xref: /openbmc/linux/arch/arm64/kvm/hyp/pgtable.c (revision 97e6ea6d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 
15 #define KVM_PTE_TYPE			BIT(1)
16 #define KVM_PTE_TYPE_BLOCK		0
17 #define KVM_PTE_TYPE_PAGE		1
18 #define KVM_PTE_TYPE_TABLE		1
19 
20 #define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)
21 
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO	3
25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW	1
26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)
29 
30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)
36 
37 #define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 51)
38 
39 #define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)
40 
41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)
42 
43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)
44 
45 #define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
46 					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
47 					 KVM_PTE_LEAF_ATTR_HI_S2_XN)
48 
49 #define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
50 #define KVM_MAX_OWNER_ID		1
51 
52 struct kvm_pgtable_walk_data {
53 	struct kvm_pgtable		*pgt;
54 	struct kvm_pgtable_walker	*walker;
55 
56 	u64				addr;
57 	u64				end;
58 };
59 
60 #define KVM_PHYS_INVALID (-1ULL)
61 
62 static bool kvm_phys_is_valid(u64 phys)
63 {
64 	return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_PARANGE_MAX));
65 }
66 
67 static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
68 {
69 	u64 granule = kvm_granule_size(level);
70 
71 	if (!kvm_level_supports_block_mapping(level))
72 		return false;
73 
74 	if (granule > (end - addr))
75 		return false;
76 
77 	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
78 		return false;
79 
80 	return IS_ALIGNED(addr, granule);
81 }
82 
83 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
84 {
85 	u64 shift = kvm_granule_shift(level);
86 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
87 
88 	return (data->addr >> shift) & mask;
89 }
90 
91 static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
92 {
93 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
94 	u64 mask = BIT(pgt->ia_bits) - 1;
95 
96 	return (addr & mask) >> shift;
97 }
98 
99 static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
100 {
101 	return __kvm_pgd_page_idx(data->pgt, data->addr);
102 }
103 
104 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
105 {
106 	struct kvm_pgtable pgt = {
107 		.ia_bits	= ia_bits,
108 		.start_level	= start_level,
109 	};
110 
111 	return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
112 }
113 
114 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
115 {
116 	if (level == KVM_PGTABLE_MAX_LEVELS - 1)
117 		return false;
118 
119 	if (!kvm_pte_valid(pte))
120 		return false;
121 
122 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
123 }
124 
125 static kvm_pte_t kvm_phys_to_pte(u64 pa)
126 {
127 	kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;
128 
129 	if (PAGE_SHIFT == 16)
130 		pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
131 
132 	return pte;
133 }
134 
135 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
136 {
137 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
138 }
139 
140 static void kvm_clear_pte(kvm_pte_t *ptep)
141 {
142 	WRITE_ONCE(*ptep, 0);
143 }
144 
145 static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp,
146 			      struct kvm_pgtable_mm_ops *mm_ops)
147 {
148 	kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
149 
150 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
151 	pte |= KVM_PTE_VALID;
152 
153 	WARN_ON(kvm_pte_valid(old));
154 	smp_store_release(ptep, pte);
155 }
156 
157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
158 {
159 	kvm_pte_t pte = kvm_phys_to_pte(pa);
160 	u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
161 							   KVM_PTE_TYPE_BLOCK;
162 
163 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
164 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
165 	pte |= KVM_PTE_VALID;
166 
167 	return pte;
168 }
169 
170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
171 {
172 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
173 }
174 
175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
176 				  u32 level, kvm_pte_t *ptep,
177 				  enum kvm_pgtable_walk_flags flag)
178 {
179 	struct kvm_pgtable_walker *walker = data->walker;
180 	return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
181 }
182 
183 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
184 			      kvm_pte_t *pgtable, u32 level);
185 
186 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
187 				      kvm_pte_t *ptep, u32 level)
188 {
189 	int ret = 0;
190 	u64 addr = data->addr;
191 	kvm_pte_t *childp, pte = *ptep;
192 	bool table = kvm_pte_table(pte, level);
193 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
194 
195 	if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
196 		ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
197 					     KVM_PGTABLE_WALK_TABLE_PRE);
