;
120 
121 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
122 }
123 
124 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
125 {
126 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
127 }
128 
129 static void kvm_clear_pte(kvm_pte_t *ptep)
130 {
131 	WRITE_ONCE(*ptep, 0);
132 }
133 
134 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
135 {
136 	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
137 
138 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
139 	pte |= KVM_PTE_VALID;
140 	return pte;
141 }
142 
143 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
144 {
145 	kvm_pte_t pte = kvm_phys_to_pte(pa);
146 	u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
147 							   KVM_PTE_TYPE_BLOCK;
148 
149 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
150 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
151 	pte |= KVM_PTE_VALID;
152 
153 	return pte;
154 }
155 
156 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
157 {
158 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
159 }
160 
161 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
162 				  const struct kvm_pgtable_visit_ctx *ctx,
163 				  enum kvm_pgtable_walk_flags visit)
164 {
165 	struct kvm_pgtable_walker *walker = data->walker;
166 
167 	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
168 	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
169 	return walker->cb(ctx, visit);
170 }
171 
172 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
173 				      int r)
174 {
175 	/*
176 	 * Visitor callbacks return EAGAIN when the conditions that led to a
177 	 * fault are no longer reflected in the page tables due to a race to
178 	 * update a PTE. In the context of a fault handler this is interpreted
179 	 * as a signal to retry guest execution.
180 	 *
181 	 * Ignore the return code altogether for walkers outside a fault handler
182 	 * (e.g. write protecting a range of memory) and chug along with the
183 	 * page table walk.
184 	 */
185 	if (r == -EAGAIN)
186 		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
187 
188 	return !r;
189 }
190 
191 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
192 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level);
193 
194 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
195 				      struct kvm_pgtable_mm_ops *mm_ops,
196 				      kvm_pteref_t pteref, u32 level)
197 {
198 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
199 	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
200 	struct kvm_pgtable_visit_ctx ctx = {
201 		.ptep	= ptep,
202 		.old	= READ_ONCE(*ptep),
203 		.arg	= data->walker->arg,
204 		.mm_ops	= mm_ops,
205 		.start	= data->start,
206 		.addr	= data->addr,
207 		.end	= data->end,
208 		.level	= level,
209 		.flags	= flags,
210 	};
211 	int ret = 0;
212 	bool reload = false;
213 	kvm_pteref_t childp;
214 	bool table = kvm_pte_table(ctx.old, level);
215 
216 	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
217 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
218 		reload = true;
219 	}
220 
221 	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
222 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
223 		reload = true;
224 	}
225 
226 	/*
227 	 * Reload the page table after invoking the walker callback for leaf
228 	 * entries or after pre-order traversal, to allow the walker to descend
229 	 * into a newly installed or replaced table.
230 	 */
231 	if (reload) {
232 		ctx.old = READ_ONCE(*ptep);
233 		table = kvm_pte_table(ctx.old, level);
234 	}
235 
236 	if (!kvm_pgtable_walk_continue(data->walker, ret))
237 		goto out;
238 
239 	if (!table) {
240 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
241 		data->addr += kvm_granule_size(level);
242 		goto out;
243 	}
244 
245 	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
246 	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
247 	if (!kvm_pgtable_walk_continue(data->walker, ret))
248 		goto out;
249 
250 	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
251 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
252 
253 out:
254 	if (kvm_pgtable_walk_continue(data->walker, ret))
255 		return 0;
256 
257 	return ret;
258 }
259 
260 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
261 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level)
262 {
263 	u32 idx;
264 	int ret = 0;
265 
266 	if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
267 		return -EINVAL;
268 
