xref: /openbmc/linux/arch/arm64/kvm/hyp/pgtable.c (revision 2f56a02e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4  * No bombay mix was harmed in the writing of this file.
5  *
6  * Copyright (C) 2020 Google LLC
7  * Author: Will Deacon <will@kernel.org>
8  */
9 
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 
15 #define KVM_PTE_TYPE			BIT(1)
16 #define KVM_PTE_TYPE_BLOCK		0
17 #define KVM_PTE_TYPE_PAGE		1
18 #define KVM_PTE_TYPE_TABLE		1
19 
20 #define KVM_PTE_LEAF_ATTR_LO		GENMASK(11, 2)
21 
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX	GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP	GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO		\
25 	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
26 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW		\
27 	({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
28 #define KVM_PTE_LEAF_ATTR_LO_S1_SH	GENMASK(9, 8)
29 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS	3
30 #define KVM_PTE_LEAF_ATTR_LO_S1_AF	BIT(10)
31 
32 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR	GENMASK(5, 2)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R	BIT(6)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W	BIT(7)
35 #define KVM_PTE_LEAF_ATTR_LO_S2_SH	GENMASK(9, 8)
36 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS	3
37 #define KVM_PTE_LEAF_ATTR_LO_S2_AF	BIT(10)
38 
39 #define KVM_PTE_LEAF_ATTR_HI		GENMASK(63, 50)
40 
41 #define KVM_PTE_LEAF_ATTR_HI_SW		GENMASK(58, 55)
42 
43 #define KVM_PTE_LEAF_ATTR_HI_S1_XN	BIT(54)
44 
45 #define KVM_PTE_LEAF_ATTR_HI_S2_XN	BIT(54)
46 
47 #define KVM_PTE_LEAF_ATTR_HI_S1_GP	BIT(50)
48 
49 #define KVM_PTE_LEAF_ATTR_S2_PERMS	(KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
50 					 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
51 					 KVM_PTE_LEAF_ATTR_HI_S2_XN)
52 
53 #define KVM_INVALID_PTE_OWNER_MASK	GENMASK(9, 2)
54 #define KVM_MAX_OWNER_ID		1
55 
56 /*
57  * Used to indicate a pte for which a 'break-before-make' sequence is in
58  * progress.
59  */
60 #define KVM_INVALID_PTE_LOCKED		BIT(10)
61 
62 struct kvm_pgtable_walk_data {
63 	struct kvm_pgtable_walker	*walker;
64 
65 	const u64			start;
66 	u64				addr;
67 	const u64			end;
68 };
69 
70 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
71 {
72 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
73 }
74 
75 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
76 {
77 	return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
78 }
79 
80 static bool kvm_phys_is_valid(u64 phys)
81 {
82 	return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
83 }
84 
85 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
86 {
87 	u64 granule = kvm_granule_size(ctx->level);
88 
89 	if (!kvm_level_supports_block_mapping(ctx->level))
90 		return false;
91 
92 	if (granule > (ctx->end - ctx->addr))
93 		return false;
94 
95 	if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
96 		return false;
97 
98 	return IS_ALIGNED(ctx->addr, granule);
99 }
100 
101 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
102 {
103 	u64 shift = kvm_granule_shift(level);
104 	u64 mask = BIT(PAGE_SHIFT - 3) - 1;
105 
106 	return (data->addr >> shift) & mask;
107 }
108 
109 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
110 {
111 	u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
112 	u64 mask = BIT(pgt->ia_bits) - 1;
113 
114 	return (addr & mask) >> shift;
115 }
116 
117 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
118 {
119 	struct kvm_pgtable pgt = {
120 		.ia_bits	= ia_bits,
121 		.start_level	= start_level,
122 	};
123 
124 	return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
125 }
126 
127 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
128 {
129 	if (level == KVM_PGTABLE_MAX_LEVELS - 1)
130 		return false;
131 
132 	if (!kvm_pte_valid(pte))
133 		return false;
134 
135 	return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
136 }
137 
138 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
139 {
140 	return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
141 }
142 
143 static void kvm_clear_pte(kvm_pte_t *ptep)
144 {
145 	WRITE_ONCE(*ptep, 0);
146 }
147 
148 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
149 {
150 	kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
151 
152 	pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
153 	pte |= KVM_PTE_VALID;
154 	return pte;
155 }
156 
157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
158 {
159 	kvm_pte_t pte = kvm_phys_to_pte(pa);
160 	u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
161 							   KVM_PTE_TYPE_BLOCK;
162 
163 	pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
164 	pte |= FIELD_PREP(KVM_PTE_TYPE, type);
165 	pte |= KVM_PTE_VALID;
166 
167 	return pte;
168 }
169 
170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
171 {
172 	return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
173 }
174 
175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
176 				  const struct kvm_pgtable_visit_ctx *ctx,
177 				  enum kvm_pgtable_walk_flags visit)
178 {
179 	struct kvm_pgtable_walker *walker = data->walker;
180 
181 	/* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
182 	WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
183 	return walker->cb(ctx, visit);
184 }
185 
186 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
187 				      int r)
188 {
189 	/*
190 	 * Visitor callbacks return EAGAIN when the conditions that led to a
191 	 * fault are no longer reflected in the page tables due to a race to
192 	 * update a PTE. In the context of a fault handler this is interpreted
193 	 * as a signal to retry guest execution.
194 	 *
195 	 * Ignore the return code altogether for walkers outside a fault handler
196 	 * (e.g. write protecting a range of memory) and chug along with the
197 	 * page table walk.
