xref: /openbmc/linux/arch/arm64/kvm/hyp/pgtable.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 
15 #define KVM_PTE_TYPE			BIT(1)
16 #define KVM_PTE_TYPE_BLOCK		0
17 #define KVM_PTE_TYPE_PAGE		1
18 #define KVM_PTE_TYPE_TABLE		1
19 
20 #define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)
21 
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO		\
25 	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
26 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW		\
27 	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
28 #define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
29 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
30 #define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)
31 
32 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
35 #define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
36 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
37 #define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)
38 
39 #define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 50)
40 
41 #define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)
42 
43 #define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)
44 
45 #define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)
46 
47 #define KVM_PTE_LEAF_ATTR_HI_S1_GP	BIT(50)
48 
49 #define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
50 					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
51 					 KVM_PTE_LEAF_ATTR_HI_S2_XN)
52 
53 #define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
54 #define KVM_MAX_OWNER_ID		1
55 
56 /*
57  * Used to indicate a pte for which a 'break-before-make' sequence is in
58  * progress.
59  */
60 #define KVM_INVALID_PTE_LOCKED		BIT(10)
61 
62 struct kvm_pgtable_walk_data {
63 	struct kvm_pgtable_walker	*walker;
64 
65 	const u64			start;
66 	u64				addr;
67 	const u64			end;
68 };
69 
70 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
71 {
72 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
73 }
74 
75 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
76 {
77 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
78 }
79 
80 static bool kvm_phys_is_valid(u64 phys)
81 {
82 	return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
83 }
84 
85 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
86 {
87 	u64 granule = kvm_granule_size(ctx->level);
88 
89 	if (!kvm_level_supports_block_mapping(ctx->level))
90 		return false;
91 
92 	if (granule > (ctx->end - ctx->addr))
93 		return false;
94 
95 	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
96 		return false;
97 
98 	return IS_ALIGNED(ctx->addr, granule);
99 }
100 
101 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
102 {
103 	u64 shift = kvm_granule_shift(level);
104 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
105 
106 	return (data->addr >> shift) & mask;
107 }
108 
109 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
110 {
111 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
112 	u64 mask = BIT(pgt->ia_bits) - 1;
113 
114 	return (addr & mask) >> shift;
115 }
116 
117 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
118 {
119 	struct kvm_pgtable pgt = {
120 		.ia_bits	= ia_bits,
121 		.start_level	= start_level,
122 	};
123 
124 	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
125 }
126 
127 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
128 {
129 	if (level == KVM_PGTABLE_MAX_LEVELS - 1)
130 		return false;
131 
132 	if (!kvm_pte_valid(pte))
133 		return false;
134 
135 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
136 }
137 
138 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
139 {
140 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
141 }
142 
143 static void kvm_clear_pte(kvm_pte_t *ptep)
144 {
145 	WRITE_ONCE(*ptep, 0);
146 }
147 
148 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
149 {
150 	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
151 
152 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
153 	pte |= KVM_PTE_VALID;
154 	return pte;
155 }
156 
157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
158 {
159 	kvm_pte_t pte = kvm_phys_to_pte(pa);
160 	u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
161 							   KVM_PTE_TYPE_BLOCK;
162 
163 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
164 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
165 	pte |= KVM_PTE_VALID;
166 
167 	return pte;
168 }
169 
170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
171 {
172 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
173 }
174 
175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
176 				  const struct kvm_pgtable_visit_ctx *ctx,
177 				  enum kvm_pgtable_walk_flags visit)
178 {
179 	struct kvm_pgtable_walker *walker = data->walker;
180 
181 	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
182 	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
183 	return walker->cb(ctx, visit);
184 }
185 
186 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
187 				      int r)
188 {
189 	/*
190 	 * Visitor callbacks return EAGAIN when the conditions that led to a
191 	 * fault are no longer reflected in the page tables due to a race to
192 	 * update a PTE. In the context of a fault handler this is interpreted
193 	 * as a signal to retry guest execution.
194 	 *
195 	 * Ignore the return code altogether for walkers outside a fault handler
196 	 * (e.g. write protecting a range of memory) and chug along with the
197 	 * page table walk.
198 	 */
199 	if (r == -EAGAIN)
200 		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
201 
202 	return !r;
203 }
204 
205 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
206 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level);
207 
208 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
209 				      struct kvm_pgtable_mm_ops *mm_ops,
210 				      kvm_pteref_t pteref, u32 level)
211 {
212 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
213 	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
214 	struct kvm_pgtable_visit_ctx ctx = {
215 		.ptep	= ptep,
216 		.old	= READ_ONCE(*ptep),
217 		.arg	= data->walker->arg,
218 		.mm_ops	= mm_ops,
219 		.start	= data->start,
220 		.addr	= data->addr,
221 		.end	= data->end,
222 		.level	= level,
223 		.flags	= flags,
224 	};
225 	int ret = 0;
226 	bool reload = false;
227 	kvm_pteref_t childp;
228 	bool table = kvm_pte_table(ctx.old, level);
229 
230 	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
231 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
232 		reload = true;
233 	}
234 
235 	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
236 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
237 		reload = true;
238 	}
239 
240 	/*
241 	 * Reload the page table after invoking the walker callback for leaf
242 	 * entries or after pre-order traversal, to allow the walker to descend
243 	 * into a newly installed or replaced table.