269 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
270 		kvm_pteref_t pteref = &pgtable[idx];
271 
272 		if (data->addr >= data->end)
273 			break;
274 
275 		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
276 		if (ret)
277 			break;
278 	}
279 
280 	return ret;
281 }
282 
283 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
284 {
285 	u32 idx;
286 	int ret = 0;
287 	u64 limit = BIT(pgt->ia_bits);
288 
289 	if (data->addr > limit || data->end > limit)
290 		return -ERANGE;
291 
292 	if (!pgt->pgd)
293 		return -EINVAL;
294 
295 	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
296 		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
297 
298 		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
299 		if (ret)
300 			break;
301 	}
302 
303 	return ret;
304 }
305 
306 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
307 		     struct kvm_pgtable_walker *walker)
308 {
309 	struct kvm_pgtable_walk_data walk_data = {
310 		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
311 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
312 		.end	= PAGE_ALIGN(walk_data.addr + size),
313 		.walker	= walker,
314 	};
315 	int r;
316 
317 	r = kvm_pgtable_walk_begin(walker);
318 	if (r)
319 		return r;
320 
321 	r = _kvm_pgtable_walk(pgt, &walk_data);
322 	kvm_pgtable_walk_end(walker);
323 
324 	return r;
325 }
326 
327 struct leaf_walk_data {
328 	kvm_pte_t	pte;
329 	u32		level;
330 };
331 
332 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
333 		       enum kvm_pgtable_walk_flags visit)
334 {
335 	struct leaf_walk_data *data = ctx->arg;
336 
337 	data->pte   = ctx->old;
338 	data->level = ctx->level;
339 
340 	return 0;
341 }
342 
343 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
344 			 kvm_pte_t *ptep, u32 *level)
345 {
346 	struct leaf_walk_data data;
347 	struct kvm_pgtable_walker walker = {
348 		.cb	= leaf_walker,
349 		.flags	= KVM_PGTABLE_WALK_LEAF,
350 		.arg	= &data,
351 	};
352 	int ret;
353 
354 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
355 			       PAGE_SIZE, &walker);
356 	if (!ret) {
357 		if (ptep)
358 			*ptep  = data.pte;
359 		if (level)
360 			*level = data.level;
361 	}
362 
363 	return ret;
364 }
365 
366 struct hyp_map_data {
367 	const u64			phys;
368 	kvm_pte_t			attr;
369 };
370 
371 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
372 {
373 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
374 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
375 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
376 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
377 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
378 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
379 
380 	if (!(prot & KVM_PGTABLE_PROT_R))
381 		return -EINVAL;
382 
383 	if (prot & KVM_PGTABLE_PROT_X) {
384 		if (prot & KVM_PGTABLE_PROT_W)
385 			return -EINVAL;
386 
387 		if (device)
388 			return -EINVAL;
389 	} else {
390 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
391 	}
392 
393 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
394 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
395 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
396 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
397 	*ptep = attr;
398 
399 	return 0;
400 }
401 
402 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
403 {
404 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
405 	u32 ap;
406 
407 	if (!kvm_pte_valid(pte))
408 		return prot;
409 
410 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
411 		prot |= KVM_PGTABLE_PROT_X;
412 
413 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
414 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
415 		prot |= KVM_PGTABLE_PROT_R;
416 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
417 		prot |= KVM_PGTABLE_PROT_RW;
418 
419 	return prot;
420 }
421 
422 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
423 				    struct hyp_map_data *data)
424 {
425 	u64 phys = data->phys + (ctx->addr - ctx->start);
426 	kvm_pte_t new;
427 
428 	if (!kvm_block_mapping_supported(ctx, phys))
429 		return false;
430 
431 	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
432 	if (ctx->old == new)
433 		return true;
434 	if (!kvm_pte_valid(ctx->old))
435 		ctx->mm_ops->get_page(ctx->ptep);
436 	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
437 		return false;
438 
439 	smp_store_release(ctx->ptep, new);
440 	return true;
441 }
442 