198 	 */
199 	if (r == -EAGAIN)
200 		return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
201 
202 	return !r;
203 }
204 
205 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
206 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level);
207 
208 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
209 				      struct kvm_pgtable_mm_ops *mm_ops,
210 				      kvm_pteref_t pteref, u32 level)
211 {
212 	enum kvm_pgtable_walk_flags flags = data->walker->flags;
213 	kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
214 	struct kvm_pgtable_visit_ctx ctx = {
215 		.ptep	= ptep,
216 		.old	= READ_ONCE(*ptep),
217 		.arg	= data->walker->arg,
218 		.mm_ops	= mm_ops,
219 		.start	= data->start,
220 		.addr	= data->addr,
221 		.end	= data->end,
222 		.level	= level,
223 		.flags	= flags,
224 	};
225 	int ret = 0;
226 	bool reload = false;
227 	kvm_pteref_t childp;
228 	bool table = kvm_pte_table(ctx.old, level);
229 
230 	if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
231 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
232 		reload = true;
233 	}
234 
235 	if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
236 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
237 		reload = true;
238 	}
239 
240 	/*
241 	 * Reload the page table after invoking the walker callback for leaf
242 	 * entries or after pre-order traversal, to allow the walker to descend
243 	 * into a newly installed or replaced table.
244 	 */
245 	if (reload) {
246 		ctx.old = READ_ONCE(*ptep);
247 		table = kvm_pte_table(ctx.old, level);
248 	}
249 
250 	if (!kvm_pgtable_walk_continue(data->walker, ret))
251 		goto out;
252 
253 	if (!table) {
254 		data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
255 		data->addr += kvm_granule_size(level);
256 		goto out;
257 	}
258 
259 	childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
260 	ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
261 	if (!kvm_pgtable_walk_continue(data->walker, ret))
262 		goto out;
263 
264 	if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
265 		ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
266 
267 out:
268 	if (kvm_pgtable_walk_continue(data->walker, ret))
269 		return 0;
270 
271 	return ret;
272 }
273 
274 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
275 			      struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level)
276 {
277 	u32 idx;
278 	int ret = 0;
279 
280 	if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
281 		return -EINVAL;
282 
283 	for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
284 		kvm_pteref_t pteref = &pgtable[idx];
285 
286 		if (data->addr >= data->end)
287 			break;
288 
289 		ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
290 		if (ret)
291 			break;
292 	}
293 
294 	return ret;
295 }
296 
297 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
298 {
299 	u32 idx;
300 	int ret = 0;
301 	u64 limit = BIT(pgt->ia_bits);
302 
303 	if (data->addr > limit || data->end > limit)
304 		return -ERANGE;
305 
306 	if (!pgt->pgd)
307 		return -EINVAL;
308 
309 	for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
310 		kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
311 
312 		ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
313 		if (ret)
314 			break;
315 	}
316 
317 	return ret;
318 }
319 
320 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
321 		     struct kvm_pgtable_walker *walker)
322 {
323 	struct kvm_pgtable_walk_data walk_data = {
324 		.start	= ALIGN_DOWN(addr, PAGE_SIZE),
325 		.addr	= ALIGN_DOWN(addr, PAGE_SIZE),
326 		.end	= PAGE_ALIGN(walk_data.addr + size),
327 		.walker	= walker,
328 	};
329 	int r;
330 
331 	r = kvm_pgtable_walk_begin(walker);
332 	if (r)
333 		return r;
334 
335 	r = _kvm_pgtable_walk(pgt, &walk_data);
336 	kvm_pgtable_walk_end(walker);
337 
338 	return r;
339 }
340 
341 struct leaf_walk_data {
342 	kvm_pte_t	pte;
343 	u32		level;
344 };
345 
346 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
347 		       enum kvm_pgtable_walk_flags visit)
348 {
349 	struct leaf_walk_data *data = ctx->arg;
350 
351 	data->pte   = ctx->old;
352 	data->level = ctx->level;
353 
354 	return 0;
355 }
356 
357 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
358 			 kvm_pte_t *ptep, u32 *level)
359 {
360 	struct leaf_walk_data data;
361 	struct kvm_pgtable_walker walker = {
362 		.cb	= leaf_walker,
363 		.flags	= KVM_PGTABLE_WALK_LEAF,
364 		.arg	= &data,
365 	};
366 	int ret;
367 
368 	ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
369 			       PAGE_SIZE, &walker);
370 	if (!ret) {
371 		if (ptep)
372 			*ptep  = data.pte;
373 		if (level)
374 			*level = data.level;
375 	}
376 
377 	return ret;
378 }
379 
380 struct hyp_map_data {
381 	const u64			phys;
382 	kvm_pte_t			attr;
383 };
384 
385 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
386 {
387 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
388 	u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
389 	kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
390 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
391 	u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
392 					       KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
393 
394 	if (!(prot & KVM_PGTABLE_PROT_R))
395 		return -EINVAL;
396 
397 	if (prot & KVM_PGTABLE_PROT_X) {
398 		if (prot & KVM_PGTABLE_PROT_W)
399 			return -EINVAL;
400 
401 		if (device)
402 			return -EINVAL;
403 
404 		if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) && system_supports_bti())
405 			attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
406 	} else {
407 		attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
408 	}
409 
410 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
411 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
412 	attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
413 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
414 	*ptep = attr;
415 
416 	return 0;
417 }
418 
419 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
420 {
421 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
422 	u32 ap;
423 
424 	if (!kvm_pte_valid(pte))
425 		return prot;
426 
427 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