244 	 */
245 	if (reload) {
246 		ctx.old = READ_ONCE(*ptep);
247 		table = kvm_pte_table(ctx.old, level);
248 	}
249 
250 	if (!kvm_pgtable_walk_continue(data->walker, ret))
251 		goto out;
252 
253 	if (!table) {
254 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
255 		data->addr += kvm_granule_size(level);
256 		goto out;
257 	}
258 
259 	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
260 	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
261 	if (!kvm_pgtable_walk_continue(data->walker, ret))
262 		goto out;
263 
264 	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
265 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
266 
267 out:
268 	if (kvm_pgtable_walk_continue(data->walker, ret))
269 		return 0;
270 
271 	return ret;
272 }
273 
274 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
275 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level)
276 {
277 	u32 idx;
278 	int ret = 0;
279 
280 	if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
281 		return -EINVAL;
282 
283 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
284 		kvm_pteref_t pteref = &pgtable[idx];
285 
286 		if (data->addr >= data->end)
287 			break;
288 
289 		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
290 		if (ret)
291 			break;
292 	}
293 
294 	return ret;
295 }
296 
297 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
298 {
299 	u32 idx;
300 	int ret = 0;
301 	u64 limit = BIT(pgt->ia_bits);
302 
303 	if (data->addr > limit || data->end > limit)
304 		return -ERANGE;
305 
306 	if (!pgt->pgd)
307 		return -EINVAL;
308 
309 	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
310 		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
311 
312 		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
313 		if (ret)
314 			break;
315 	}
316 
317 	return ret;
318 }
319 
320 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
321 		     struct kvm_pgtable_walker *walker)
322 {
323 	struct kvm_pgtable_walk_data walk_data = {
324 		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
325 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
326 		.end	= PAGE_ALIGN(walk_data.addr + size),
327 		.walker	= walker,
328 	};
329 	int r;
330 
331 	r = kvm_pgtable_walk_begin(walker);
332 	if (r)
333 		return r;
334 
335 	r = _kvm_pgtable_walk(pgt, &walk_data);
336 	kvm_pgtable_walk_end(walker);
337 
338 	return r;
339 }
340 
341 struct leaf_walk_data {
342 	kvm_pte_t	pte;
343 	u32		level;
344 };
345 
346 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
347 		       enum kvm_pgtable_walk_flags visit)
348 {
349 	struct leaf_walk_data *data = ctx->arg;
350 
351 	data->pte   = ctx->old;
352 	data->level = ctx->level;
353 
354 	return 0;
355 }
356 
357 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
358 			 kvm_pte_t *ptep, u32 *level)
359 {
360 	struct leaf_walk_data data;
361 	struct kvm_pgtable_walker walker = {
362 		.cb	= leaf_walker,
363 		.flags	= KVM_PGTABLE_WALK_LEAF,
364 		.arg	= &data,
365 	};
366 	int ret;
367 
368 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
369 			       PAGE_SIZE, &walker);
370 	if (!ret) {
371 		if (ptep)
372 			*ptep  = data.pte;
373 		if (level)
374 			*level = data.level;
375 	}
376 
377 	return ret;
378 }
379 
380 struct hyp_map_data {
381 	const u64			phys;
382 	kvm_pte_t			attr;
383 };
384 
385 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
386 {
387 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
388 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
389 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
390 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
391 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
392 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
393 
394 	if (!(prot & KVM_PGTABLE_PROT_R))
395 		return -EINVAL;
396 
397 	if (prot & KVM_PGTABLE_PROT_X) {
398 		if (prot & KVM_PGTABLE_PROT_W)
399 			return -EINVAL;
400 
401 		if (device)
402 			return -EINVAL;
403 
404 		if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) && system_supports_bti())
405 			attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
406 	} else {
407 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
408 	}
409 
410 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
411 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
412 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
413 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
414 	*ptep = attr;
415 
416 	return 0;
417 }
418 
419 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
420 {
421 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
422 	u32 ap;
423 
424 	if (!kvm_pte_valid(pte))
425 		return prot;
426 
427 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
428 		prot |= KVM_PGTABLE_PROT_X;
429 
430 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
431 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
432 		prot |= KVM_PGTABLE_PROT_R;
433 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
434 		prot |= KVM_PGTABLE_PROT_RW;
435 
436 	return prot;
437 }
438 
439 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
440 				    struct hyp_map_data *data)
441 {
442 	u64 phys = data->phys + (ctx->addr - ctx->start);
443 	kvm_pte_t new;
444 
445 	if (!kvm_block_mapping_supported(ctx, phys))
446 		return false;
447 
448 	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
449 	if (ctx->old == new)
450 		return true;
451 	if (!kvm_pte_valid(ctx->old))