443 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
444 			  enum kvm_pgtable_walk_flags visit)
445 {
446 	kvm_pte_t *childp, new;
447 	struct hyp_map_data *data = ctx->arg;
448 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
449 
450 	if (hyp_map_walker_try_leaf(ctx, data))
451 		return 0;
452 
453 	if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
454 		return -EINVAL;
455 
456 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
457 	if (!childp)
458 		return -ENOMEM;
459 
460 	new = kvm_init_table_pte(childp, mm_ops);
461 	mm_ops->get_page(ctx->ptep);
462 	smp_store_release(ctx->ptep, new);
463 
464 	return 0;
465 }
466 
467 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
468 			enum kvm_pgtable_prot prot)
469 {
470 	int ret;
471 	struct hyp_map_data map_data = {
472 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
473 	};
474 	struct kvm_pgtable_walker walker = {
475 		.cb	= hyp_map_walker,
476 		.flags	= KVM_PGTABLE_WALK_LEAF,
477 		.arg	= &map_data,
478 	};
479 
480 	ret = hyp_set_prot_attr(prot, &map_data.attr);
481 	if (ret)
482 		return ret;
483 
484 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
485 	dsb(ishst);
486 	isb();
487 	return ret;
488 }
489 
490 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
491 			    enum kvm_pgtable_walk_flags visit)
492 {
493 	kvm_pte_t *childp = NULL;
494 	u64 granule = kvm_granule_size(ctx->level);
495 	u64 *unmapped = ctx->arg;
496 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
497 
498 	if (!kvm_pte_valid(ctx->old))
499 		return -EINVAL;
500 
501 	if (kvm_pte_table(ctx->old, ctx->level)) {
502 		childp = kvm_pte_follow(ctx->old, mm_ops);
503 
504 		if (mm_ops->page_count(childp) != 1)
505 			return 0;
506 
507 		kvm_clear_pte(ctx->ptep);
508 		dsb(ishst);
509 		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
510 	} else {
511 		if (ctx->end - ctx->addr < granule)
512 			return -EINVAL;
513 
514 		kvm_clear_pte(ctx->ptep);
515 		dsb(ishst);
516 		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
517 		*unmapped += granule;
518 	}
519 
520 	dsb(ish);
521 	isb();
522 	mm_ops->put_page(ctx->ptep);
523 
524 	if (childp)
525 		mm_ops->put_page(childp);
526 
527 	return 0;
528 }
529 
530 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
531 {
532 	u64 unmapped = 0;
533 	struct kvm_pgtable_walker walker = {
534 		.cb	= hyp_unmap_walker,
535 		.arg	= &unmapped,
536 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
537 	};
538 
539 	if (!pgt->mm_ops->page_count)
540 		return 0;
541 
542 	kvm_pgtable_walk(pgt, addr, size, &walker);
543 	return unmapped;
544 }
545 
546 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
547 			 struct kvm_pgtable_mm_ops *mm_ops)
548 {
549 	u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
550 
551 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
552 	if (!pgt->pgd)
553 		return -ENOMEM;
554 
555 	pgt->ia_bits		= va_bits;
556 	pgt->start_level	= KVM_PGTABLE_MAX_LEVELS - levels;
557 	pgt->mm_ops		= mm_ops;
558 	pgt->mmu		= NULL;
559 	pgt->force_pte_cb	= NULL;
560 
561 	return 0;
562 }
563 
564 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
565 			   enum kvm_pgtable_walk_flags visit)
566 {
567 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
568 
569 	if (!kvm_pte_valid(ctx->old))
570 		return 0;
571 
572 	mm_ops->put_page(ctx->ptep);
573 
574 	if (kvm_pte_table(ctx->old, ctx->level))
575 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
576 
577 	return 0;
578 }
579 
580 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
581 {
582 	struct kvm_pgtable_walker walker = {
583 		.cb	= hyp_free_walker,
584 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
585 	};
586 
587 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
588 	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
589 	pgt->pgd = NULL;
590 }
591 
592 struct stage2_map_data {
593 	const u64			phys;
594 	kvm_pte_t			attr;
595 	u8				owner_id;
596 
597 	kvm_pte_t			*anchor;
598 	kvm_pte_t			*childp;
599 
600 	struct kvm_s2_mmu		*mmu;
601 	void				*memcache;
602 
603 	/* Force mappings to page granularity */
604 	bool				force_pte;
605 };
606 
607 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
608 {
609 	u64 vtcr = VTCR_EL2_FLAGS;
610 	u8 lvls;
611 
612 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
613 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
614 	/*
615 	 * Use a minimum 2 level page table to prevent splitting
616 	 * host PMD huge pages at stage2.