428 		prot |= KVM_PGTABLE_PROT_X;
429 
430 	ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
431 	if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
432 		prot |= KVM_PGTABLE_PROT_R;
433 	else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
434 		prot |= KVM_PGTABLE_PROT_RW;
435 
436 	return prot;
437 }
438 
439 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
440 				    struct hyp_map_data *data)
441 {
442 	u64 phys = data->phys + (ctx->addr - ctx->start);
443 	kvm_pte_t new;
444 
445 	if (!kvm_block_mapping_supported(ctx, phys))
446 		return false;
447 
448 	new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
449 	if (ctx->old == new)
450 		return true;
451 	if (!kvm_pte_valid(ctx->old))
452 		ctx->mm_ops->get_page(ctx->ptep);
453 	else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
454 		return false;
455 
456 	smp_store_release(ctx->ptep, new);
457 	return true;
458 }
459 
460 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
461 			  enum kvm_pgtable_walk_flags visit)
462 {
463 	kvm_pte_t *childp, new;
464 	struct hyp_map_data *data = ctx->arg;
465 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
466 
467 	if (hyp_map_walker_try_leaf(ctx, data))
468 		return 0;
469 
470 	if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
471 		return -EINVAL;
472 
473 	childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
474 	if (!childp)
475 		return -ENOMEM;
476 
477 	new = kvm_init_table_pte(childp, mm_ops);
478 	mm_ops->get_page(ctx->ptep);
479 	smp_store_release(ctx->ptep, new);
480 
481 	return 0;
482 }
483 
484 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
485 			enum kvm_pgtable_prot prot)
486 {
487 	int ret;
488 	struct hyp_map_data map_data = {
489 		.phys	= ALIGN_DOWN(phys, PAGE_SIZE),
490 	};
491 	struct kvm_pgtable_walker walker = {
492 		.cb	= hyp_map_walker,
493 		.flags	= KVM_PGTABLE_WALK_LEAF,
494 		.arg	= &map_data,
495 	};
496 
497 	ret = hyp_set_prot_attr(prot, &map_data.attr);
498 	if (ret)
499 		return ret;
500 
501 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
502 	dsb(ishst);
503 	isb();
504 	return ret;
505 }
506 
507 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
508 			    enum kvm_pgtable_walk_flags visit)
509 {
510 	kvm_pte_t *childp = NULL;
511 	u64 granule = kvm_granule_size(ctx->level);
512 	u64 *unmapped = ctx->arg;
513 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
514 
515 	if (!kvm_pte_valid(ctx->old))
516 		return -EINVAL;
517 
518 	if (kvm_pte_table(ctx->old, ctx->level)) {
519 		childp = kvm_pte_follow(ctx->old, mm_ops);
520 
521 		if (mm_ops->page_count(childp) != 1)
522 			return 0;
523 
524 		kvm_clear_pte(ctx->ptep);
525 		dsb(ishst);
526 		__tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
527 	} else {
528 		if (ctx->end - ctx->addr < granule)
529 			return -EINVAL;
530 
531 		kvm_clear_pte(ctx->ptep);
532 		dsb(ishst);
533 		__tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
534 		*unmapped += granule;
535 	}
536 
537 	dsb(ish);
538 	isb();
539 	mm_ops->put_page(ctx->ptep);
540 
541 	if (childp)
542 		mm_ops->put_page(childp);
543 
544 	return 0;
545 }
546 
547 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
548 {
549 	u64 unmapped = 0;
550 	struct kvm_pgtable_walker walker = {
551 		.cb	= hyp_unmap_walker,
552 		.arg	= &unmapped,
553 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
554 	};
555 
556 	if (!pgt->mm_ops->page_count)
557 		return 0;
558 
559 	kvm_pgtable_walk(pgt, addr, size, &walker);
560 	return unmapped;
561 }
562 
563 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
564 			 struct kvm_pgtable_mm_ops *mm_ops)
565 {
566 	u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
567 
568 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
569 	if (!pgt->pgd)
570 		return -ENOMEM;
571 
572 	pgt->ia_bits		= va_bits;
573 	pgt->start_level	= KVM_PGTABLE_MAX_LEVELS - levels;
574 	pgt->mm_ops		= mm_ops;
575 	pgt->mmu		= NULL;
576 	pgt->force_pte_cb	= NULL;
577 
578 	return 0;
579 }
580 
581 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
582 			   enum kvm_pgtable_walk_flags visit)
583 {
584 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
585 
586 	if (!kvm_pte_valid(ctx->old))
587 		return 0;
588 
589 	mm_ops->put_page(ctx->ptep);
590 
591 	if (kvm_pte_table(ctx->old, ctx->level))
592 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
593 
594 	return 0;
595 }
596 
597 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
598 {
599 	struct kvm_pgtable_walker walker = {
600 		.cb	= hyp_free_walker,
601 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
602 	};
603 
604 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
605 	pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
606 	pgt->pgd = NULL;
607 }
608 
609 struct stage2_map_data {
610 	const u64			phys;
611 	kvm_pte_t			attr;
612 	u8				owner_id;
613 
614 	kvm_pte_t			*anchor;
615 	kvm_pte_t			*childp;
616 
617 	struct kvm_s2_mmu		*mmu;
618 	void				*memcache;
619 
620 	/* Force mappings to page granularity */
621 	bool				force_pte;
622 };
623 
624 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
625 {
626 	u64 vtcr = VTCR_EL2_FLAGS;
627 	u8 lvls;
628 
629 	vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
630 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
631 	/*
632 	 * Use a minimum 2 level page table to prevent splitting
633 	 * host PMD huge pages at stage2.
634 	 */
635 	lvls = stage2_pgtable_levels(phys_shift);
636 	if (lvls < 2)
637 		lvls = 2;
638 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
639 
640 #ifdef CONFIG_ARM64_HW_AFDBM
641 	/*
642 	 * Enable the Hardware Access Flag management, unconditionally
643 	 * on all CPUs. In systems that have asymmetric support for the feature
644 	 * this allows KVM to leverage hardware support on the subset of cores
645 	 * that implement the feature.
646 	 *
647 	 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
648 	 * hardware) on implementations that do not advertise support for the
649 	 * feature. As such, setting HA unconditionally is safe, unless you
650 	 * happen to be running on a design that has unadvertised support for
651 	 * HAFDBS. Here be dragons.