198 	}
199 
200 	if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
201 		ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
202 					     KVM_PGTABLE_WALK_LEAF);
203 		pte = *ptep;
204 		table = kvm_pte_table(pte, level);
205 	}
206 
207 	if (ret)
208 		goto out;
209 
210 	if (!table) {
211 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
212 		data->addr += kvm_granule_size(level);
213 		goto out;
214 	}
215 
216 	childp = kvm_pte_follow(pte, data->pgt->mm_ops);
217 	ret = __kvm_pgtable_walk(data, childp, level + 1);
218 	if (ret)
219 		goto out;
220 
221 	if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
222 		ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
223 					     KVM_PGTABLE_WALK_TABLE_POST);
224 	}
225 
226 out:
227 	return ret;
228 }
229 
230 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
231 			      kvm_pte_t *pgtable, u32 level)
232 {
233 	u32 idx;
234 	int ret = 0;
235 
236 	if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
237 		return -EINVAL;
238 
239 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
240 		kvm_pte_t *ptep = &pgtable[idx];
241 
242 		if (data->addr >= data->end)
243 			break;
244 
245 		ret = __kvm_pgtable_visit(data, ptep, level);
246 		if (ret)
247 			break;
248 	}
249 
250 	return ret;
251 }
252 
253 static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
254 {
255 	u32 idx;
256 	int ret = 0;
257 	struct kvm_pgtable *pgt = data->pgt;
258 	u64 limit = BIT(pgt->ia_bits);
259 
260 	if (data->addr > limit || data->end > limit)
261 		return -ERANGE;
262 
263 	if (!pgt->pgd)
264 		return -EINVAL;
265 
266 	for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
267 		kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];
268 
269 		ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
270 		if (ret)
271 			break;
272 	}
273 
274 	return ret;
275 }
276 
277 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
278 		     struct kvm_pgtable_walker *walker)
279 {
280 	struct kvm_pgtable_walk_data walk_data = {
281 		.pgt	= pgt,
282 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
283 		.end	= PAGE_ALIGN(walk_data.addr + size),
284 		.walker	= walker,
285 	};
286 
287 	return _kvm_pgtable_walk(&walk_data);
288 }
289 
290 struct leaf_walk_data {
291 	kvm_pte_t	pte;
292 	u32		level;
293 };
294 
295 static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
296 		       enum kvm_pgtable_walk_flags flag, void * const arg)
297 {
298 	struct leaf_walk_data *data = arg;
299 
300 	data->pte   = *ptep;
301 	data->level = level;
302 
303 	return 0;
304 }
305 
306 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
307 			 kvm_pte_t *ptep, u32 *level)
308 {
309 	struct leaf_walk_data data;
310 	struct kvm_pgtable_walker walker = {
311 		.cb	= leaf_walker,
312 		.flags	= KVM_PGTABLE_WALK_LEAF,
313 		.arg	= &data,
314 	};
315 	int ret;
316 
317 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
318 			       PAGE_SIZE, &walker);
319 	if (!ret) {
320 		if (ptep)
321 			*ptep  = data.pte;
322 		if (level)
323 			*level = data.level;
324 	}
325 
326 	return ret;
327 }
328 
329 struct hyp_map_data {
330 	u64				phys;
331 	kvm_pte_t			attr;
332 	struct kvm_pgtable_mm_ops	*mm_ops;
333 };
334 
335 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
336 {
337 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
338 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
339 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
340 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
341 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
342 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
343 
344 	if (!(prot & KVM_PGTABLE_PROT_R))
345 		return -EINVAL;
346 
347 	if (prot & KVM_PGTABLE_PROT_X) {
348 		if (prot & KVM_PGTABLE_PROT_W)
349 			return -EINVAL;
350 
351 		if (device)
352 			return -EINVAL;
353 	} else {
354 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
355 	}
356 
357 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
358 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
359 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
360 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
361 	*ptep = attr;
362 
363 	return 0;
364 }
365 
366 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
367 {
368 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
369 	u32 ap;
370 
371 	if (!kvm_pte_valid(pte))
372 		return prot;
373 
374 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
375 		prot |= KVM_PGTABLE_PROT_X;
376 
377 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
378 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
379 		prot |= KVM_PGTABLE_PROT_R;
380 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
381 		prot |= KVM_PGTABLE_PROT_RW;
382 
383 	return prot;
384 }
385 
386 static bool hyp_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
387 {
388 	/*
389 	 * Tolerate KVM recreating the exact same mapping, or changing software
390 	 * bits if the existing mapping was valid.