452 		ctx->mm_ops->get_page(ctx->ptep);
453 	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
454 		return false;
455 
456 	smp_store_release(ctx->ptep, new);
457 	return true;
458 }
459 
460 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
461 			  enum kvm_pgtable_walk_flags visit)
462 {
463 	kvm_pte_t *childp, new;
464 	struct hyp_map_data *data = ctx->arg;
465 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
466 
467 	if (hyp_map_walker_try_leaf(ctx, data))
468 		return 0;
469 
470 	if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
471 		return -EINVAL;
472 
473 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
474 	if (!childp)
475 		return -ENOMEM;
476 
477 	new = kvm_init_table_pte(childp, mm_ops);
478 	mm_ops->get_page(ctx->ptep);
479 	smp_store_release(ctx->ptep, new);
480 
481 	return 0;
482 }
483 
484 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
485 			enum kvm_pgtable_prot prot)
486 {
487 	int ret;
488 	struct hyp_map_data map_data = {
489 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
490 	};
491 	struct kvm_pgtable_walker walker = {
492 		.cb	= hyp_map_walker,
493 		.flags	= KVM_PGTABLE_WALK_LEAF,
494 		.arg	= &map_data,
495 	};
496 
497 	ret = hyp_set_prot_attr(prot, &map_data.attr);
498 	if (ret)
499 		return ret;
500 
501 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
502 	dsb(ishst);
503 	isb();
504 	return ret;
505 }
506 
507 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
508 			    enum kvm_pgtable_walk_flags visit)
509 {
510 	kvm_pte_t *childp = NULL;
511 	u64 granule = kvm_granule_size(ctx->level);
512 	u64 *unmapped = ctx->arg;
513 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
514 
515 	if (!kvm_pte_valid(ctx->old))
516 		return -EINVAL;
517 
518 	if (kvm_pte_table(ctx->old, ctx->level)) {
519 		childp = kvm_pte_follow(ctx->old, mm_ops);
520 
521 		if (mm_ops->page_count(childp) != 1)
522 			return 0;
523 
524 		kvm_clear_pte(ctx->ptep);
525 		dsb(ishst);
526 		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), 0);
527 	} else {
528 		if (ctx->end - ctx->addr < granule)
529 			return -EINVAL;
530 
531 		kvm_clear_pte(ctx->ptep);
532 		dsb(ishst);
533 		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
534 		*unmapped += granule;
535 	}
536 
537 	dsb(ish);
538 	isb();
539 	mm_ops->put_page(ctx->ptep);
540 
541 	if (childp)
542 		mm_ops->put_page(childp);
543 
544 	return 0;
545 }
546 
547 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
548 {
549 	u64 unmapped = 0;
550 	struct kvm_pgtable_walker walker = {
551 		.cb	= hyp_unmap_walker,
552 		.arg	= &unmapped,
553 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
554 	};
555 
556 	if (!pgt->mm_ops->page_count)
557 		return 0;
558 
559 	kvm_pgtable_walk(pgt, addr, size, &walker);
560 	return unmapped;
561 }
562 
563 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
564 			 struct kvm_pgtable_mm_ops *mm_ops)
565 {
566 	u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
567 
568 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
569 	if (!pgt->pgd)
570 		return -ENOMEM;
571 
572 	pgt->ia_bits		= va_bits;
573 	pgt->start_level	= KVM_PGTABLE_MAX_LEVELS - levels;
574 	pgt->mm_ops		= mm_ops;
575 	pgt->mmu		= NULL;
576 	pgt->force_pte_cb	= NULL;
577 
578 	return 0;
579 }
580 
581 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
582 			   enum kvm_pgtable_walk_flags visit)
583 {
584 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
585 
586 	if (!kvm_pte_valid(ctx->old))
587 		return 0;
588 
589 	mm_ops->put_page(ctx->ptep);
590 
591 	if (kvm_pte_table(ctx->old, ctx->level))
592 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
593 
594 	return 0;
595 }
596 
597 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
598 {
599 	struct kvm_pgtable_walker walker = {
600 		.cb	= hyp_free_walker,
601 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
602 	};
603 
604 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
605 	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
606 	pgt->pgd = NULL;
607 }
608 
609 struct stage2_map_data {
610 	const u64			phys;
611 	kvm_pte_t			attr;
612 	u8				owner_id;
613 
614 	kvm_pte_t			*anchor;
615 	kvm_pte_t			*childp;
616 
617 	struct kvm_s2_mmu		*mmu;
618 	void				*memcache;
619 
620 	/* Force mappings to page granularity */
621 	bool				force_pte;
622 };
623 
624 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
625 {
626 	u64 vtcr = VTCR_EL2_FLAGS;
627 	u8 lvls;
628 
629 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
630 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
631 	/*
632 	 * Use a minimum 2 level page table to prevent splitting
633 	 * host PMD huge pages at stage2.
634 	 */
635 	lvls = stage2_pgtable_levels(phys_shift);
636 	if (lvls < 2)
637 		lvls = 2;
638 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
639 
640 #ifdef CONFIG_ARM64_HW_AFDBM
641 	/*
642 	 * Enable the Hardware Access Flag management, unconditionally
643 	 * on all CPUs. In systems that have asymmetric support for the feature
644 	 * this allows KVM to leverage hardware support on the subset of cores
645 	 * that implement the feature.
646 	 *
647 	 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
648 	 * hardware) on implementations that do not advertise support for the
649 	 * feature. As such, setting HA unconditionally is safe, unless you
650 	 * happen to be running on a design that has unadvertised support for
651 	 * HAFDBS. Here be dragons.