652 	 */
653 	if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
654 		vtcr |= VTCR_EL2_HA;
655 #endif /* CONFIG_ARM64_HW_AFDBM */
656 
657 	/* Set the vmid bits */
658 	vtcr |= (get_vmid_bits(mmfr1) == 16) ?
659 		VTCR_EL2_VS_16BIT :
660 		VTCR_EL2_VS_8BIT;
661 
662 	return vtcr;
663 }
664 
665 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
666 {
667 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
668 		return false;
669 
670 	return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
671 }
672 
673 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
674 				phys_addr_t addr, size_t size)
675 {
676 	unsigned long pages, inval_pages;
677 
678 	if (!system_supports_tlb_range()) {
679 		kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
680 		return;
681 	}
682 
683 	pages = size >> PAGE_SHIFT;
684 	while (pages > 0) {
685 		inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
686 		kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
687 
688 		addr += inval_pages << PAGE_SHIFT;
689 		pages -= inval_pages;
690 	}
691 }
692 
693 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
694 
695 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
696 				kvm_pte_t *ptep)
697 {
698 	bool device = prot & KVM_PGTABLE_PROT_DEVICE;
699 	kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
700 			    KVM_S2_MEMATTR(pgt, NORMAL);
701 	u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
702 
703 	if (!(prot & KVM_PGTABLE_PROT_X))
704 		attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
705 	else if (device)
706 		return -EINVAL;
707 
708 	if (prot & KVM_PGTABLE_PROT_R)
709 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
710 
711 	if (prot & KVM_PGTABLE_PROT_W)
712 		attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
713 
714 	attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
715 	attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
716 	attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
717 	*ptep = attr;
718 
719 	return 0;
720 }
721 
722 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
723 {
724 	enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
725 
726 	if (!kvm_pte_valid(pte))
727 		return prot;
728 
729 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
730 		prot |= KVM_PGTABLE_PROT_R;
731 	if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
732 		prot |= KVM_PGTABLE_PROT_W;
733 	if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
734 		prot |= KVM_PGTABLE_PROT_X;
735 
736 	return prot;
737 }
738 
739 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
740 {
741 	if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
742 		return true;
743 
744 	return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
745 }
746 
747 static bool stage2_pte_is_counted(kvm_pte_t pte)
748 {
749 	/*
750 	 * The refcount tracks valid entries as well as invalid entries if they
751 	 * encode ownership of a page to another entity than the page-table
752 	 * owner, whose id is 0.
753 	 */
754 	return !!pte;
755 }
756 
757 static bool stage2_pte_is_locked(kvm_pte_t pte)
758 {
759 	return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
760 }
761 
762 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
763 {
764 	if (!kvm_pgtable_walk_shared(ctx)) {
765 		WRITE_ONCE(*ctx->ptep, new);
766 		return true;
767 	}
768 
769 	return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
770 }
771 
772 /**
773  * stage2_try_break_pte() - Invalidates a pte according to the
774  *			    'break-before-make' requirements of the
775  *			    architecture.
776  *
777  * @ctx: context of the visited pte.
778  * @mmu: stage-2 mmu
779  *
780  * Returns: true if the pte was successfully broken.
781  *
782  * If the removed pte was valid, performs the necessary serialization and TLB
783  * invalidation for the old value. For counted ptes, drops the reference count
784  * on the containing table page.
785  */
786 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
787 				 struct kvm_s2_mmu *mmu)
788 {
789 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
790 
791 	if (stage2_pte_is_locked(ctx->old)) {
792 		/*
793 		 * Should never occur if this walker has exclusive access to the
794 		 * page tables.
795 		 */
796 		WARN_ON(!kvm_pgtable_walk_shared(ctx));
797 		return false;
798 	}
799 
800 	if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
801 		return false;
802 
803 	if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
804 		/*
805 		 * Perform the appropriate TLB invalidation based on the
806 		 * evicted pte value (if any).
807 		 */
808 		if (kvm_pte_table(ctx->old, ctx->level))
809 			kvm_tlb_flush_vmid_range(mmu, ctx->addr,
810 						kvm_granule_size(ctx->level));
811 		else if (kvm_pte_valid(ctx->old))
812 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
813 				     ctx->addr, ctx->level);
814 	}
815 
816 	if (stage2_pte_is_counted(ctx->old))
817 		mm_ops->put_page(ctx->ptep);
818 
819 	return true;
820 }
821 
822 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
823 {
824 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
825 
826 	WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
827 
828 	if (stage2_pte_is_counted(new))
829 		mm_ops->get_page(ctx->ptep);
830 
831 	smp_store_release(ctx->ptep, new);
832 }
833 
834 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
835 {
836 	/*
837 	 * If FEAT_TLBIRANGE is implemented, defer the individual
838 	 * TLB invalidations until the entire walk is finished, and
839 	 * then use the range-based TLBI instructions to do the
840 	 * invalidations. Condition deferred TLB invalidation on the
841 	 * system supporting FWB as the optimization is entirely
842 	 * pointless when the unmap walker needs to perform CMOs.
843 	 */
844 	return system_supports_tlb_range() && stage2_has_fwb(pgt);
845 }
846 
847 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
848 				struct kvm_s2_mmu *mmu,
849 				struct kvm_pgtable_mm_ops *mm_ops)
850 {
851 	struct kvm_pgtable *pgt = ctx->arg;
852 
853 	/*
854 	 * Clear the existing PTE, and perform break-before-make if it was
855 	 * valid. Depending on the system support, defer the TLB maintenance
856 	 * for the same until the entire unmap walk is completed.
