1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. 4 * No bombay mix was harmed in the writing of this file. 5 * 6 * Copyright (C) 2020 Google LLC 7 * Author: Will Deacon <will@kernel.org> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <asm/kvm_pgtable.h> 12 #include <asm/stage2_pgtable.h> 13 14 15 #define KVM_PTE_TYPE BIT(1) 16 #define KVM_PTE_TYPE_BLOCK 0 17 #define KVM_PTE_TYPE_PAGE 1 18 #define KVM_PTE_TYPE_TABLE 1 19 20 #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2) 21 22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2) 23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6) 24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3 25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1 26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8) 27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3 28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10) 29 30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2) 31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6) 32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7) 33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8) 34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3 35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10) 36 37 #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51) 38 39 #define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55) 40 41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54) 42 43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54) 44 45 #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \ 46 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \ 47 KVM_PTE_LEAF_ATTR_HI_S2_XN) 48 49 #define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2) 50 #define KVM_MAX_OWNER_ID 1 51 52 struct kvm_pgtable_walk_data { 53 struct kvm_pgtable *pgt; 54 struct kvm_pgtable_walker *walker; 55 56 u64 addr; 57 u64 end; 58 }; 59 60 #define KVM_PHYS_INVALID (-1ULL) 61 62 static bool kvm_phys_is_valid(u64 phys) 63 { 64 return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_PARANGE_MAX)); 65 } 66 67 static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level) 68 { 69 u64 granule = kvm_granule_size(level); 70 71 if (!kvm_level_supports_block_mapping(level)) 72 return false; 73 74 if (granule > (end - addr)) 75 return false; 76 77 if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule)) 78 return false; 79 80 return IS_ALIGNED(addr, granule); 81 } 82 83 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level) 84 { 85 u64 shift = kvm_granule_shift(level); 86 u64 mask = BIT(PAGE_SHIFT - 3) - 1; 87 88 return (data->addr >> shift) & mask; 89 } 90 91 static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) 92 { 93 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ 94 u64 mask = BIT(pgt->ia_bits) - 1; 95 96 return (addr & mask) >> shift; 97 } 98 99 static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data) 100 { 101 return __kvm_pgd_page_idx(data->pgt, data->addr); 102 } 103 104 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level) 105 { 106 struct kvm_pgtable pgt = { 107 .ia_bits = ia_bits, 108 .start_level = start_level, 109 }; 110 111 return __kvm_pgd_page_idx(&pgt, -1ULL) + 1; 112 } 113 114 static bool kvm_pte_table(kvm_pte_t pte, u32 level) 115 { 116 if (level == KVM_PGTABLE_MAX_LEVELS - 1) 117 return false; 118 119 if (!kvm_pte_valid(pte)) 120 return false; 121 122 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE; 123 } 124 125 static kvm_pte_t kvm_phys_to_pte(u64 pa) 126 { 127 kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK; 128 129 if (PAGE_SHIFT == 16) 130 pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48); 131 132 return pte; 133 } 134 135 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops) 136 { 137 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte)); 138 } 139 140 static void kvm_clear_pte(kvm_pte_t *ptep) 141 { 142 WRITE_ONCE(*ptep, 0); 143 } 144 145 static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp, 146 struct kvm_pgtable_mm_ops *mm_ops) 147 { 148 kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp)); 149 150 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); 151 pte |= KVM_PTE_VALID; 152 153 WARN_ON(kvm_pte_valid(old)); 154 smp_store_release(ptep, pte); 155 } 156 157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level) 158 { 159 kvm_pte_t pte = kvm_phys_to_pte(pa); 160 u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE : 161 KVM_PTE_TYPE_BLOCK; 162 163 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); 164 pte |= FIELD_PREP(KVM_PTE_TYPE, type); 165 pte |= KVM_PTE_VALID; 166 167 return pte; 168 } 169 170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id) 171 { 172 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id); 173 } 174 175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr, 176 u32 level, kvm_pte_t *ptep, 177 enum kvm_pgtable_walk_flags flag) 178 { 179 struct kvm_pgtable_walker *walker = data->walker; 180 return walker->cb(addr, data->end, level, ptep, flag, walker->arg); 181 } 182 183 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, 184 kvm_pte_t *pgtable, u32 level); 185 186 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, 187 kvm_pte_t *ptep, u32 level) 188 { 189 int ret = 0; 190 u64 addr = data->addr; 191 kvm_pte_t *childp, pte = *ptep; 192 bool table = kvm_pte_table(pte, level); 193 enum kvm_pgtable_walk_flags flags = data->walker->flags; 194 195 if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) { 196 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, 197 KVM_PGTABLE_WALK_TABLE_PRE); 198 } 199 200 if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) { 201 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, 202 KVM_PGTABLE_WALK_LEAF); 203 pte = *ptep; 204 table = kvm_pte_table(pte, level); 205 } 206 207 if (ret) 208 goto out; 209 210 if (!table) { 211 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level)); 212 data->addr += kvm_granule_size(level); 213 goto out; 214 } 215 216 childp = kvm_pte_follow(pte, data->pgt->mm_ops); 217 ret = __kvm_pgtable_walk(data, childp, level + 1); 218 if (ret) 219 goto out; 220 221 if (flags & KVM_PGTABLE_WALK_TABLE_POST) { 222 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, 223 KVM_PGTABLE_WALK_TABLE_POST); 224 } 225 226 out: 227 return ret; 228 } 229 230 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, 231 kvm_pte_t *pgtable, u32 level) 232 { 233 u32 idx; 234 int ret = 0; 235 236 if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS)) 237 return -EINVAL; 238 239 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { 240 kvm_pte_t *ptep = &pgtable[idx]; 241 242 if (data->addr >= data->end) 243 break; 244 245 ret = __kvm_pgtable_visit(data, ptep, level); 246 if (ret) 247 break; 248 } 249 250 return ret; 251 } 252 253 static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data) 254 { 255 u32 idx; 256 int ret = 0; 257 struct kvm_pgtable *pgt = data->pgt; 258 u64 limit = BIT(pgt->ia_bits); 259 260 if (data->addr > limit || data->end > limit) 261 return -ERANGE; 262 263 if (!pgt->pgd) 264 return -EINVAL; 265 266 for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) { 267 kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE]; 268 269 ret = __kvm_pgtable_walk(data, ptep, pgt->start_level); 270 if (ret) 271 break; 272 } 273 274 return ret; 275 } 276 277 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, 278 struct kvm_pgtable_walker *walker) 279 { 280 struct kvm_pgtable_walk_data walk_data = { 281 .pgt = pgt, 282 .addr = ALIGN_DOWN(addr, PAGE_SIZE), 283 .end = PAGE_ALIGN(walk_data.addr + size), 284 .walker = walker, 285 }; 286 287 return _kvm_pgtable_walk(&walk_data); 288 } 289 290 struct leaf_walk_data { 291 kvm_pte_t pte; 292 u32 level; 293 }; 294 295 static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 296 enum kvm_pgtable_walk_flags flag, void * const arg) 297 { 298 struct leaf_walk_data *data = arg; 299 300 data->pte = *ptep; 301 data->level = level; 302 303 return 0; 304 } 305 306 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr, 307 kvm_pte_t *ptep, u32 *level) 308 { 