652 	 */
653 	if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
654 		vtcr |= VTCR_EL2_HA;
655 #endif /* CONFIG_ARM64_HW_AFDBM */
656 
657 	/* Set the vmid bits */
658 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
659 		VTCR_EL2_VS_16BIT :
660 		VTCR_EL2_VS_8BIT;
661 
662 	return vtcr;
663 }
664 
665 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
666 {
667 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
668 		return false;
669 
670 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
671 }
672 
673 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
674 				phys_addr_t addr, size_t size)
675 {
676 	unsigned long pages, inval_pages;
677 
678 	if (!system_supports_tlb_range()) {
679 		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
680 		return;
681 	}
682 
683 	pages = size >> PAGE_SHIFT;
684 	while (pages > 0) {
685 		inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
686 		kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
687 
688 		addr += inval_pages << PAGE_SHIFT;
689 		pages -= inval_pages;
690 	}
691 }
692 
693 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
694 
695 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
696 				kvm_pte_t *ptep)
697 {
698 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
699 	kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
700 			    KVM_S2_MEMATTR(pgt, NORMAL);
701 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
702 
703 	if (!(prot & KVM_PGTABLE_PROT_X))
704 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
705 	else if (device)
706 		return -EINVAL;
707 
708 	if (prot & KVM_PGTABLE_PROT_R)
709 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
710 
711 	if (prot & KVM_PGTABLE_PROT_W)
712 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
713 
714 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
715 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
716 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
717 	*ptep = attr;
718 
719 	return 0;
720 }
721 
722 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
723 {
724 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
725 
726 	if (!kvm_pte_valid(pte))
727 		return prot;
728 
729 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
730 		prot |= KVM_PGTABLE_PROT_R;
731 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
732 		prot |= KVM_PGTABLE_PROT_W;
733 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
734 		prot |= KVM_PGTABLE_PROT_X;
735 
736 	return prot;
737 }
738 
739 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
740 {
741 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
742 		return true;
743 
744 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
745 }
746 
747 static bool stage2_pte_is_counted(kvm_pte_t pte)
748 {
749 	/*
750 	 * The refcount tracks valid entries as well as invalid entries if they
751 	 * encode ownership of a page to another entity than the page-table
752 	 * owner, whose id is 0.
753 	 */
754 	return !!pte;
755 }
756 
757 static bool stage2_pte_is_locked(kvm_pte_t pte)
758 {
759 	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
760 }
761 
762 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
763 {
764 	if (!kvm_pgtable_walk_shared(ctx)) {
765 		WRITE_ONCE(*ctx->ptep, new);
766 		return true;
767 	}
768 
769 	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
770 }
771 
772 /**
773  * stage2_try_break_pte() - Invalidates a pte according to the
774  *			    'break-before-make' requirements of the
775  *			    architecture.
776  *
777  * @ctx: context of the visited pte.
778  * @mmu: stage-2 mmu
779  *
780  * Returns: true if the pte was successfully broken.
781  *
782  * If the removed pte was valid, performs the necessary serialization and TLB
783  * invalidation for the old value. For counted ptes, drops the reference count
784  * on the containing table page.
785  */
786 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
787 				 struct kvm_s2_mmu *mmu)
788 {
789 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
790 
791 	if (stage2_pte_is_locked(ctx->old)) {
792 		/*
793 		 * Should never occur if this walker has exclusive access to the
794 		 * page tables.
795 		 */
796 		WARN_ON(!kvm_pgtable_walk_shared(ctx));
797 		return false;
798 	}
799 
800 	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
801 		return false;
802 
803 	if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
804 		/*
805 		 * Perform the appropriate TLB invalidation based on the
806 		 * evicted pte value (if any).
807 		 */
808 		if (kvm_pte_table(ctx->old, ctx->level)) {
809 			u64 size = kvm_granule_size(ctx->level);
810 			u64 addr = ALIGN_DOWN(ctx->addr, size);
811 
812 			kvm_tlb_flush_vmid_range(mmu, addr, size);
813 		} else if (kvm_pte_valid(ctx->old)) {
814 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
815 				     ctx->addr, ctx->level);
816 		}
817 	}
818 
819 	if (stage2_pte_is_counted(ctx->old))
820 		mm_ops->put_page(ctx->ptep);
821 
822 	return true;
823 }
824 
825 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
826 {
827 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
828 
829 	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
830 
831 	if (stage2_pte_is_counted(new))
832 		mm_ops->get_page(ctx->ptep);
833 
834 	smp_store_release(ctx->ptep, new);
835 }
836 
837 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
838 {
839 	/*
840 	 * If FEAT_TLBIRANGE is implemented, defer the individual
841 	 * TLB invalidations until the entire walk is finished, and
842 	 * then use the range-based TLBI instructions to do the
843 	 * invalidations. Condition deferred TLB invalidation on the
844 	 * system supporting FWB as the optimization is entirely
845 	 * pointless when the unmap walker needs to perform CMOs.
846 	 */
847 	return system_supports_tlb_range() && stage2_has_fwb(pgt);
848 }
849 
850 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
851 				struct kvm_s2_mmu *mmu,
852 				struct kvm_pgtable_mm_ops *mm_ops)
853 {
854 	struct kvm_pgtable *pgt = ctx->arg;
855 
856 	/*
857 	 * Clear the existing PTE, and perform break-before-make if it was
858 	 * valid. Depending on the system support, defer the TLB maintenance
859 	 * for the same until the entire unmap walk is completed.
860 	 */
861 	if (kvm_pte_valid(ctx->old)) {
862 		kvm_clear_pte(ctx->ptep);
863 
864 		if (kvm_pte_table(ctx->old, ctx->level)) {
865 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
866 				     0);
867 		} else if (!stage2_unmap_defer_tlb_flush(pgt)) {
868 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
869 				     ctx->level);
870 		}
871 	}
872 
873 	mm_ops->put_page(ctx->ptep);
874 }
875 
876 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
877 {
878 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
879 	return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
880 }
881 
882 static bool stage2_pte_executable(kvm_pte_t pte)
883 {
884 	return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
885 }
886 
887 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
888 				       const struct stage2_map_data *data)
889 {
890 	u64 phys = data->phys;
891 
892 	/*
893 	 * Stage-2 walks to update ownership data are communicated to the map
894 	 * walker using an invalid PA. Avoid offsetting an already invalid PA,
895 	 * which could overflow and make the address valid again.