857 	 */
858 	if (kvm_pte_valid(ctx->old)) {
859 		kvm_clear_pte(ctx->ptep);
860 
861 		if (!stage2_unmap_defer_tlb_flush(pgt))
862 			kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
863 					ctx->addr, ctx->level);
864 	}
865 
866 	mm_ops->put_page(ctx->ptep);
867 }
868 
869 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
870 {
871 	u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
872 	return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
873 }
874 
875 static bool stage2_pte_executable(kvm_pte_t pte)
876 {
877 	return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
878 }
879 
880 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
881 				       const struct stage2_map_data *data)
882 {
883 	u64 phys = data->phys;
884 
885 	/*
886 	 * Stage-2 walks to update ownership data are communicated to the map
887 	 * walker using an invalid PA. Avoid offsetting an already invalid PA,
888 	 * which could overflow and make the address valid again.
889 	 */
890 	if (!kvm_phys_is_valid(phys))
891 		return phys;
892 
893 	/*
894 	 * Otherwise, work out the correct PA based on how far the walk has
895 	 * gotten.
896 	 */
897 	return phys + (ctx->addr - ctx->start);
898 }
899 
900 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
901 					struct stage2_map_data *data)
902 {
903 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
904 
905 	if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1)))
906 		return false;
907 
908 	return kvm_block_mapping_supported(ctx, phys);
909 }
910 
911 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
912 				      struct stage2_map_data *data)
913 {
914 	kvm_pte_t new;
915 	u64 phys = stage2_map_walker_phys_addr(ctx, data);
916 	u64 granule = kvm_granule_size(ctx->level);
917 	struct kvm_pgtable *pgt = data->mmu->pgt;
918 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
919 
920 	if (!stage2_leaf_mapping_allowed(ctx, data))
921 		return -E2BIG;
922 
923 	if (kvm_phys_is_valid(phys))
924 		new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
925 	else
926 		new = kvm_init_invalid_leaf_owner(data->owner_id);
927 
928 	/*
929 	 * Skip updating the PTE if we are trying to recreate the exact
930 	 * same mapping or only change the access permissions. Instead,
931 	 * the vCPU will exit one more time from guest if still needed
932 	 * and then go through the path of relaxing permissions.
933 	 */
934 	if (!stage2_pte_needs_update(ctx->old, new))
935 		return -EAGAIN;
936 
937 	if (!stage2_try_break_pte(ctx, data->mmu))
938 		return -EAGAIN;
939 
940 	/* Perform CMOs before installation of the guest stage-2 PTE */
941 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
942 	    stage2_pte_cacheable(pgt, new))
943 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
944 					       granule);
945 
946 	if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
947 	    stage2_pte_executable(new))
948 		mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
949 
950 	stage2_make_pte(ctx, new);
951 
952 	return 0;
953 }
954 
955 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
956 				     struct stage2_map_data *data)
957 {
958 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
959 	kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
960 	int ret;
961 
962 	if (!stage2_leaf_mapping_allowed(ctx, data))
963 		return 0;
964 
965 	ret = stage2_map_walker_try_leaf(ctx, data);
966 	if (ret)
967 		return ret;
968 
969 	mm_ops->free_unlinked_table(childp, ctx->level);
970 	return 0;
971 }
972 
973 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
974 				struct stage2_map_data *data)
975 {
976 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
977 	kvm_pte_t *childp, new;
978 	int ret;
979 
980 	ret = stage2_map_walker_try_leaf(ctx, data);
981 	if (ret != -E2BIG)
982 		return ret;
983 
984 	if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
985 		return -EINVAL;
986 
987 	if (!data->memcache)
988 		return -ENOMEM;
989 
990 	childp = mm_ops->zalloc_page(data->memcache);
991 	if (!childp)
992 		return -ENOMEM;
993 
994 	if (!stage2_try_break_pte(ctx, data->mmu)) {
995 		mm_ops->put_page(childp);
996 		return -EAGAIN;
997 	}
998 
999 	/*
1000 	 * If we've run into an existing block mapping then replace it with
1001 	 * a table. Accesses beyond 'end' that fall within the new table
1002 	 * will be mapped lazily.
1003 	 */
1004 	new = kvm_init_table_pte(childp, mm_ops);
1005 	stage2_make_pte(ctx, new);
1006 
1007 	return 0;
1008 }
1009 
1010 /*
1011  * The TABLE_PRE callback runs for table entries on the way down, looking
1012  * for table entries which we could conceivably replace with a block entry
1013  * for this mapping. If it finds one it replaces the entry and calls
1014  * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1015  *
1016  * Otherwise, the LEAF callback performs the mapping at the existing leaves
1017  * instead.