309 struct leaf_walk_data data; 310 struct kvm_pgtable_walker walker = { 311 .cb = leaf_walker, 312 .flags = KVM_PGTABLE_WALK_LEAF, 313 .arg = &data, 314 }; 315 int ret; 316 317 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE), 318 PAGE_SIZE, &walker); 319 if (!ret) { 320 if (ptep) 321 *ptep = data.pte; 322 if (level) 323 *level = data.level; 324 } 325 326 return ret; 327 } 328 329 struct hyp_map_data { 330 u64 phys; 331 kvm_pte_t attr; 332 struct kvm_pgtable_mm_ops *mm_ops; 333 }; 334 335 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep) 336 { 337 bool device = prot & KVM_PGTABLE_PROT_DEVICE; 338 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL; 339 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); 340 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; 341 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : 342 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; 343 344 if (!(prot & KVM_PGTABLE_PROT_R)) 345 return -EINVAL; 346 347 if (prot & KVM_PGTABLE_PROT_X) { 348 if (prot & KVM_PGTABLE_PROT_W) 349 return -EINVAL; 350 351 if (device) 352 return -EINVAL; 353 } else { 354 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; 355 } 356 357 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); 358 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); 359 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; 360 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; 361 *ptep = attr; 362 363 return 0; 364 } 365 366 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte) 367 { 368 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; 369 u32 ap; 370 371 if (!kvm_pte_valid(pte)) 372 return prot; 373 374 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN)) 375 prot |= KVM_PGTABLE_PROT_X; 376 377 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte); 378 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO) 379 prot |= KVM_PGTABLE_PROT_R; 380 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW) 381 prot |= KVM_PGTABLE_PROT_RW; 382 383 return prot; 384 } 385 386 static bool hyp_pte_needs_update(kvm_pte_t old, kvm_pte_t new) 387 { 388 /* 389 * Tolerate KVM recreating the exact same mapping, or changing software 390 * bits if the existing mapping was valid. 391 */ 392 if (old == new) 393 return false; 394 395 if (!kvm_pte_valid(old)) 396 return true; 397 398 return !WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW); 399 } 400 401 static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level, 402 kvm_pte_t *ptep, struct hyp_map_data *data) 403 { 404 kvm_pte_t new, old = *ptep; 405 u64 granule = kvm_granule_size(level), phys = data->phys; 406 407 if (!kvm_block_mapping_supported(addr, end, phys, level)) 408 return false; 409 410 new = kvm_init_valid_leaf_pte(phys, data->attr, level); 411 if (hyp_pte_needs_update(old, new)) 412 smp_store_release(ptep, new); 413 414 data->phys += granule; 415 return true; 416 } 417 418 static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 419 enum kvm_pgtable_walk_flags flag, void * const arg) 420 { 421 kvm_pte_t *childp; 422 struct hyp_map_data *data = arg; 423 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 424 425 if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg)) 426 return 0; 427 428 if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) 429 return -EINVAL; 430 431 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL); 432 if (!childp) 433 return -ENOMEM; 434 435 kvm_set_table_pte(ptep, childp, mm_ops); 436 return 0; 437 } 438 439 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, 440 enum kvm_pgtable_prot prot) 441 { 442 int ret; 443 struct hyp_map_data map_data = { 444 .phys = ALIGN_DOWN(phys, PAGE_SIZE), 445 .mm_ops = pgt->mm_ops, 446 }; 447 struct kvm_pgtable_walker walker = { 448 .cb = hyp_map_walker, 449 .flags = KVM_PGTABLE_WALK_LEAF, 450 .arg = &map_data, 451 }; 452 453 ret = hyp_set_prot_attr(prot, &map_data.attr); 454 if (ret) 455 return ret; 456 457 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 458 dsb(ishst); 459 isb(); 460 return ret; 461 } 462 463 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits, 464 struct kvm_pgtable_mm_ops *mm_ops) 465 { 466 u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits); 467 468 pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL); 469 if (!pgt->pgd) 470 return -ENOMEM; 471 472 pgt->ia_bits = va_bits; 473 pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels; 474 pgt->mm_ops = mm_ops; 475 pgt->mmu = NULL; 476 pgt->force_pte_cb = NULL; 477 478 return 0; 479 } 480 481 static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 482 enum kvm_pgtable_walk_flags flag, void * const arg) 483 { 484 struct kvm_pgtable_mm_ops *mm_ops = arg; 485 486 mm_ops->put_page((void *)kvm_pte_follow(*ptep, mm_ops)); 487 return 0; 488 } 489 490 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) 491 { 492 struct kvm_pgtable_walker walker = { 493 .cb = hyp_free_walker, 494 .flags = KVM_PGTABLE_WALK_TABLE_POST, 495 .arg = pgt->mm_ops, 496 }; 497 498 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); 499 pgt->mm_ops->put_page(pgt->pgd); 500 pgt->pgd = NULL; 501 } 502 503 struct stage2_map_data { 504 u64 phys; 505 kvm_pte_t attr; 506 u8 owner_id; 507 508 kvm_pte_t *anchor; 509 kvm_pte_t *childp; 510 511 struct kvm_s2_mmu *mmu; 512 void *memcache; 513 514 struct kvm_pgtable_mm_ops *mm_ops; 515 516 /* Force mappings to page granularity */ 517 bool force_pte; 518 }; 519 520 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift) 521 { 522 u64 vtcr = VTCR_EL2_FLAGS; 523 u8 lvls; 524 525 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT; 526 vtcr |= VTCR_EL2_T0SZ(phys_shift); 527 /* 528 * Use a minimum 2 level page table to prevent splitting 529 * host PMD huge pages at stage2. 530 */ 531 lvls = stage2_pgtable_levels(phys_shift); 532 if (lvls < 2) 533 lvls = 2; 534 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); 535 536 /* 537 * Enable the Hardware Access Flag management, unconditionally 538 * on all CPUs. The features is RES0 on CPUs without the support 539 * and must be ignored by the CPUs. 540 */ 541 vtcr |= VTCR_EL2_HA; 542 543 /* Set the vmid bits */ 544 vtcr |= (get_vmid_bits(mmfr1) == 16) ? 545 VTCR_EL2_VS_16BIT : 546 VTCR_EL2_VS_8BIT; 547 548 return vtcr; 549 } 550 551 static bool stage2_has_fwb(struct kvm_pgtable *pgt) 552 { 553 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 554 return false; 555 556 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB); 557 } 558 559 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt)) 560 561 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot, 562 kvm_pte_t *ptep) 563 { 564 bool device = prot & KVM_PGTABLE_PROT_DEVICE; 565 kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) : 566 KVM_S2_MEMATTR(pgt, NORMAL); 567 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; 568 569 if (!(prot & KVM_PGTABLE_PROT_X)) 570 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; 571 else if (device) 572 return -EINVAL; 573 574 if (prot & KVM_PGTABLE_PROT_R) 575 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; 576 577 if (prot & KVM_PGTABLE_PROT_W) 578 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; 579 580 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); 581 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; 582 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; 583 *ptep = attr; 584 585 return 0; 586 } 587 588 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte) 589 { 590 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; 591 592 if (!kvm_pte_valid(pte)) 593 return prot; 594 595 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R) 596 prot |= KVM_PGTABLE_PROT_R; 597 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W) 598 prot |= KVM_PGTABLE_PROT_W; 599 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN)) 600 prot |= KVM_PGTABLE_PROT_X; 601 602 return prot; 603 } 604 605 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new) 606 { 607 if (!kvm_pte_valid(old) || !kvm_pte_valid(new)) 608 return true; 609 610 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS)); 611 } 612 613 static bool stage2_pte_is_counted(kvm_pte_t pte) 614 { 615 /* 616 * The refcount tracks valid entries as well as invalid entries if they 617 * encode ownership of a page to another entity than the page-table 618 * owner, whose id is 0. 