391 	 */
392 	if (old == new)
393 		return false;
394 
395 	if (!kvm_pte_valid(old))
396 		return true;
397 
398 	return !WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW);
399 }
400 
401 static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
402 				    kvm_pte_t *ptep, struct hyp_map_data *data)
403 {
404 	kvm_pte_t new, old = *ptep;
405 	u64 granule = kvm_granule_size(level), phys = data->phys;
406 
407 	if (!kvm_block_mapping_supported(addr, end, phys, level))
408 		return false;
409 
410 	new = kvm_init_valid_leaf_pte(phys, data->attr, level);
411 	if (hyp_pte_needs_update(old, new))
412 		smp_store_release(ptep, new);
413 
414 	data->phys += granule;
415 	return true;
416 }
417 
418 static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
419 			  enum kvm_pgtable_walk_flags flag, void * const arg)
420 {
421 	kvm_pte_t *childp;
422 	struct hyp_map_data *data = arg;
423 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
424 
425 	if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
426 		return 0;
427 
428 	if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
429 		return -EINVAL;
430 
431 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
432 	if (!childp)
433 		return -ENOMEM;
434 
435 	kvm_set_table_pte(ptep, childp, mm_ops);
436 	return 0;
437 }
438 
439 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
440 			enum kvm_pgtable_prot prot)
441 {
442 	int ret;
443 	struct hyp_map_data map_data = {
444 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
445 		.mm_ops	= pgt->mm_ops,
446 	};
447 	struct kvm_pgtable_walker walker = {
448 		.cb	= hyp_map_walker,
449 		.flags	= KVM_PGTABLE_WALK_LEAF,
450 		.arg	= &map_data,
451 	};
452 
453 	ret = hyp_set_prot_attr(prot, &map_data.attr);
454 	if (ret)
455 		return ret;
456 
457 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
458 	dsb(ishst);
459 	isb();
460 	return ret;
461 }
462 
463 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
464 			 struct kvm_pgtable_mm_ops *mm_ops)
465 {
466 	u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
467 
468 	pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
469 	if (!pgt->pgd)
470 		return -ENOMEM;
471 
472 	pgt->ia_bits		= va_bits;
473 	pgt->start_level	= KVM_PGTABLE_MAX_LEVELS - levels;
474 	pgt->mm_ops		= mm_ops;
475 	pgt->mmu		= NULL;
476 	pgt->force_pte_cb	= NULL;
477 
478 	return 0;
479 }
480 
481 static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
482 			   enum kvm_pgtable_walk_flags flag, void * const arg)
483 {
484 	struct kvm_pgtable_mm_ops *mm_ops = arg;
485 
486 	mm_ops->put_page((void *)kvm_pte_follow(*ptep, mm_ops));
487 	return 0;
488 }
489 
490 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
491 {
492 	struct kvm_pgtable_walker walker = {
493 		.cb	= hyp_free_walker,
494 		.flags	= KVM_PGTABLE_WALK_TABLE_POST,
495 		.arg	= pgt->mm_ops,
496 	};
497 
498 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
499 	pgt->mm_ops->put_page(pgt->pgd);
500 	pgt->pgd = NULL;
501 }
502 
503 struct stage2_map_data {
504 	u64				phys;
505 	kvm_pte_t			attr;
506 	u8				owner_id;
507 
508 	kvm_pte_t			*anchor;
509 	kvm_pte_t			*childp;
510 
511 	struct kvm_s2_mmu		*mmu;
512 	void				*memcache;
513 
514 	struct kvm_pgtable_mm_ops	*mm_ops;
515 
516 	/* Force mappings to page granularity */
517 	bool				force_pte;
518 };
519 
520 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
521 {
522 	u64 vtcr = VTCR_EL2_FLAGS;
523 	u8 lvls;
524 
525 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
526 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
527 	/*
528 	 * Use a minimum 2 level page table to prevent splitting
529 	 * host PMD huge pages at stage2.