1018  */
1019 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1020 			     enum kvm_pgtable_walk_flags visit)
1021 {
1022 	struct stage2_map_data *data = ctx->arg;
1023 
1024 	switch (visit) {
1025 	case KVM_PGTABLE_WALK_TABLE_PRE:
1026 		return stage2_map_walk_table_pre(ctx, data);
1027 	case KVM_PGTABLE_WALK_LEAF:
1028 		return stage2_map_walk_leaf(ctx, data);
1029 	default:
1030 		return -EINVAL;
1031 	}
1032 }
1033 
1034 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1035 			   u64 phys, enum kvm_pgtable_prot prot,
1036 			   void *mc, enum kvm_pgtable_walk_flags flags)
1037 {
1038 	int ret;
1039 	struct stage2_map_data map_data = {
1040 		.phys		= ALIGN_DOWN(phys, PAGE_SIZE),
1041 		.mmu		= pgt->mmu,
1042 		.memcache	= mc,
1043 		.force_pte	= pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1044 	};
1045 	struct kvm_pgtable_walker walker = {
1046 		.cb		= stage2_map_walker,
1047 		.flags		= flags |
1048 				  KVM_PGTABLE_WALK_TABLE_PRE |
1049 				  KVM_PGTABLE_WALK_LEAF,
1050 		.arg		= &map_data,
1051 	};
1052 
1053 	if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1054 		return -EINVAL;
1055 
1056 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1057 	if (ret)
1058 		return ret;
1059 
1060 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1061 	dsb(ishst);
1062 	return ret;
1063 }
1064 
1065 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1066 				 void *mc, u8 owner_id)
1067 {
1068 	int ret;
1069 	struct stage2_map_data map_data = {
1070 		.phys		= KVM_PHYS_INVALID,
1071 		.mmu		= pgt->mmu,
1072 		.memcache	= mc,
1073 		.owner_id	= owner_id,
1074 		.force_pte	= true,
1075 	};
1076 	struct kvm_pgtable_walker walker = {
1077 		.cb		= stage2_map_walker,
1078 		.flags		= KVM_PGTABLE_WALK_TABLE_PRE |
1079 				  KVM_PGTABLE_WALK_LEAF,
1080 		.arg		= &map_data,
1081 	};
1082 
1083 	if (owner_id > KVM_MAX_OWNER_ID)
1084 		return -EINVAL;
1085 
1086 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1087 	return ret;
1088 }
1089 
1090 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1091 			       enum kvm_pgtable_walk_flags visit)
1092 {
1093 	struct kvm_pgtable *pgt = ctx->arg;
1094 	struct kvm_s2_mmu *mmu = pgt->mmu;
1095 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1096 	kvm_pte_t *childp = NULL;
1097 	bool need_flush = false;
1098 
1099 	if (!kvm_pte_valid(ctx->old)) {
1100 		if (stage2_pte_is_counted(ctx->old)) {
1101 			kvm_clear_pte(ctx->ptep);
1102 			mm_ops->put_page(ctx->ptep);
1103 		}
1104 		return 0;
1105 	}
1106 
1107 	if (kvm_pte_table(ctx->old, ctx->level)) {
1108 		childp = kvm_pte_follow(ctx->old, mm_ops);
1109 
1110 		if (mm_ops->page_count(childp) != 1)
1111 			return 0;
1112 	} else if (stage2_pte_cacheable(pgt, ctx->old)) {
1113 		need_flush = !stage2_has_fwb(pgt);
1114 	}
1115 
1116 	/*
1117 	 * This is similar to the map() path in that we unmap the entire
1118 	 * block entry and rely on the remaining portions being faulted
1119 	 * back lazily.
1120 	 */
1121 	stage2_unmap_put_pte(ctx, mmu, mm_ops);
1122 
1123 	if (need_flush && mm_ops->dcache_clean_inval_poc)
1124 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1125 					       kvm_granule_size(ctx->level));
1126 
1127 	if (childp)
1128 		mm_ops->put_page(childp);
1129 
1130 	return 0;
1131 }
1132 
1133 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1134 {
1135 	int ret;
1136 	struct kvm_pgtable_walker walker = {
1137 		.cb	= stage2_unmap_walker,
1138 		.arg	= pgt,
1139 		.flags	= KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1140 	};
1141 
1142 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1143 	if (stage2_unmap_defer_tlb_flush(pgt))
1144 		/* Perform the deferred TLB invalidations */
1145 		kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1146 
1147 	return ret;
1148 }
1149 
1150 struct stage2_attr_data {
1151 	kvm_pte_t			attr_set;
1152 	kvm_pte_t			attr_clr;
1153 	kvm_pte_t			pte;
1154 	u32				level;
1155 };
1156 
1157 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1158 			      enum kvm_pgtable_walk_flags visit)
1159 {
1160 	kvm_pte_t pte = ctx->old;
1161 	struct stage2_attr_data *data = ctx->arg;
1162 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1163 
1164 	if (!kvm_pte_valid(ctx->old))
1165 		return -EAGAIN;
1166 
1167 	data->level = ctx->level;
1168 	data->pte = pte;
1169 	pte &= ~data->attr_clr;
1170 	pte |= data->attr_set;
1171 
1172 	/*
1173 	 * We may race with the CPU trying to set the access flag here,
1174 	 * but worst-case the access flag update gets lost and will be
1175 	 * set on the next access instead.
1176 	 */
1177 	if (data->pte != pte) {
1178 		/*
1179 		 * Invalidate instruction cache before updating the guest
1180 		 * stage-2 PTE if we are going to add executable permission.
1181 		 */
1182 		if (mm_ops->icache_inval_pou &&
1183 		    stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1184 			mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1185 						  kvm_granule_size(ctx->level));
1186 
1187 		if (!stage2_try_set_pte(ctx, pte))
1188 			return -EAGAIN;
1189 	}
1190 
1191 	return 0;
1192 }
1193 
1194 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1195 				    u64 size, kvm_pte_t attr_set,
1196 				    kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1197 				    u32 *level, enum kvm_pgtable_walk_flags flags)
1198 {
1199 	int ret;
1200 	kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1201 	struct stage2_attr_data data = {
1202 		.attr_set	= attr_set & attr_mask,
1203 		.attr_clr	= attr_clr & attr_mask,
1204 	};
1205 	struct kvm_pgtable_walker walker = {
1206 		.cb		= stage2_attr_walker,
1207 		.arg		= &data,
1208 		.flags		= flags | KVM_PGTABLE_WALK_LEAF,
1209 	};
1210 
1211 	ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1212 	if (ret)
1213 		return ret;
1214 
1215 	if (orig_pte)
1216 		*orig_pte = data.pte;
1217 
1218 	if (level)
1219 		*level = data.level;
1220 	return 0;
1221 }
1222 
1223 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1224 {
1225 	return stage2_update_leaf_attrs(pgt, addr, size, 0,
1226 					KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1227 					NULL, NULL, 0);
1228 }
1229 
1230 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1231 {
1232 	kvm_pte_t pte = 0;
1233 	int ret;
1234 
1235 	ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1236 				       &pte, NULL,
1237 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1238 				       KVM_PGTABLE_WALK_SHARED);
1239 	if (!ret)
1240 		dsb(ishst);
1241 
1242 	return pte;
1243 }
1244 
1245 struct stage2_age_data {
1246 	bool	mkold;
1247 	bool	young;
1248 };
1249 
1250 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1251 			     enum kvm_pgtable_walk_flags visit)
1252 {
1253 	kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1254 	struct stage2_age_data *data = ctx->arg;
1255 
1256 	if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1257 		return 0;
1258 
1259 	data->young = true;
1260 
1261 	/*
1262 	 * stage2_age_walker() is always called while holding the MMU lock for
1263 	 * write, so this will always succeed. Nonetheless, this deliberately
1264 	 * follows the race detection pattern of the other stage-2 walkers in
1265 	 * case the locking mechanics of the MMU notifiers is ever changed.