619 */ 620 return !!pte; 621 } 622 623 static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr, 624 u32 level, struct kvm_pgtable_mm_ops *mm_ops) 625 { 626 /* 627 * Clear the existing PTE, and perform break-before-make with 628 * TLB maintenance if it was valid. 629 */ 630 if (kvm_pte_valid(*ptep)) { 631 kvm_clear_pte(ptep); 632 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level); 633 } 634 635 mm_ops->put_page(ptep); 636 } 637 638 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte) 639 { 640 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; 641 return memattr == KVM_S2_MEMATTR(pgt, NORMAL); 642 } 643 644 static bool stage2_pte_executable(kvm_pte_t pte) 645 { 646 return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN); 647 } 648 649 static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level, 650 struct stage2_map_data *data) 651 { 652 if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1))) 653 return false; 654 655 return kvm_block_mapping_supported(addr, end, data->phys, level); 656 } 657 658 static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level, 659 kvm_pte_t *ptep, 660 struct stage2_map_data *data) 661 { 662 kvm_pte_t new, old = *ptep; 663 u64 granule = kvm_granule_size(level), phys = data->phys; 664 struct kvm_pgtable *pgt = data->mmu->pgt; 665 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 666 667 if (!stage2_leaf_mapping_allowed(addr, end, level, data)) 668 return -E2BIG; 669 670 if (kvm_phys_is_valid(phys)) 671 new = kvm_init_valid_leaf_pte(phys, data->attr, level); 672 else 673 new = kvm_init_invalid_leaf_owner(data->owner_id); 674 675 if (stage2_pte_is_counted(old)) { 676 /* 677 * Skip updating the PTE if we are trying to recreate the exact 678 * same mapping or only change the access permissions. Instead, 679 * the vCPU will exit one more time from guest if still needed 680 * and then go through the path of relaxing permissions. 681 */ 682 if (!stage2_pte_needs_update(old, new)) 683 return -EAGAIN; 684 685 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops); 686 } 687 688 /* Perform CMOs before installation of the guest stage-2 PTE */ 689 if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new)) 690 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops), 691 granule); 692 693 if (mm_ops->icache_inval_pou && stage2_pte_executable(new)) 694 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule); 695 696 smp_store_release(ptep, new); 697 if (stage2_pte_is_counted(new)) 698 mm_ops->get_page(ptep); 699 if (kvm_phys_is_valid(phys)) 700 data->phys += granule; 701 return 0; 702 } 703 704 static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level, 705 kvm_pte_t *ptep, 706 struct stage2_map_data *data) 707 { 708 if (data->anchor) 709 return 0; 710 711 if (!stage2_leaf_mapping_allowed(addr, end, level, data)) 712 return 0; 713 714 data->childp = kvm_pte_follow(*ptep, data->mm_ops); 715 kvm_clear_pte(ptep); 716 717 /* 718 * Invalidate the whole stage-2, as we may have numerous leaf 719 * entries below us which would otherwise need invalidating 720 * individually. 721 */ 722 kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu); 723 data->anchor = ptep; 724 return 0; 725 } 726 727 static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 728 struct stage2_map_data *data) 729 { 730 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 731 kvm_pte_t *childp, pte = *ptep; 732 int ret; 733 734 if (data->anchor) { 735 if (stage2_pte_is_counted(pte)) 736 mm_ops->put_page(ptep); 737 738 return 0; 739 } 740 741 ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data); 742 if (ret != -E2BIG) 743 return ret; 744 745 if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) 746 return -EINVAL; 747 748 if (!data->memcache) 749 return -ENOMEM; 750 751 childp = mm_ops->zalloc_page(data->memcache); 752 if (!childp) 753 return -ENOMEM; 754 755 /* 756 * If we've run into an existing block mapping then replace it with 757 * a table. Accesses beyond 'end' that fall within the new table 758 * will be mapped lazily. 