530 	 */
531 	lvls = stage2_pgtable_levels(phys_shift);
532 	if (lvls < 2)
533 		lvls = 2;
534 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
535 
536 	/*
537 	 * Enable the Hardware Access Flag management, unconditionally
538 	 * on all CPUs. The features is RES0 on CPUs without the support
539 	 * and must be ignored by the CPUs.
540 	 */
541 	vtcr |= VTCR_EL2_HA;
542 
543 	/* Set the vmid bits */
544 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
545 		VTCR_EL2_VS_16BIT :
546 		VTCR_EL2_VS_8BIT;
547 
548 	return vtcr;
549 }
550 
551 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
552 {
553 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
554 		return false;
555 
556 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
557 }
558 
559 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
560 
561 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
562 				kvm_pte_t *ptep)
563 {
564 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
565 	kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
566 			    KVM_S2_MEMATTR(pgt, NORMAL);
567 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
568 
569 	if (!(prot & KVM_PGTABLE_PROT_X))
570 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
571 	else if (device)
572 		return -EINVAL;
573 
574 	if (prot & KVM_PGTABLE_PROT_R)
575 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
576 
577 	if (prot & KVM_PGTABLE_PROT_W)
578 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
579 
580 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
581 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
582 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
583 	*ptep = attr;
584 
585 	return 0;
586 }
587 
588 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
589 {
590 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
591 
592 	if (!kvm_pte_valid(pte))
593 		return prot;
594 
595 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
596 		prot |= KVM_PGTABLE_PROT_R;
597 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
598 		prot |= KVM_PGTABLE_PROT_W;
599 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
600 		prot |= KVM_PGTABLE_PROT_X;
601 
602 	return prot;
603 }
604 
605 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
606 {
607 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
608 		return true;
609 
610 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
611 }
612 
613 static bool stage2_pte_is_counted(kvm_pte_t pte)
614 {
615 	/*
616 	 * The refcount tracks valid entries as well as invalid entries if they
617 	 * encode ownership of a page to another entity than the page-table
618 	 * owner, whose id is 0.
619 	 */
620 	return !!pte;
621 }
622 
623 static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr,
624 			   u32 level, struct kvm_pgtable_mm_ops *mm_ops)
625 {
626 	/*
627 	 * Clear the existing PTE, and perform break-before-make with
628 	 * TLB maintenance if it was valid.