896 	 */
897 	if (!kvm_phys_is_valid(phys))
898 		return phys;
899 
900 	/*
901 	 * Otherwise, work out the correct PA based on how far the walk has
902 	 * gotten.
903 	 */
904 	return phys + (ctx->addr - ctx->start);
905 }
906 
907 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
908 					struct stage2_map_data *data)
909 {
910 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
911 
912 	if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1)))
913 		return false;
914 
915 	return kvm_block_mapping_supported(ctx, phys);
916 }
917 
918 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
919 				      struct stage2_map_data *data)
920 {
921 	kvm_pte_t new;
922 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
923 	u64 granule = kvm_granule_size(ctx->level);
924 	struct kvm_pgtable *pgt = data->mmu->pgt;
925 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
926 
927 	if (!stage2_leaf_mapping_allowed(ctx, data))
928 		return -E2BIG;
929 
930 	if (kvm_phys_is_valid(phys))
931 		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
932 	else
933 		new = kvm_init_invalid_leaf_owner(data->owner_id);
934 
935 	/*
936 	 * Skip updating the PTE if we are trying to recreate the exact
937 	 * same mapping or only change the access permissions. Instead,
938 	 * the vCPU will exit one more time from guest if still needed
939 	 * and then go through the path of relaxing permissions.
940 	 */
941 	if (!stage2_pte_needs_update(ctx->old, new))
942 		return -EAGAIN;
943 
944 	if (!stage2_try_break_pte(ctx, data->mmu))
945 		return -EAGAIN;
946 
947 	/* Perform CMOs before installation of the guest stage-2 PTE */
948 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
949 	    stage2_pte_cacheable(pgt, new))
950 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
951 					       granule);
952 
953 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
954 	    stage2_pte_executable(new))
955 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
956 
957 	stage2_make_pte(ctx, new);
958 
959 	return 0;
960 }
961 
962 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
963 				     struct stage2_map_data *data)
964 {
965 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
966 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
967 	int ret;
968 
969 	if (!stage2_leaf_mapping_allowed(ctx, data))
970 		return 0;
971 
972 	ret = stage2_map_walker_try_leaf(ctx, data);
973 	if (ret)
974 		return ret;
975 
976 	mm_ops->free_unlinked_table(childp, ctx->level);
977 	return 0;
978 }
979 
980 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
981 				struct stage2_map_data *data)
982 {
983 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
984 	kvm_pte_t *childp, new;
985 	int ret;
986 
987 	ret = stage2_map_walker_try_leaf(ctx, data);
988 	if (ret != -E2BIG)
989 		return ret;
990 
991 	if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
992 		return -EINVAL;
993 
994 	if (!data->memcache)
995 		return -ENOMEM;
996 
997 	childp = mm_ops->zalloc_page(data->memcache);
998 	if (!childp)
999 		return -ENOMEM;
1000 
1001 	if (!stage2_try_break_pte(ctx, data->mmu)) {
1002 		mm_ops->put_page(childp);
1003 		return -EAGAIN;
1004 	}
1005 
1006 	/*
1007 	 * If we've run into an existing block mapping then replace it with
1008 	 * a table. Accesses beyond 'end' that fall within the new table
1009 	 * will be mapped lazily.
1010 	 */
1011 	new = kvm_init_table_pte(childp, mm_ops);
1012 	stage2_make_pte(ctx, new);
1013 
1014 	return 0;
1015 }
1016 
1017 /*
1018  * The TABLE_PRE callback runs for table entries on the way down, looking
1019  * for table entries which we could conceivably replace with a block entry
1020  * for this mapping. If it finds one it replaces the entry and calls
1021  * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1022  *
1023  * Otherwise, the LEAF callback performs the mapping at the existing leaves
1024  * instead.