617 	 */
618 	lvls = stage2_pgtable_levels(phys_shift);
619 	if (lvls < 2)
620 		lvls = 2;
621 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
622 
623 #ifdef CONFIG_ARM64_HW_AFDBM
624 	/*
625 	 * Enable the Hardware Access Flag management, unconditionally
626 	 * on all CPUs. The features is RES0 on CPUs without the support
627 	 * and must be ignored by the CPUs.
628 	 */
629 	vtcr |= VTCR_EL2_HA;
630 #endif /* CONFIG_ARM64_HW_AFDBM */
631 
632 	/* Set the vmid bits */
633 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
634 		VTCR_EL2_VS_16BIT :
635 		VTCR_EL2_VS_8BIT;
636 
637 	return vtcr;
638 }
639 
640 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
641 {
642 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
643 		return false;
644 
645 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
646 }
647 
648 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
649 
650 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
651 				kvm_pte_t *ptep)
652 {
653 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
654 	kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
655 			    KVM_S2_MEMATTR(pgt, NORMAL);
656 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
657 
658 	if (!(prot & KVM_PGTABLE_PROT_X))
659 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
660 	else if (device)
661 		return -EINVAL;
662 
663 	if (prot & KVM_PGTABLE_PROT_R)
664 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
665 
666 	if (prot & KVM_PGTABLE_PROT_W)
667 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
668 
669 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
670 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
671 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
672 	*ptep = attr;
673 
674 	return 0;
675 }
676 
677 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
678 {
679 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
680 
681 	if (!kvm_pte_valid(pte))
682 		return prot;
683 
684 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
685 		prot |= KVM_PGTABLE_PROT_R;
686 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
687 		prot |= KVM_PGTABLE_PROT_W;
688 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
689 		prot |= KVM_PGTABLE_PROT_X;
690 
691 	return prot;
692 }
693 
694 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
695 {
696 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
697 		return true;
698 
699 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
700 }
701 
702 static bool stage2_pte_is_counted(kvm_pte_t pte)
703 {
704 	/*
705 	 * The refcount tracks valid entries as well as invalid entries if they
706 	 * encode ownership of a page to another entity than the page-table
707 	 * owner, whose id is 0.
708 	 */
709 	return !!pte;
710 }
711 
712 static bool stage2_pte_is_locked(kvm_pte_t pte)
713 {
714 	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
715 }
716 
717 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
718 {
719 	if (!kvm_pgtable_walk_shared(ctx)) {
720 		WRITE_ONCE(*ctx->ptep, new);
721 		return true;
722 	}
723 
724 	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
725 }
726 
727 /**
728  * stage2_try_break_pte() - Invalidates a pte according to the
729  *			    'break-before-make' requirements of the
730  *			    architecture.
731  *
732  * @ctx: context of the visited pte.
733  * @mmu: stage-2 mmu
734  *
735  * Returns: true if the pte was successfully broken.
736  *
737  * If the removed pte was valid, performs the necessary serialization and TLB
738  * invalidation for the old value. For counted ptes, drops the reference count
739  * on the containing table page.
740  */
741 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
742 				 struct kvm_s2_mmu *mmu)
743 {
744 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
745 
746 	if (stage2_pte_is_locked(ctx->old)) {
747 		/*
748 		 * Should never occur if this walker has exclusive access to the
749 		 * page tables.
750 		 */
751 		WARN_ON(!kvm_pgtable_walk_shared(ctx));
752 		return false;
753 	}
754 
755 	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
756 		return false;
757 
758 	/*
759 	 * Perform the appropriate TLB invalidation based on the evicted pte
760 	 * value (if any).