629 	 */
630 	if (kvm_pte_valid(*ptep)) {
631 		kvm_clear_pte(ptep);
632 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
633 	}
634 
635 	mm_ops->put_page(ptep);
636 }
637 
638 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
639 {
640 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
641 	return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
642 }
643 
644 static bool stage2_pte_executable(kvm_pte_t pte)
645 {
646 	return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
647 }
648 
649 static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level,
650 					struct stage2_map_data *data)
651 {
652 	if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1)))
653 		return false;
654 
655 	return kvm_block_mapping_supported(addr, end, data->phys, level);
656 }
657 
658 static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
659 				      kvm_pte_t *ptep,
660 				      struct stage2_map_data *data)
661 {
662 	kvm_pte_t new, old = *ptep;
663 	u64 granule = kvm_granule_size(level), phys = data->phys;
664 	struct kvm_pgtable *pgt = data->mmu->pgt;
665 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
666 
667 	if (!stage2_leaf_mapping_allowed(addr, end, level, data))
668 		return -E2BIG;
669 
670 	if (kvm_phys_is_valid(phys))
671 		new = kvm_init_valid_leaf_pte(phys, data->attr, level);
672 	else
673 		new = kvm_init_invalid_leaf_owner(data->owner_id);
674 
675 	if (stage2_pte_is_counted(old)) {
676 		/*
677 		 * Skip updating the PTE if we are trying to recreate the exact
678 		 * same mapping or only change the access permissions. Instead,
679 		 * the vCPU will exit one more time from guest if still needed
680 		 * and then go through the path of relaxing permissions.
681 		 */
682 		if (!stage2_pte_needs_update(old, new))
683 			return -EAGAIN;
684 
685 		stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
686 	}
687 
688 	/* Perform CMOs before installation of the guest stage-2 PTE */
689 	if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
690 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
691 						granule);
692 
693 	if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
694 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
695 
696 	smp_store_release(ptep, new);
697 	if (stage2_pte_is_counted(new))
698 		mm_ops->get_page(ptep);
699 	if (kvm_phys_is_valid(phys))
700 		data->phys += granule;
701 	return 0;
702 }
703 
704 static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
705 				     kvm_pte_t *ptep,
706 				     struct stage2_map_data *data)
707 {
708 	if (data->anchor)
709 		return 0;
710 
711 	if (!stage2_leaf_mapping_allowed(addr, end, level, data))
712 		return 0;
713 
714 	data->childp = kvm_pte_follow(*ptep, data->mm_ops);
715 	kvm_clear_pte(ptep);
716 
717 	/*
718 	 * Invalidate the whole stage-2, as we may have numerous leaf
719 	 * entries below us which would otherwise need invalidating
720 	 * individually.
721 	 */
722 	kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
723 	data->anchor = ptep;
724 	return 0;
725 }
726 
727 static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
728 				struct stage2_map_data *data)
729 {
730 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
731 	kvm_pte_t *childp, pte = *ptep;
732 	int ret;
733 
734 	if (data->anchor) {
735 		if (stage2_pte_is_counted(pte))
736 			mm_ops->put_page(ptep);
737 
738 		return 0;
739 	}
740 
741 	ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data);
742 	if (ret != -E2BIG)
743 		return ret;
744 
745 	if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
746 		return -EINVAL;
747 
748 	if (!data->memcache)
749 		return -ENOMEM;
750 
751 	childp = mm_ops->zalloc_page(data->memcache);
752 	if (!childp)
753 		return -ENOMEM;
754 
755 	/*
756 	 * If we've run into an existing block mapping then replace it with
757 	 * a table. Accesses beyond 'end' that fall within the new table
758 	 * will be mapped lazily.
759 	 */
760 	if (stage2_pte_is_counted(pte))
761 		stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
762 
763 	kvm_set_table_pte(ptep, childp, mm_ops);
764 	mm_ops->get_page(ptep);
765 
766 	return 0;
767 }
768 
769 static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
770 				      kvm_pte_t *ptep,
771 				      struct stage2_map_data *data)
772 {
773 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
774 	kvm_pte_t *childp;
775 	int ret = 0;
776 
777 	if (!data->anchor)
778 		return 0;
779 
780 	if (data->anchor == ptep) {
781 		childp = data->childp;
782 		data->anchor = NULL;
783 		data->childp = NULL;
784 		ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
785 	} else {
786 		childp = kvm_pte_follow(*ptep, mm_ops);
787 	}
788 
789 	mm_ops->put_page(childp);
790 	mm_ops->put_page(ptep);
791 
792 	return ret;
793 }
794 
795 /*
796  * This is a little fiddly, as we use all three of the walk flags. The idea
797  * is that the TABLE_PRE callback runs for table entries on the way down,
798  * looking for table entries which we could conceivably replace with a
799  * block entry for this mapping. If it finds one, then it sets the 'anchor'
800  * field in 'struct stage2_map_data' to point at the table entry, before
801  * clearing the entry to zero and descending into the now detached table.