1266 	 */
1267 	if (data->mkold && !stage2_try_set_pte(ctx, new))
1268 		return -EAGAIN;
1269 
1270 	/*
1271 	 * "But where's the TLBI?!", you scream.
1272 	 * "Over in the core code", I sigh.
1273 	 *
1274 	 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1275 	 */
1276 	return 0;
1277 }
1278 
1279 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1280 					 u64 size, bool mkold)
1281 {
1282 	struct stage2_age_data data = {
1283 		.mkold		= mkold,
1284 	};
1285 	struct kvm_pgtable_walker walker = {
1286 		.cb		= stage2_age_walker,
1287 		.arg		= &data,
1288 		.flags		= KVM_PGTABLE_WALK_LEAF,
1289 	};
1290 
1291 	WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1292 	return data.young;
1293 }
1294 
1295 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1296 				   enum kvm_pgtable_prot prot)
1297 {
1298 	int ret;
1299 	u32 level;
1300 	kvm_pte_t set = 0, clr = 0;
1301 
1302 	if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1303 		return -EINVAL;
1304 
1305 	if (prot & KVM_PGTABLE_PROT_R)
1306 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1307 
1308 	if (prot & KVM_PGTABLE_PROT_W)
1309 		set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1310 
1311 	if (prot & KVM_PGTABLE_PROT_X)
1312 		clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1313 
1314 	ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1315 				       KVM_PGTABLE_WALK_HANDLE_FAULT |
1316 				       KVM_PGTABLE_WALK_SHARED);
1317 	if (!ret)
1318 		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1319 	return ret;
1320 }
1321 
1322 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1323 			       enum kvm_pgtable_walk_flags visit)
1324 {
1325 	struct kvm_pgtable *pgt = ctx->arg;
1326 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1327 
1328 	if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
1329 		return 0;
1330 
1331 	if (mm_ops->dcache_clean_inval_poc)
1332 		mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1333 					       kvm_granule_size(ctx->level));
1334 	return 0;
1335 }
1336 
1337 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1338 {
1339 	struct kvm_pgtable_walker walker = {
1340 		.cb	= stage2_flush_walker,
1341 		.flags	= KVM_PGTABLE_WALK_LEAF,
1342 		.arg	= pgt,
1343 	};
1344 
1345 	if (stage2_has_fwb(pgt))
1346 		return 0;
1347 
1348 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1349 }
1350 
1351 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1352 					      u64 phys, u32 level,
1353 					      enum kvm_pgtable_prot prot,
1354 					      void *mc, bool force_pte)
1355 {
1356 	struct stage2_map_data map_data = {
1357 		.phys		= phys,
1358 		.mmu		= pgt->mmu,
1359 		.memcache	= mc,
1360 		.force_pte	= force_pte,
1361 	};
1362 	struct kvm_pgtable_walker walker = {
1363 		.cb		= stage2_map_walker,
1364 		.flags		= KVM_PGTABLE_WALK_LEAF |
1365 				  KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1366 				  KVM_PGTABLE_WALK_SKIP_CMO,
1367 		.arg		= &map_data,
1368 	};
1369 	/*
1370 	 * The input address (.addr) is irrelevant for walking an
1371 	 * unlinked table. Construct an ambiguous IA range to map
1372 	 * kvm_granule_size(level) worth of memory.
1373 	 */
1374 	struct kvm_pgtable_walk_data data = {
1375 		.walker	= &walker,
1376 		.addr	= 0,
1377 		.end	= kvm_granule_size(level),
1378 	};
1379 	struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1380 	kvm_pte_t *pgtable;
1381 	int ret;
1382 
1383 	if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1384 		return ERR_PTR(-EINVAL);
1385 
1386 	ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1387 	if (ret)
1388 		return ERR_PTR(ret);
1389 
1390 	pgtable = mm_ops->zalloc_page(mc);
1391 	if (!pgtable)
1392 		return ERR_PTR(-ENOMEM);
1393 
1394 	ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1395 				 level + 1);
1396 	if (ret) {
1397 		kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1398 		mm_ops->put_page(pgtable);
1399 		return ERR_PTR(ret);
1400 	}
1401 
1402 	return pgtable;
1403 }
1404 
1405 /*
1406  * Get the number of page-tables needed to replace a block with a
1407  * fully populated tree up to the PTE entries. Note that @level is
1408  * interpreted as in "level @level entry".