761 	 */
762 	if (kvm_pte_table(ctx->old, ctx->level))
763 		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
764 	else if (kvm_pte_valid(ctx->old))
765 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level);
766 
767 	if (stage2_pte_is_counted(ctx->old))
768 		mm_ops->put_page(ctx->ptep);
769 
770 	return true;
771 }
772 
773 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
774 {
775 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
776 
777 	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
778 
779 	if (stage2_pte_is_counted(new))
780 		mm_ops->get_page(ctx->ptep);
781 
782 	smp_store_release(ctx->ptep, new);
783 }
784 
785 static void stage2_put_pte(const struct kvm_pgtable_visit_ctx *ctx, struct kvm_s2_mmu *mmu,
786 			   struct kvm_pgtable_mm_ops *mm_ops)
787 {
788 	/*
789 	 * Clear the existing PTE, and perform break-before-make with
790 	 * TLB maintenance if it was valid.
791 	 */
792 	if (kvm_pte_valid(ctx->old)) {
793 		kvm_clear_pte(ctx->ptep);
794 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level);
795 	}
796 
797 	mm_ops->put_page(ctx->ptep);
798 }
799 
800 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
801 {
802 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
803 	return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
804 }
805 
806 static bool stage2_pte_executable(kvm_pte_t pte)
807 {
808 	return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
809 }
810 
811 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
812 				       const struct stage2_map_data *data)
813 {
814 	u64 phys = data->phys;
815 
816 	/*
817 	 * Stage-2 walks to update ownership data are communicated to the map
818 	 * walker using an invalid PA. Avoid offsetting an already invalid PA,
819 	 * which could overflow and make the address valid again.
820 	 */
821 	if (!kvm_phys_is_valid(phys))
822 		return phys;
823 
824 	/*
825 	 * Otherwise, work out the correct PA based on how far the walk has
826 	 * gotten.
827 	 */
828 	return phys + (ctx->addr - ctx->start);
829 }
830 
831 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
832 					struct stage2_map_data *data)
833 {
834 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
835 
836 	if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1)))
837 		return false;
838 
839 	return kvm_block_mapping_supported(ctx, phys);
840 }
841 
842 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
843 				      struct stage2_map_data *data)
844 {
845 	kvm_pte_t new;
846 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
847 	u64 granule = kvm_granule_size(ctx->level);
848 	struct kvm_pgtable *pgt = data->mmu->pgt;
849 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
850 
851 	if (!stage2_leaf_mapping_allowed(ctx, data))
852 		return -E2BIG;
853 
854 	if (kvm_phys_is_valid(phys))
855 		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
856 	else
857 		new = kvm_init_invalid_leaf_owner(data->owner_id);
858 
859 	/*
860 	 * Skip updating the PTE if we are trying to recreate the exact
861 	 * same mapping or only change the access permissions. Instead,
862 	 * the vCPU will exit one more time from guest if still needed
863 	 * and then go through the path of relaxing permissions.
864 	 */
865 	if (!stage2_pte_needs_update(ctx->old, new))
866 		return -EAGAIN;
867 
868 	if (!stage2_try_break_pte(ctx, data->mmu))
869 		return -EAGAIN;
870 
871 	/* Perform CMOs before installation of the guest stage-2 PTE */
872 	if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
873 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
874 						granule);
875 
876 	if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
877 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
878 
879 	stage2_make_pte(ctx, new);
880 
881 	return 0;
882 }
883 
884 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
885 				     struct stage2_map_data *data)
886 {
887 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
888 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
889 	int ret;
890 
891 	if (!stage2_leaf_mapping_allowed(ctx, data))
892 		return 0;
893 
894 	ret = stage2_map_walker_try_leaf(ctx, data);
895 	if (ret)
896 		return ret;
897 
898 	mm_ops->free_removed_table(childp, ctx->level);
899 	return 0;
900 }
901 
902 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
903 				struct stage2_map_data *data)
904 {
905 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
906 	kvm_pte_t *childp, new;
907 	int ret;
908 
909 	ret = stage2_map_walker_try_leaf(ctx, data);
910 	if (ret != -E2BIG)
911 		return ret;
912 
913 	if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
914 		return -EINVAL;
915 
916 	if (!data->memcache)
917 		return -ENOMEM;
918 
919 	childp = mm_ops->zalloc_page(data->memcache);
920 	if (!childp)
921 		return -ENOMEM;
922 
923 	if (!stage2_try_break_pte(ctx, data->mmu)) {
924 		mm_ops->put_page(childp);
925 		return -EAGAIN;
926 	}
927 
928 	/*
929 	 * If we've run into an existing block mapping then replace it with
930 	 * a table. Accesses beyond 'end' that fall within the new table
931 	 * will be mapped lazily.