802  *
803  * The behaviour of the LEAF callback then depends on whether or not the
804  * anchor has been set. If not, then we're not using a block mapping higher
805  * up the table and we perform the mapping at the existing leaves instead.
806  * If, on the other hand, the anchor _is_ set, then we drop references to
807  * all valid leaves so that the pages beneath the anchor can be freed.
808  *
809  * Finally, the TABLE_POST callback does nothing if the anchor has not
810  * been set, but otherwise frees the page-table pages while walking back up
811  * the page-table, installing the block entry when it revisits the anchor
812  * pointer and clearing the anchor to NULL.
813  */
814 static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
815 			     enum kvm_pgtable_walk_flags flag, void * const arg)
816 {
817 	struct stage2_map_data *data = arg;
818 
819 	switch (flag) {
820 	case KVM_PGTABLE_WALK_TABLE_PRE:
821 		return stage2_map_walk_table_pre(addr, end, level, ptep, data);
822 	case KVM_PGTABLE_WALK_LEAF:
823 		return stage2_map_walk_leaf(addr, end, level, ptep, data);
824 	case KVM_PGTABLE_WALK_TABLE_POST:
825 		return stage2_map_walk_table_post(addr, end, level, ptep, data);
826 	}
827 
828 	return -EINVAL;
829 }
830 
831 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
832 			   u64 phys, enum kvm_pgtable_prot prot,
833 			   void *mc)
834 {
835 	int ret;
836 	struct stage2_map_data map_data = {
837 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
838 		.mmu		= pgt->mmu,
839 		.memcache	= mc,
840 		.mm_ops		= pgt->mm_ops,
841 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
842 	};
843 	struct kvm_pgtable_walker walker = {
844 		.cb		= stage2_map_walker,
845 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
846 				  KVM_PGTABLE_WALK_LEAF |
847 				  KVM_PGTABLE_WALK_TABLE_POST,
848 		.arg		= &map_data,
849 	};
850 
851 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
852 		return -EINVAL;
853 
854 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
855 	if (ret)
856 		return ret;
857 
858 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
859 	dsb(ishst);
860 	return ret;
861 }
862 
863 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
864 				 void *mc, u8 owner_id)
865 {
866 	int ret;
867 	struct stage2_map_data map_data = {
868 		.phys		= KVM_PHYS_INVALID,
869 		.mmu		= pgt->mmu,
870 		.memcache	= mc,
871 		.mm_ops		= pgt->mm_ops,
872 		.owner_id	= owner_id,
873 		.force_pte	= true,
874 	};
875 	struct kvm_pgtable_walker walker = {
876 		.cb		= stage2_map_walker,
877 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
878 				  KVM_PGTABLE_WALK_LEAF |
879 				  KVM_PGTABLE_WALK_TABLE_POST,
880 		.arg		= &map_data,
881 	};
882 
883 	if (owner_id > KVM_MAX_OWNER_ID)
884 		return -EINVAL;
885 
886 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
887 	return ret;
888 }
889 
890 static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
891 			       enum kvm_pgtable_walk_flags flag,
892 			       void * const arg)
893 {
894 	struct kvm_pgtable *pgt = arg;
895 	struct kvm_s2_mmu *mmu = pgt->mmu;
896 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
897 	kvm_pte_t pte = *ptep, *childp = NULL;
898 	bool need_flush = false;
899 
900 	if (!kvm_pte_valid(pte)) {
901 		if (stage2_pte_is_counted(pte)) {
902 			kvm_clear_pte(ptep);
903 			mm_ops->put_page(ptep);
904 		}
905 		return 0;
906 	}
907 
908 	if (kvm_pte_table(pte, level)) {
909 		childp = kvm_pte_follow(pte, mm_ops);
910 
911 		if (mm_ops->page_count(childp) != 1)
912 			return 0;
913 	} else if (stage2_pte_cacheable(pgt, pte)) {
914 		need_flush = !stage2_has_fwb(pgt);
915 	}
916 
917 	/*
918 	 * This is similar to the map() path in that we unmap the entire
919 	 * block entry and rely on the remaining portions being faulted
920 	 * back lazily.