759 */ 760 if (stage2_pte_is_counted(pte)) 761 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops); 762 763 kvm_set_table_pte(ptep, childp, mm_ops); 764 mm_ops->get_page(ptep); 765 766 return 0; 767 } 768 769 static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level, 770 kvm_pte_t *ptep, 771 struct stage2_map_data *data) 772 { 773 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 774 kvm_pte_t *childp; 775 int ret = 0; 776 777 if (!data->anchor) 778 return 0; 779 780 if (data->anchor == ptep) { 781 childp = data->childp; 782 data->anchor = NULL; 783 data->childp = NULL; 784 ret = stage2_map_walk_leaf(addr, end, level, ptep, data); 785 } else { 786 childp = kvm_pte_follow(*ptep, mm_ops); 787 } 788 789 mm_ops->put_page(childp); 790 mm_ops->put_page(ptep); 791 792 return ret; 793 } 794 795 /* 796 * This is a little fiddly, as we use all three of the walk flags. The idea 797 * is that the TABLE_PRE callback runs for table entries on the way down, 798 * looking for table entries which we could conceivably replace with a 799 * block entry for this mapping. If it finds one, then it sets the 'anchor' 800 * field in 'struct stage2_map_data' to point at the table entry, before 801 * clearing the entry to zero and descending into the now detached table. 802 * 803 * The behaviour of the LEAF callback then depends on whether or not the 804 * anchor has been set. If not, then we're not using a block mapping higher 805 * up the table and we perform the mapping at the existing leaves instead. 806 * If, on the other hand, the anchor _is_ set, then we drop references to 807 * all valid leaves so that the pages beneath the anchor can be freed. 808 * 809 * Finally, the TABLE_POST callback does nothing if the anchor has not 810 * been set, but otherwise frees the page-table pages while walking back up 811 * the page-table, installing the block entry when it revisits the anchor 812 * pointer and clearing the anchor to NULL. 813 */ 814 static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 815 enum kvm_pgtable_walk_flags flag, void * const arg) 816 { 817 struct stage2_map_data *data = arg; 818 819 switch (flag) { 820 case KVM_PGTABLE_WALK_TABLE_PRE: 821 return stage2_map_walk_table_pre(addr, end, level, ptep, data); 822 case KVM_PGTABLE_WALK_LEAF: 823 return stage2_map_walk_leaf(addr, end, level, ptep, data); 824 case KVM_PGTABLE_WALK_TABLE_POST: 825 return stage2_map_walk_table_post(addr, end, level, ptep, data); 826 } 827 828 return -EINVAL; 829 } 830 831 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, 832 u64 phys, enum kvm_pgtable_prot prot, 833 void *mc) 834 { 835 int ret; 836 struct stage2_map_data map_data = { 837 .phys = ALIGN_DOWN(phys, PAGE_SIZE), 838 .mmu = pgt->mmu, 839 .memcache = mc, 840 .mm_ops = pgt->mm_ops, 841 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot), 842 }; 843 struct kvm_pgtable_walker walker = { 844 .cb = stage2_map_walker, 845 .flags = KVM_PGTABLE_WALK_TABLE_PRE | 846 KVM_PGTABLE_WALK_LEAF | 847 KVM_PGTABLE_WALK_TABLE_POST, 848 .arg = &map_data, 849 }; 850 851 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys))) 852 return -EINVAL; 853 854 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); 855 if (ret) 856 return ret; 857 858 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 859 dsb(ishst); 860 return ret; 861 } 862 863 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size, 864 void *mc, u8 owner_id) 865 { 866 int ret; 867 struct stage2_map_data map_data = { 868 .phys = KVM_PHYS_INVALID, 869 .mmu = pgt->mmu, 870 .memcache = mc, 871 .mm_ops = pgt->mm_ops, 872 .owner_id = owner_id, 873 .force_pte = true, 874 }; 875 struct kvm_pgtable_walker walker = { 876 .cb = stage2_map_walker, 877 .flags = KVM_PGTABLE_WALK_TABLE_PRE | 878 KVM_PGTABLE_WALK_LEAF | 879 KVM_PGTABLE_WALK_TABLE_POST, 