932 	 */
933 	new = kvm_init_table_pte(childp, mm_ops);
934 	stage2_make_pte(ctx, new);
935 
936 	return 0;
937 }
938 
939 /*
940  * The TABLE_PRE callback runs for table entries on the way down, looking
941  * for table entries which we could conceivably replace with a block entry
942  * for this mapping. If it finds one it replaces the entry and calls
943  * kvm_pgtable_mm_ops::free_removed_table() to tear down the detached table.
944  *
945  * Otherwise, the LEAF callback performs the mapping at the existing leaves
946  * instead.
947  */
948 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
949 			     enum kvm_pgtable_walk_flags visit)
950 {
951 	struct stage2_map_data *data = ctx->arg;
952 
953 	switch (visit) {
954 	case KVM_PGTABLE_WALK_TABLE_PRE:
955 		return stage2_map_walk_table_pre(ctx, data);
956 	case KVM_PGTABLE_WALK_LEAF:
957 		return stage2_map_walk_leaf(ctx, data);
958 	default:
959 		return -EINVAL;
960 	}
961 }
962 
963 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
964 			   u64 phys, enum kvm_pgtable_prot prot,
965 			   void *mc, enum kvm_pgtable_walk_flags flags)
966 {
967 	int ret;
968 	struct stage2_map_data map_data = {
969 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
970 		.mmu		= pgt->mmu,
971 		.memcache	= mc,
972 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
973 	};
974 	struct kvm_pgtable_walker walker = {
975 		.cb		= stage2_map_walker,
976 		.flags		= flags |
977 				  KVM_PGTABLE_WALK_TABLE_PRE |
978 				  KVM_PGTABLE_WALK_LEAF,
979 		.arg		= &map_data,
980 	};
981 
982 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
983 		return -EINVAL;
984 
985 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
986 	if (ret)
987 		return ret;
988 
989 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
990 	dsb(ishst);
991 	return ret;
992 }
993 
994 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
995 				 void *mc, u8 owner_id)
996 {
997 	int ret;
998 	struct stage2_map_data map_data = {
999 		.phys		= KVM_PHYS_INVALID,
1000 		.mmu		= pgt->mmu,
1001 		.memcache	= mc,
1002 		.owner_id	= owner_id,
1003 		.force_pte	= true,
1004 	};
1005 	struct kvm_pgtable_walker walker = {
1006 		.cb		= stage2_map_walker,
1007 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
1008 				  KVM_PGTABLE_WALK_LEAF,
1009 		.arg		= &map_data,
1010 	};
1011 
1012 	if (owner_id > KVM_MAX_OWNER_ID)
1013 		return -EINVAL;
1014 
1015 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1016 	return ret;
1017 }
1018 
1019 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1020 			       enum kvm_pgtable_walk_flags visit)
1021 {
1022 	struct kvm_pgtable *pgt = ctx->arg;
1023 	struct kvm_s2_mmu *mmu = pgt->mmu;
1024 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1025 	kvm_pte_t *childp = NULL;
1026 	bool need_flush = false;
1027 
1028 	if (!kvm_pte_valid(ctx->old)) {
1029 		if (stage2_pte_is_counted(ctx->old)) {
1030 			kvm_clear_pte(ctx->ptep);
1031 			mm_ops->put_page(ctx->ptep);
1032 		}
1033 		return 0;
1034 	}
1035 
1036 	if (kvm_pte_table(ctx->old, ctx->level)) {
1037 		childp = kvm_pte_follow(ctx->old, mm_ops);
1038 
1039 		if (mm_ops->page_count(childp) != 1)
1040 			return 0;
1041 	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1042 		need_flush = !stage2_has_fwb(pgt);
1043 	}
1044 
1045 	/*
1046 	 * This is similar to the map() path in that we unmap the entire
1047 	 * block entry and rely on the remaining portions being faulted
1048 	 * back lazily.