921 	 */
922 	stage2_put_pte(ptep, mmu, addr, level, mm_ops);
923 
924 	if (need_flush) {
925 		kvm_pte_t *pte_follow = kvm_pte_follow(pte, mm_ops);
926 
927 		dcache_clean_inval_poc((unsigned long)pte_follow,
928 				    (unsigned long)pte_follow +
929 					    kvm_granule_size(level));
930 	}
931 
932 	if (childp)
933 		mm_ops->put_page(childp);
934 
935 	return 0;
936 }
937 
938 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
939 {
940 	struct kvm_pgtable_walker walker = {
941 		.cb	= stage2_unmap_walker,
942 		.arg	= pgt,
943 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
944 	};
945 
946 	return kvm_pgtable_walk(pgt, addr, size, &walker);
947 }
948 
949 struct stage2_attr_data {
950 	kvm_pte_t			attr_set;
951 	kvm_pte_t			attr_clr;
952 	kvm_pte_t			pte;
953 	u32				level;
954 	struct kvm_pgtable_mm_ops	*mm_ops;
955 };
956 
957 static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
958 			      enum kvm_pgtable_walk_flags flag,
959 			      void * const arg)
960 {
961 	kvm_pte_t pte = *ptep;
962 	struct stage2_attr_data *data = arg;
963 	struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
964 
965 	if (!kvm_pte_valid(pte))
966 		return 0;
967 
968 	data->level = level;
969 	data->pte = pte;
970 	pte &= ~data->attr_clr;
971 	pte |= data->attr_set;
972 
973 	/*
974 	 * We may race with the CPU trying to set the access flag here,
975 	 * but worst-case the access flag update gets lost and will be
976 	 * set on the next access instead.
977 	 */
978 	if (data->pte != pte) {
979 		/*
980 		 * Invalidate instruction cache before updating the guest
981 		 * stage-2 PTE if we are going to add executable permission.
982 		 */
983 		if (mm_ops->icache_inval_pou &&
984 		    stage2_pte_executable(pte) && !stage2_pte_executable(*ptep))
985 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
986 						  kvm_granule_size(level));
987 		WRITE_ONCE(*ptep, pte);
988 	}
989 
990 	return 0;
991 }
992 
993 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
994 				    u64 size, kvm_pte_t attr_set,
995 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
996 				    u32 *level)
997 {
998 	int ret;
999 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1000 	struct stage2_attr_data data = {
1001 		.attr_set	= attr_set & attr_mask,
1002 		.attr_clr	= attr_clr & attr_mask,
1003 		.mm_ops		= pgt->mm_ops,
1004 	};
1005 	struct kvm_pgtable_walker walker = {
1006 		.cb		= stage2_attr_walker,
1007 		.arg		= &data,
1008 		.flags		= KVM_PGTABLE_WALK_LEAF,
1009 	};
1010 
1011 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1012 	if (ret)
1013 		return ret;
1014 
1015 	if (orig_pte)
1016 		*orig_pte = data.pte;
1017 
1018 	if (level)
1019 		*level = data.level;
1020 	return 0;
1021 }
1022 
1023 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1024 {
1025 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1026 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1027 					NULL, NULL);
1028 }
1029 
1030 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1031 {
1032 	kvm_pte_t pte = 0;
1033 	stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1034 				 &pte, NULL);
1035 	dsb(ishst);
1036 	return pte;
1037 }
1038 
1039 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
1040 {
1041 	kvm_pte_t pte = 0;
1042 	stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
1043 				 &pte, NULL);
1044 	/*
1045 	 * "But where's the TLBI?!", you scream.