1025  */
1026 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1027 			     enum kvm_pgtable_walk_flags visit)
1028 {
1029 	struct stage2_map_data *data = ctx->arg;
1030 
1031 	switch (visit) {
1032 	case KVM_PGTABLE_WALK_TABLE_PRE:
1033 		return stage2_map_walk_table_pre(ctx, data);
1034 	case KVM_PGTABLE_WALK_LEAF:
1035 		return stage2_map_walk_leaf(ctx, data);
1036 	default:
1037 		return -EINVAL;
1038 	}
1039 }
1040 
1041 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1042 			   u64 phys, enum kvm_pgtable_prot prot,
1043 			   void *mc, enum kvm_pgtable_walk_flags flags)
1044 {
1045 	int ret;
1046 	struct stage2_map_data map_data = {
1047 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
1048 		.mmu		= pgt->mmu,
1049 		.memcache	= mc,
1050 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1051 	};
1052 	struct kvm_pgtable_walker walker = {
1053 		.cb		= stage2_map_walker,
1054 		.flags		= flags |
1055 				  KVM_PGTABLE_WALK_TABLE_PRE |
1056 				  KVM_PGTABLE_WALK_LEAF,
1057 		.arg		= &map_data,
1058 	};
1059 
1060 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1061 		return -EINVAL;
1062 
1063 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1064 	if (ret)
1065 		return ret;
1066 
1067 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1068 	dsb(ishst);
1069 	return ret;
1070 }
1071 
1072 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1073 				 void *mc, u8 owner_id)
1074 {
1075 	int ret;
1076 	struct stage2_map_data map_data = {
1077 		.phys		= KVM_PHYS_INVALID,
1078 		.mmu		= pgt->mmu,
1079 		.memcache	= mc,
1080 		.owner_id	= owner_id,
1081 		.force_pte	= true,
1082 	};
1083 	struct kvm_pgtable_walker walker = {
1084 		.cb		= stage2_map_walker,
1085 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
1086 				  KVM_PGTABLE_WALK_LEAF,
1087 		.arg		= &map_data,
1088 	};
1089 
1090 	if (owner_id > KVM_MAX_OWNER_ID)
1091 		return -EINVAL;
1092 
1093 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1094 	return ret;
1095 }
1096 
1097 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1098 			       enum kvm_pgtable_walk_flags visit)
1099 {
1100 	struct kvm_pgtable *pgt = ctx->arg;
1101 	struct kvm_s2_mmu *mmu = pgt->mmu;
1102 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1103 	kvm_pte_t *childp = NULL;
1104 	bool need_flush = false;
1105 
1106 	if (!kvm_pte_valid(ctx->old)) {
1107 		if (stage2_pte_is_counted(ctx->old)) {
1108 			kvm_clear_pte(ctx->ptep);
1109 			mm_ops->put_page(ctx->ptep);
1110 		}
1111 		return 0;
1112 	}
1113 
1114 	if (kvm_pte_table(ctx->old, ctx->level)) {
1115 		childp = kvm_pte_follow(ctx->old, mm_ops);
1116 
1117 		if (mm_ops->page_count(childp) != 1)
1118 			return 0;
1119 	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1120 		need_flush = !stage2_has_fwb(pgt);
1121 	}
1122 
1123 	/*
1124 	 * This is similar to the map() path in that we unmap the entire
1125 	 * block entry and rely on the remaining portions being faulted
1126 	 * back lazily.
1127 	 */
1128 	stage2_unmap_put_pte(ctx, mmu, mm_ops);
1129 
1130 	if (need_flush && mm_ops->dcache_clean_inval_poc)
1131 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1132 					       kvm_granule_size(ctx->level));
1133 
1134 	if (childp)
1135 		mm_ops->put_page(childp);
1136 
1137 	return 0;
1138 }
1139 
1140 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1141 {
1142 	int ret;
1143 	struct kvm_pgtable_walker walker = {
1144 		.cb	= stage2_unmap_walker,
1145 		.arg	= pgt,
1146 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1147 	};
1148 
1149 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1150 	if (stage2_unmap_defer_tlb_flush(pgt))
1151 		/* Perform the deferred TLB invalidations */
1152 		kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1153 
1154 	return ret;
1155 }
1156 
1157 struct stage2_attr_data {
1158 	kvm_pte_t			attr_set;
1159 	kvm_pte_t			attr_clr;
1160 	kvm_pte_t			pte;
1161 	u32				level;
1162 };
1163 
1164 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1165 			      enum kvm_pgtable_walk_flags visit)
1166 {
1167 	kvm_pte_t pte = ctx->old;
1168 	struct stage2_attr_data *data = ctx->arg;
1169 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1170 
1171 	if (!kvm_pte_valid(ctx->old))
1172 		return -EAGAIN;
1173 
1174 	data->level = ctx->level;
1175 	data->pte = pte;
1176 	pte &= ~data->attr_clr;
1177 	pte |= data->attr_set;
1178 
1179 	/*
1180 	 * We may race with the CPU trying to set the access flag here,
1181 	 * but worst-case the access flag update gets lost and will be
1182 	 * set on the next access instead.
1183 	 */
1184 	if (data->pte != pte) {
1185 		/*
1186 		 * Invalidate instruction cache before updating the guest
1187 		 * stage-2 PTE if we are going to add executable permission.
1188 		 */
1189 		if (mm_ops->icache_inval_pou &&
1190 		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1191 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1192 						  kvm_granule_size(ctx->level));
1193 
1194 		if (!stage2_try_set_pte(ctx, pte))
1195 			return -EAGAIN;
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1202 				    u64 size, kvm_pte_t attr_set,
1203 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1204 				    u32 *level, enum kvm_pgtable_walk_flags flags)
1205 {
1206 	int ret;
1207 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1208 	struct stage2_attr_data data = {
1209 		.attr_set	= attr_set & attr_mask,
1210 		.attr_clr	= attr_clr & attr_mask,
1211 	};
1212 	struct kvm_pgtable_walker walker = {
1213 		.cb		= stage2_attr_walker,
1214 		.arg		= &data,
1215 		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1216 	};
1217 
1218 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1219 	if (ret)
1220 		return ret;
1221 
1222 	if (orig_pte)
1223 		*orig_pte = data.pte;
1224 
1225 	if (level)
1226 		*level = data.level;
1227 	return 0;
1228 }
1229 
1230 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1231 {
1232 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1233 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1234 					NULL, NULL, 0);
1235 }
1236 
1237 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1238 {
1239 	kvm_pte_t pte = 0;
1240 	int ret;
1241 
1242 	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1243 				       &pte, NULL,
1244 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1245 				       KVM_PGTABLE_WALK_SHARED);
1246 	if (!ret)
1247 		dsb(ishst);
1248 
1249 	return pte;
1250 }
1251 
1252 struct stage2_age_data {
1253 	bool	mkold;
1254 	bool	young;
1255 };
1256 
1257 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1258 			     enum kvm_pgtable_walk_flags visit)
1259 {
1260 	kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1261 	struct stage2_age_data *data = ctx->arg;
1262 
1263 	if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1264 		return 0;
1265 
1266 	data->young = true;
1267 
1268 	/*
1269 	 * stage2_age_walker() is always called while holding the MMU lock for
1270 	 * write, so this will always succeed. Nonetheless, this deliberately
1271 	 * follows the race detection pattern of the other stage-2 walkers in
1272 	 * case the locking mechanics of the MMU notifiers is ever changed.