1049 	 */
1050 	stage2_put_pte(ctx, mmu, mm_ops);
1051 
1052 	if (need_flush && mm_ops->dcache_clean_inval_poc)
1053 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1054 					       kvm_granule_size(ctx->level));
1055 
1056 	if (childp)
1057 		mm_ops->put_page(childp);
1058 
1059 	return 0;
1060 }
1061 
1062 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1063 {
1064 	struct kvm_pgtable_walker walker = {
1065 		.cb	= stage2_unmap_walker,
1066 		.arg	= pgt,
1067 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1068 	};
1069 
1070 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1071 }
1072 
1073 struct stage2_attr_data {
1074 	kvm_pte_t			attr_set;
1075 	kvm_pte_t			attr_clr;
1076 	kvm_pte_t			pte;
1077 	u32				level;
1078 };
1079 
1080 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1081 			      enum kvm_pgtable_walk_flags visit)
1082 {
1083 	kvm_pte_t pte = ctx->old;
1084 	struct stage2_attr_data *data = ctx->arg;
1085 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1086 
1087 	if (!kvm_pte_valid(ctx->old))
1088 		return -EAGAIN;
1089 
1090 	data->level = ctx->level;
1091 	data->pte = pte;
1092 	pte &= ~data->attr_clr;
1093 	pte |= data->attr_set;
1094 
1095 	/*
1096 	 * We may race with the CPU trying to set the access flag here,
1097 	 * but worst-case the access flag update gets lost and will be
1098 	 * set on the next access instead.
1099 	 */
1100 	if (data->pte != pte) {
1101 		/*
1102 		 * Invalidate instruction cache before updating the guest
1103 		 * stage-2 PTE if we are going to add executable permission.
1104 		 */
1105 		if (mm_ops->icache_inval_pou &&
1106 		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1107 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1108 						  kvm_granule_size(ctx->level));
1109 
1110 		if (!stage2_try_set_pte(ctx, pte))
1111 			return -EAGAIN;
1112 	}
1113 
1114 	return 0;
1115 }
1116 
1117 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1118 				    u64 size, kvm_pte_t attr_set,
1119 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1120 				    u32 *level, enum kvm_pgtable_walk_flags flags)
1121 {
1122 	int ret;
1123 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1124 	struct stage2_attr_data data = {
1125 		.attr_set	= attr_set & attr_mask,
1126 		.attr_clr	= attr_clr & attr_mask,
1127 	};
1128 	struct kvm_pgtable_walker walker = {
1129 		.cb		= stage2_attr_walker,
1130 		.arg		= &data,
1131 		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1132 	};
1133 
1134 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1135 	if (ret)
1136 		return ret;
1137 
1138 	if (orig_pte)
1139 		*orig_pte = data.pte;
1140 
1141 	if (level)
1142 		*level = data.level;
1143 	return 0;
1144 }
1145 
1146 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1147 {
1148 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1149 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1150 					NULL, NULL, 0);
1151 }
1152 
1153 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1154 {
1155 	kvm_pte_t pte = 0;
1156 	int ret;
1157 
1158 	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1159 				       &pte, NULL,
1160 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1161 				       KVM_PGTABLE_WALK_SHARED);
1162 	if (!ret)
1163 		dsb(ishst);
1164 
1165 	return pte;
1166 }
1167 
1168 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
1169 {
1170 	kvm_pte_t pte = 0;
1171 	stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
1172 				 &pte, NULL, 0);
1173 	/*
1174 	 * "But where's the TLBI?!", you scream.
1175 	 * "Over in the core code", I sigh.