880 .arg = &map_data, 881 }; 882 883 if (owner_id > KVM_MAX_OWNER_ID) 884 return -EINVAL; 885 886 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 887 return ret; 888 } 889 890 static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 891 enum kvm_pgtable_walk_flags flag, 892 void * const arg) 893 { 894 struct kvm_pgtable *pgt = arg; 895 struct kvm_s2_mmu *mmu = pgt->mmu; 896 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; 897 kvm_pte_t pte = *ptep, *childp = NULL; 898 bool need_flush = false; 899 900 if (!kvm_pte_valid(pte)) { 901 if (stage2_pte_is_counted(pte)) { 902 kvm_clear_pte(ptep); 903 mm_ops->put_page(ptep); 904 } 905 return 0; 906 } 907 908 if (kvm_pte_table(pte, level)) { 909 childp = kvm_pte_follow(pte, mm_ops); 910 911 if (mm_ops->page_count(childp) != 1) 912 return 0; 913 } else if (stage2_pte_cacheable(pgt, pte)) { 914 need_flush = !stage2_has_fwb(pgt); 915 } 916 917 /* 918 * This is similar to the map() path in that we unmap the entire 919 * block entry and rely on the remaining portions being faulted 920 * back lazily. 921 */ 922 stage2_put_pte(ptep, mmu, addr, level, mm_ops); 923 924 if (need_flush) { 925 kvm_pte_t *pte_follow = kvm_pte_follow(pte, mm_ops); 926 927 dcache_clean_inval_poc((unsigned long)pte_follow, 928 (unsigned long)pte_follow + 929 kvm_granule_size(level)); 930 } 931 932 if (childp) 933 mm_ops->put_page(childp); 934 935 return 0; 936 } 937 938 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) 939 { 940 struct kvm_pgtable_walker walker = { 941 .cb = stage2_unmap_walker, 942 .arg = pgt, 943 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 944 }; 945 946 return kvm_pgtable_walk(pgt, addr, size, &walker); 947 } 948 949 struct stage2_attr_data { 950 kvm_pte_t attr_set; 951 kvm_pte_t attr_clr; 952 kvm_pte_t pte; 953 u32 level; 954 struct kvm_pgtable_mm_ops *mm_ops; 955 }; 956 957 static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 958 enum kvm_pgtable_walk_flags flag, 959 void * const arg) 960 { 961 kvm_pte_t pte = *ptep; 962 struct stage2_attr_data *data = arg; 963 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 964 965 if (!kvm_pte_valid(pte)) 966 return 0; 967 968 data->level = level; 969 data->pte = pte; 970 pte &= ~data->attr_clr; 971 pte |= data->attr_set; 972 973 /* 974 * We may race with the CPU trying to set the access flag here, 975 * but worst-case the access flag update gets lost and will be 976 * set on the next access instead. 977 */ 978 if (data->pte != pte) { 979 /* 980 * Invalidate instruction cache before updating the guest 981 * stage-2 PTE if we are going to add executable permission. 982 */ 983 if (mm_ops->icache_inval_pou && 984 stage2_pte_executable(pte) && !stage2_pte_executable(*ptep)) 985 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops), 986 kvm_granule_size(level)); 987 WRITE_ONCE(*ptep, pte); 988 } 989 990 return 0; 991 } 992 993 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, 994 u64 size, kvm_pte_t attr_set, 995 kvm_pte_t attr_clr, kvm_pte_t *orig_pte, 996 u32 *level) 997 { 998 int ret; 999 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; 1000 struct stage2_attr_data data = { 1001 .attr_set = attr_set & attr_mask, 1002 .attr_clr = attr_clr & attr_mask, 1003 .mm_ops = pgt->mm_ops, 1004 }; 1005 struct kvm_pgtable_walker walker = { 1006 .cb = stage2_attr_walker, 1007 .arg = &data, 1008 .flags = KVM_PGTABLE_WALK_LEAF, 1009 }; 1010 1011 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1012 if (ret) 1013 return ret; 1014 1015 if (orig_pte) 1016 *orig_pte = data.pte; 1017 1018 if (level) 1019 *level = data.level; 1020 return 0; 1021 } 1022 1023 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) 1024 { 1025 return stage2_update_leaf_attrs(pgt, addr, size, 0, 1026 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, 1027 NULL, NULL); 1028 } 1029 1030 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr) 1031 { 1032 kvm_pte_t pte = 0; 1033 stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, 1034 &pte, NULL); 1035 dsb(ishst); 1036 return pte; 1037 } 1038 1039 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr) 1040 { 1041 kvm_pte_t pte = 0; 1042 stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF, 1043 &pte, NULL); 1044 /* 1045 * "But where's the TLBI?!", you scream. 