1273 	 */
1274 	if (data->mkold && !stage2_try_set_pte(ctx, new))
1275 		return -EAGAIN;
1276 
1277 	/*
1278 	 * "But where's the TLBI?!", you scream.
1279 	 * "Over in the core code", I sigh.
1280 	 *
1281 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1282 	 */
1283 	return 0;
1284 }
1285 
1286 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1287 					 u64 size, bool mkold)
1288 {
1289 	struct stage2_age_data data = {
1290 		.mkold		= mkold,
1291 	};
1292 	struct kvm_pgtable_walker walker = {
1293 		.cb		= stage2_age_walker,
1294 		.arg		= &data,
1295 		.flags		= KVM_PGTABLE_WALK_LEAF,
1296 	};
1297 
1298 	WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1299 	return data.young;
1300 }
1301 
1302 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1303 				   enum kvm_pgtable_prot prot)
1304 {
1305 	int ret;
1306 	u32 level;
1307 	kvm_pte_t set = 0, clr = 0;
1308 
1309 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1310 		return -EINVAL;
1311 
1312 	if (prot & KVM_PGTABLE_PROT_R)
1313 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1314 
1315 	if (prot & KVM_PGTABLE_PROT_W)
1316 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1317 
1318 	if (prot & KVM_PGTABLE_PROT_X)
1319 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1320 
1321 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1322 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1323 				       KVM_PGTABLE_WALK_SHARED);
1324 	if (!ret)
1325 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1326 	return ret;
1327 }
1328 
1329 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1330 			       enum kvm_pgtable_walk_flags visit)
1331 {
1332 	struct kvm_pgtable *pgt = ctx->arg;
1333 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1334 
1335 	if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
1336 		return 0;
1337 
1338 	if (mm_ops->dcache_clean_inval_poc)
1339 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1340 					       kvm_granule_size(ctx->level));
1341 	return 0;
1342 }
1343 
1344 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1345 {
1346 	struct kvm_pgtable_walker walker = {
1347 		.cb	= stage2_flush_walker,
1348 		.flags	= KVM_PGTABLE_WALK_LEAF,
1349 		.arg	= pgt,
1350 	};
1351 
1352 	if (stage2_has_fwb(pgt))
1353 		return 0;
1354 
1355 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1356 }
1357 
1358 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1359 					      u64 phys, u32 level,
1360 					      enum kvm_pgtable_prot prot,
1361 					      void *mc, bool force_pte)
1362 {
1363 	struct stage2_map_data map_data = {
1364 		.phys		= phys,
1365 		.mmu		= pgt->mmu,
1366 		.memcache	= mc,
1367 		.force_pte	= force_pte,
1368 	};
1369 	struct kvm_pgtable_walker walker = {
1370 		.cb		= stage2_map_walker,
1371 		.flags		= KVM_PGTABLE_WALK_LEAF |
1372 				  KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1373 				  KVM_PGTABLE_WALK_SKIP_CMO,
1374 		.arg		= &map_data,
1375 	};
1376 	/*
1377 	 * The input address (.addr) is irrelevant for walking an
1378 	 * unlinked table. Construct an ambiguous IA range to map
1379 	 * kvm_granule_size(level) worth of memory.
1380 	 */
1381 	struct kvm_pgtable_walk_data data = {
1382 		.walker	= &walker,
1383 		.addr	= 0,
1384 		.end	= kvm_granule_size(level),
1385 	};
1386 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1387 	kvm_pte_t *pgtable;
1388 	int ret;
1389 
1390 	if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1391 		return ERR_PTR(-EINVAL);
1392 
1393 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1394 	if (ret)
1395 		return ERR_PTR(ret);
1396 
1397 	pgtable = mm_ops->zalloc_page(mc);
1398 	if (!pgtable)
1399 		return ERR_PTR(-ENOMEM);
1400 
1401 	ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1402 				 level + 1);
1403 	if (ret) {
1404 		kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1405 		mm_ops->put_page(pgtable);
1406 		return ERR_PTR(ret);
1407 	}
1408 
1409 	return pgtable;
1410 }
1411 
1412 /*
1413  * Get the number of page-tables needed to replace a block with a
1414  * fully populated tree up to the PTE entries. Note that @level is
1415  * interpreted as in "level @level entry".