1176 	 *
1177 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1178 	 */
1179 	return pte;
1180 }
1181 
1182 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
1183 {
1184 	kvm_pte_t pte = 0;
1185 	stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL, 0);
1186 	return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
1187 }
1188 
1189 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1190 				   enum kvm_pgtable_prot prot)
1191 {
1192 	int ret;
1193 	u32 level;
1194 	kvm_pte_t set = 0, clr = 0;
1195 
1196 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1197 		return -EINVAL;
1198 
1199 	if (prot & KVM_PGTABLE_PROT_R)
1200 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1201 
1202 	if (prot & KVM_PGTABLE_PROT_W)
1203 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1204 
1205 	if (prot & KVM_PGTABLE_PROT_X)
1206 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1207 
1208 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1209 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1210 				       KVM_PGTABLE_WALK_SHARED);
1211 	if (!ret)
1212 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
1213 	return ret;
1214 }
1215 
1216 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1217 			       enum kvm_pgtable_walk_flags visit)
1218 {
1219 	struct kvm_pgtable *pgt = ctx->arg;
1220 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1221 
1222 	if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
1223 		return 0;
1224 
1225 	if (mm_ops->dcache_clean_inval_poc)
1226 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1227 					       kvm_granule_size(ctx->level));
1228 	return 0;
1229 }
1230 
1231 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1232 {
1233 	struct kvm_pgtable_walker walker = {
1234 		.cb	= stage2_flush_walker,
1235 		.flags	= KVM_PGTABLE_WALK_LEAF,
1236 		.arg	= pgt,
1237 	};
1238 
1239 	if (stage2_has_fwb(pgt))
1240 		return 0;
1241 
1242 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1243 }
1244 
1245 
1246 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1247 			      struct kvm_pgtable_mm_ops *mm_ops,
1248 			      enum kvm_pgtable_stage2_flags flags,
1249 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1250 {
1251 	size_t pgd_sz;
1252 	u64 vtcr = mmu->arch->vtcr;
1253 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1254 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1255 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1256 
1257 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1258 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1259 	if (!pgt->pgd)
1260 		return -ENOMEM;
1261 
1262 	pgt->ia_bits		= ia_bits;
1263 	pgt->start_level	= start_level;
1264 	pgt->mm_ops		= mm_ops;
1265 	pgt->mmu		= mmu;
1266 	pgt->flags		= flags;
1267 	pgt->force_pte_cb	= force_pte_cb;
1268 
1269 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1270 	dsb(ishst);
1271 	return 0;
1272 }
1273 
1274 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1275 {
1276 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1277 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1278 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1279 
1280 	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1281 }
1282 
1283 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1284 			      enum kvm_pgtable_walk_flags visit)
1285 {
1286 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1287 
1288 	if (!stage2_pte_is_counted(ctx->old))
1289 		return 0;
1290 
1291 	mm_ops->put_page(ctx->ptep);
1292 
1293 	if (kvm_pte_table(ctx->old, ctx->level))
1294 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1295 
1296 	return 0;
1297 }
1298 
1299 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1300 {
1301 	size_t pgd_sz;
1302 	struct kvm_pgtable_walker walker = {
1303 		.cb	= stage2_free_walker,
1304 		.flags	= KVM_PGTABLE_WALK_LEAF |
1305 			  KVM_PGTABLE_WALK_TABLE_POST,
1306 	};
1307 
1308 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1309 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1310 	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1311 	pgt->pgd = NULL;
1312 }
1313 
1314 void kvm_pgtable_stage2_free_removed(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level)
1315 {
1316 	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1317 	struct kvm_pgtable_walker walker = {
1318 		.cb	= stage2_free_walker,
1319 		.flags	= KVM_PGTABLE_WALK_LEAF |
1320 			  KVM_PGTABLE_WALK_TABLE_POST,
1321 	};
1322 	struct kvm_pgtable_walk_data data = {
1323 		.walker	= &walker,
1324 
1325 		/*
1326 		 * At this point the IPA really doesn't matter, as the page
1327 		 * table being traversed has already been removed from the stage
1328 		 * 2. Set an appropriate range to cover the entire page table.
1329 		 */
1330 		.addr	= 0,
1331 		.end	= kvm_granule_size(level),
1332 	};
1333 
1334 	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1335 
1336 	WARN_ON(mm_ops->page_count(pgtable) != 1);
1337 	mm_ops->put_page(pgtable);
1338 }
1339