1046 * "Over in the core code", I sigh. 1047 * 1048 * See the '->clear_flush_young()' callback on the KVM mmu notifier. 1049 */ 1050 return pte; 1051 } 1052 1053 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr) 1054 { 1055 kvm_pte_t pte = 0; 1056 stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL); 1057 return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF; 1058 } 1059 1060 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, 1061 enum kvm_pgtable_prot prot) 1062 { 1063 int ret; 1064 u32 level; 1065 kvm_pte_t set = 0, clr = 0; 1066 1067 if (prot & KVM_PTE_LEAF_ATTR_HI_SW) 1068 return -EINVAL; 1069 1070 if (prot & KVM_PGTABLE_PROT_R) 1071 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; 1072 1073 if (prot & KVM_PGTABLE_PROT_W) 1074 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; 1075 1076 if (prot & KVM_PGTABLE_PROT_X) 1077 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; 1078 1079 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level); 1080 if (!ret) 1081 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level); 1082 return ret; 1083 } 1084 1085 static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 1086 enum kvm_pgtable_walk_flags flag, 1087 void * const arg) 1088 { 1089 struct kvm_pgtable *pgt = arg; 1090 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; 1091 kvm_pte_t pte = *ptep; 1092 kvm_pte_t *pte_follow; 1093 1094 if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pgt, pte)) 1095 return 0; 1096 1097 pte_follow = kvm_pte_follow(pte, mm_ops); 1098 dcache_clean_inval_poc((unsigned long)pte_follow, 1099 (unsigned long)pte_follow + 1100 kvm_granule_size(level)); 1101 return 0; 1102 } 1103 1104 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) 1105 { 1106 struct kvm_pgtable_walker walker = { 1107 .cb = stage2_flush_walker, 1108 .flags = KVM_PGTABLE_WALK_LEAF, 1109 .arg = pgt, 1110 }; 1111 1112 if (stage2_has_fwb(pgt)) 1113 return 0; 1114 1115 return kvm_pgtable_walk(pgt, addr, size, &walker); 1116 } 1117 1118 1119 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_arch *arch, 1120 struct kvm_pgtable_mm_ops *mm_ops, 1121 enum kvm_pgtable_stage2_flags flags, 1122 kvm_pgtable_force_pte_cb_t force_pte_cb) 1123 { 1124 size_t pgd_sz; 1125 u64 vtcr = arch->vtcr; 1126 u32 ia_bits = VTCR_EL2_IPA(vtcr); 1127 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); 1128 u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; 1129 1130 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; 1131 pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz); 1132 if (!pgt->pgd) 1133 return -ENOMEM; 1134 1135 pgt->ia_bits = ia_bits; 1136 pgt->start_level = start_level; 1137 pgt->mm_ops = mm_ops; 1138 pgt->mmu = &arch->mmu; 1139 pgt->flags = flags; 1140 pgt->force_pte_cb = force_pte_cb; 1141 1142 /* Ensure zeroed PGD pages are visible to the hardware walker */ 1143 dsb(ishst); 1144 return 0; 1145 } 1146 1147 static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 1148 enum kvm_pgtable_walk_flags flag, 1149 void * const arg) 1150 { 1151 struct kvm_pgtable_mm_ops *mm_ops = arg; 1152 kvm_pte_t pte = *ptep; 1153 1154 if (!stage2_pte_is_counted(pte)) 1155 return 0; 1156 1157 mm_ops->put_page(ptep); 1158 1159 if (kvm_pte_table(pte, level)) 1160 mm_ops->put_page(kvm_pte_follow(pte, mm_ops)); 1161 1162 return 0; 1163 } 1164 1165 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) 1166 { 1167 size_t pgd_sz; 1168 struct kvm_pgtable_walker walker = { 1169 .cb = stage2_free_walker, 1170 .flags = KVM_PGTABLE_WALK_LEAF | 1171 KVM_PGTABLE_WALK_TABLE_POST, 1172 .arg = pgt->mm_ops, 1173 }; 1174 1175 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); 1176 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; 1177 pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz); 1178 pgt->pgd = NULL; 1179 } 1180