1416  */
1417 static int stage2_block_get_nr_page_tables(u32 level)
1418 {
1419 	switch (level) {
1420 	case 1:
1421 		return PTRS_PER_PTE + 1;
1422 	case 2:
1423 		return 1;
1424 	case 3:
1425 		return 0;
1426 	default:
1427 		WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1428 			     level >= KVM_PGTABLE_MAX_LEVELS);
1429 		return -EINVAL;
1430 	};
1431 }
1432 
1433 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1434 			       enum kvm_pgtable_walk_flags visit)
1435 {
1436 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1437 	struct kvm_mmu_memory_cache *mc = ctx->arg;
1438 	struct kvm_s2_mmu *mmu;
1439 	kvm_pte_t pte = ctx->old, new, *childp;
1440 	enum kvm_pgtable_prot prot;
1441 	u32 level = ctx->level;
1442 	bool force_pte;
1443 	int nr_pages;
1444 	u64 phys;
1445 
1446 	/* No huge-pages exist at the last level */
1447 	if (level == KVM_PGTABLE_MAX_LEVELS - 1)
1448 		return 0;
1449 
1450 	/* We only split valid block mappings */
1451 	if (!kvm_pte_valid(pte))
1452 		return 0;
1453 
1454 	nr_pages = stage2_block_get_nr_page_tables(level);
1455 	if (nr_pages < 0)
1456 		return nr_pages;
1457 
1458 	if (mc->nobjs >= nr_pages) {
1459 		/* Build a tree mapped down to the PTE granularity. */
1460 		force_pte = true;
1461 	} else {
1462 		/*
1463 		 * Don't force PTEs, so create_unlinked() below does
1464 		 * not populate the tree up to the PTE level. The
1465 		 * consequence is that the call will require a single
1466 		 * page of level 2 entries at level 1, or a single
1467 		 * page of PTEs at level 2. If we are at level 1, the
1468 		 * PTEs will be created recursively.
1469 		 */
1470 		force_pte = false;
1471 		nr_pages = 1;
1472 	}
1473 
1474 	if (mc->nobjs < nr_pages)
1475 		return -ENOMEM;
1476 
1477 	mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1478 	phys = kvm_pte_to_phys(pte);
1479 	prot = kvm_pgtable_stage2_pte_prot(pte);
1480 
1481 	childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1482 						    level, prot, mc, force_pte);
1483 	if (IS_ERR(childp))
1484 		return PTR_ERR(childp);
1485 
1486 	if (!stage2_try_break_pte(ctx, mmu)) {
1487 		kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1488 		mm_ops->put_page(childp);
1489 		return -EAGAIN;
1490 	}
1491 
1492 	/*
1493 	 * Note, the contents of the page table are guaranteed to be made
1494 	 * visible before the new PTE is assigned because stage2_make_pte()
1495 	 * writes the PTE using smp_store_release().
1496 	 */
1497 	new = kvm_init_table_pte(childp, mm_ops);
1498 	stage2_make_pte(ctx, new);
1499 	dsb(ishst);
1500 	return 0;
1501 }
1502 
1503 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1504 			     struct kvm_mmu_memory_cache *mc)
1505 {
1506 	struct kvm_pgtable_walker walker = {
1507 		.cb	= stage2_split_walker,
1508 		.flags	= KVM_PGTABLE_WALK_LEAF,
1509 		.arg	= mc,
1510 	};
1511 
1512 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1513 }
1514 
1515 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1516 			      struct kvm_pgtable_mm_ops *mm_ops,
1517 			      enum kvm_pgtable_stage2_flags flags,
1518 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1519 {
1520 	size_t pgd_sz;
1521 	u64 vtcr = mmu->arch->vtcr;
1522 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1523 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1524 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1525 
1526 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1527 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1528 	if (!pgt->pgd)
1529 		return -ENOMEM;
1530 
1531 	pgt->ia_bits		= ia_bits;
1532 	pgt->start_level	= start_level;
1533 	pgt->mm_ops		= mm_ops;
1534 	pgt->mmu		= mmu;
1535 	pgt->flags		= flags;
1536 	pgt->force_pte_cb	= force_pte_cb;
1537 
1538 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1539 	dsb(ishst);
1540 	return 0;
1541 }
1542 
1543 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1544 {
1545 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1546 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1547 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1548 
1549 	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1550 }
1551 
1552 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1553 			      enum kvm_pgtable_walk_flags visit)
1554 {
1555 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1556 
1557 	if (!stage2_pte_is_counted(ctx->old))
1558 		return 0;
1559 
1560 	mm_ops->put_page(ctx->ptep);
1561 
1562 	if (kvm_pte_table(ctx->old, ctx->level))
1563 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1564 
1565 	return 0;
1566 }
1567 
1568 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1569 {
1570 	size_t pgd_sz;
1571 	struct kvm_pgtable_walker walker = {
1572 		.cb	= stage2_free_walker,
1573 		.flags	= KVM_PGTABLE_WALK_LEAF |
1574 			  KVM_PGTABLE_WALK_TABLE_POST,
1575 	};
1576 
1577 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1578 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1579 	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1580 	pgt->pgd = NULL;
1581 }
1582 
1583 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level)
1584 {
1585 	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1586 	struct kvm_pgtable_walker walker = {
1587 		.cb	= stage2_free_walker,
1588 		.flags	= KVM_PGTABLE_WALK_LEAF |
1589 			  KVM_PGTABLE_WALK_TABLE_POST,
1590 	};
1591 	struct kvm_pgtable_walk_data data = {
1592 		.walker	= &walker,
1593 
1594 		/*
1595 		 * At this point the IPA really doesn't matter, as the page
1596 		 * table being traversed has already been removed from the stage
1597 		 * 2. Set an appropriate range to cover the entire page table.
1598 		 */
1599 		.addr	= 0,
1600 		.end	= kvm_granule_size(level),
1601 	};
1602 
1603 	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1604 
1605 	WARN_ON(mm_ops->page_count(pgtable) != 1);
1606 	mm_ops->put_page(pgtable);
1607 }
1608