1046 	 * "Over in the core code", I sigh.
1047 	 *
1048 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1049 	 */
1050 	return pte;
1051 }
1052 
1053 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
1054 {
1055 	kvm_pte_t pte = 0;
1056 	stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
1057 	return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
1058 }
1059 
1060 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1061 				   enum kvm_pgtable_prot prot)
1062 {
1063 	int ret;
1064 	u32 level;
1065 	kvm_pte_t set = 0, clr = 0;
1066 
1067 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1068 		return -EINVAL;
1069 
1070 	if (prot & KVM_PGTABLE_PROT_R)
1071 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1072 
1073 	if (prot & KVM_PGTABLE_PROT_W)
1074 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1075 
1076 	if (prot & KVM_PGTABLE_PROT_X)
1077 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1078 
1079 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
1080 	if (!ret)
1081 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
1082 	return ret;
1083 }
1084 
1085 static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1086 			       enum kvm_pgtable_walk_flags flag,
1087 			       void * const arg)
1088 {
1089 	struct kvm_pgtable *pgt = arg;
1090 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1091 	kvm_pte_t pte = *ptep;
1092 	kvm_pte_t *pte_follow;
1093 
1094 	if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pgt, pte))
1095 		return 0;
1096 
1097 	pte_follow = kvm_pte_follow(pte, mm_ops);
1098 	dcache_clean_inval_poc((unsigned long)pte_follow,
1099 			    (unsigned long)pte_follow +
1100 				    kvm_granule_size(level));
1101 	return 0;
1102 }
1103 
1104 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1105 {
1106 	struct kvm_pgtable_walker walker = {
1107 		.cb	= stage2_flush_walker,
1108 		.flags	= KVM_PGTABLE_WALK_LEAF,
1109 		.arg	= pgt,
1110 	};
1111 
1112 	if (stage2_has_fwb(pgt))
1113 		return 0;
1114 
1115 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1116 }
1117 
1118 
1119 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_arch *arch,
1120 			      struct kvm_pgtable_mm_ops *mm_ops,
1121 			      enum kvm_pgtable_stage2_flags flags,
1122 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1123 {
1124 	size_t pgd_sz;
1125 	u64 vtcr = arch->vtcr;
1126 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1127 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1128 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1129 
1130 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1131 	pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz);
1132 	if (!pgt->pgd)
1133 		return -ENOMEM;
1134 
1135 	pgt->ia_bits		= ia_bits;
1136 	pgt->start_level	= start_level;
1137 	pgt->mm_ops		= mm_ops;
1138 	pgt->mmu		= &arch->mmu;
1139 	pgt->flags		= flags;
1140 	pgt->force_pte_cb	= force_pte_cb;
1141 
1142 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1143 	dsb(ishst);
1144 	return 0;
1145 }
1146 
1147 static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
1148 			      enum kvm_pgtable_walk_flags flag,
1149 			      void * const arg)
1150 {
1151 	struct kvm_pgtable_mm_ops *mm_ops = arg;
1152 	kvm_pte_t pte = *ptep;
1153 
1154 	if (!stage2_pte_is_counted(pte))
1155 		return 0;
1156 
1157 	mm_ops->put_page(ptep);
1158 
1159 	if (kvm_pte_table(pte, level))
1160 		mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
1161 
1162 	return 0;
1163 }
1164 
1165 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1166 {
1167 	size_t pgd_sz;
1168 	struct kvm_pgtable_walker walker = {
1169 		.cb	= stage2_free_walker,
1170 		.flags	= KVM_PGTABLE_WALK_LEAF |
1171 			  KVM_PGTABLE_WALK_TABLE_POST,
1172 		.arg	= pgt->mm_ops,
1173 	};
1174 
1175 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1176 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1177 	pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz);
1178 	pgt->pgd = NULL;
1179 }
1180