1409  */
1410 static int stage2_block_get_nr_page_tables(u32 level)
1411 {
1412 	switch (level) {
1413 	case 1:
1414 		return PTRS_PER_PTE + 1;
1415 	case 2:
1416 		return 1;
1417 	case 3:
1418 		return 0;
1419 	default:
1420 		WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1421 			     level >= KVM_PGTABLE_MAX_LEVELS);
1422 		return -EINVAL;
1423 	};
1424 }
1425 
1426 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1427 			       enum kvm_pgtable_walk_flags visit)
1428 {
1429 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1430 	struct kvm_mmu_memory_cache *mc = ctx->arg;
1431 	struct kvm_s2_mmu *mmu;
1432 	kvm_pte_t pte = ctx->old, new, *childp;
1433 	enum kvm_pgtable_prot prot;
1434 	u32 level = ctx->level;
1435 	bool force_pte;
1436 	int nr_pages;
1437 	u64 phys;
1438 
1439 	/* No huge-pages exist at the last level */
1440 	if (level == KVM_PGTABLE_MAX_LEVELS - 1)
1441 		return 0;
1442 
1443 	/* We only split valid block mappings */
1444 	if (!kvm_pte_valid(pte))
1445 		return 0;
1446 
1447 	nr_pages = stage2_block_get_nr_page_tables(level);
1448 	if (nr_pages < 0)
1449 		return nr_pages;
1450 
1451 	if (mc->nobjs >= nr_pages) {
1452 		/* Build a tree mapped down to the PTE granularity. */
1453 		force_pte = true;
1454 	} else {
1455 		/*
1456 		 * Don't force PTEs, so create_unlinked() below does
1457 		 * not populate the tree up to the PTE level. The
1458 		 * consequence is that the call will require a single
1459 		 * page of level 2 entries at level 1, or a single
1460 		 * page of PTEs at level 2. If we are at level 1, the
1461 		 * PTEs will be created recursively.
1462 		 */
1463 		force_pte = false;
1464 		nr_pages = 1;
1465 	}
1466 
1467 	if (mc->nobjs < nr_pages)
1468 		return -ENOMEM;
1469 
1470 	mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1471 	phys = kvm_pte_to_phys(pte);
1472 	prot = kvm_pgtable_stage2_pte_prot(pte);
1473 
1474 	childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1475 						    level, prot, mc, force_pte);
1476 	if (IS_ERR(childp))
1477 		return PTR_ERR(childp);
1478 
1479 	if (!stage2_try_break_pte(ctx, mmu)) {
1480 		kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1481 		mm_ops->put_page(childp);
1482 		return -EAGAIN;
1483 	}
1484 
1485 	/*
1486 	 * Note, the contents of the page table are guaranteed to be made
1487 	 * visible before the new PTE is assigned because stage2_make_pte()
1488 	 * writes the PTE using smp_store_release().
1489 	 */
1490 	new = kvm_init_table_pte(childp, mm_ops);
1491 	stage2_make_pte(ctx, new);
1492 	dsb(ishst);
1493 	return 0;
1494 }
1495 
1496 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1497 			     struct kvm_mmu_memory_cache *mc)
1498 {
1499 	struct kvm_pgtable_walker walker = {
1500 		.cb	= stage2_split_walker,
1501 		.flags	= KVM_PGTABLE_WALK_LEAF,
1502 		.arg	= mc,
1503 	};
1504 
1505 	return kvm_pgtable_walk(pgt, addr, size, &walker);
1506 }
1507 
1508 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1509 			      struct kvm_pgtable_mm_ops *mm_ops,
1510 			      enum kvm_pgtable_stage2_flags flags,
1511 			      kvm_pgtable_force_pte_cb_t force_pte_cb)
1512 {
1513 	size_t pgd_sz;
1514 	u64 vtcr = mmu->arch->vtcr;
1515 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1516 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1517 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1518 
1519 	pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1520 	pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1521 	if (!pgt->pgd)
1522 		return -ENOMEM;
1523 
1524 	pgt->ia_bits		= ia_bits;
1525 	pgt->start_level	= start_level;
1526 	pgt->mm_ops		= mm_ops;
1527 	pgt->mmu		= mmu;
1528 	pgt->flags		= flags;
1529 	pgt->force_pte_cb	= force_pte_cb;
1530 
1531 	/* Ensure zeroed PGD pages are visible to the hardware walker */
1532 	dsb(ishst);
1533 	return 0;
1534 }
1535 
1536 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1537 {
1538 	u32 ia_bits = VTCR_EL2_IPA(vtcr);
1539 	u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1540 	u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1541 
1542 	return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1543 }
1544 
1545 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1546 			      enum kvm_pgtable_walk_flags visit)
1547 {
1548 	struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1549 
1550 	if (!stage2_pte_is_counted(ctx->old))
1551 		return 0;
1552 
1553 	mm_ops->put_page(ctx->ptep);
1554 
1555 	if (kvm_pte_table(ctx->old, ctx->level))
1556 		mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1557 
1558 	return 0;
1559 }
1560 
1561 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1562 {
1563 	size_t pgd_sz;
1564 	struct kvm_pgtable_walker walker = {
1565 		.cb	= stage2_free_walker,
1566 		.flags	= KVM_PGTABLE_WALK_LEAF |
1567 			  KVM_PGTABLE_WALK_TABLE_POST,
1568 	};
1569 
1570 	WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1571 	pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1572 	pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1573 	pgt->pgd = NULL;
1574 }
1575 
1576 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level)
1577 {
1578 	kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1579 	struct kvm_pgtable_walker walker = {
1580 		.cb	= stage2_free_walker,
1581 		.flags	= KVM_PGTABLE_WALK_LEAF |
1582 			  KVM_PGTABLE_WALK_TABLE_POST,
1583 	};
1584 	struct kvm_pgtable_walk_data data = {
1585 		.walker	= &walker,
1586 
1587 		/*
1588 		 * At this point the IPA really doesn't matter, as the page
1589 		 * table being traversed has already been removed from the stage
1590 		 * 2. Set an appropriate range to cover the entire page table.
1591 		 */
1592 		.addr	= 0,
1593 		.end	= kvm_granule_size(level),
1594 	};
1595 
1596 	WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1597 
1598 	WARN_ON(mm_ops->page_count(pgtable) != 1);
1599 	mm_ops->put_page(pgtable);
1600 }
1601