1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2. 4 * No bombay mix was harmed in the writing of this file. 5 * 6 * Copyright (C) 2020 Google LLC 7 * Author: Will Deacon <will@kernel.org> 8 */ 9 10 #include <linux/bitfield.h> 11 #include <asm/kvm_pgtable.h> 12 #include <asm/stage2_pgtable.h> 13 14 15 #define KVM_PTE_TYPE BIT(1) 16 #define KVM_PTE_TYPE_BLOCK 0 17 #define KVM_PTE_TYPE_PAGE 1 18 #define KVM_PTE_TYPE_TABLE 1 19 20 #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2) 21 22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2) 23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6) 24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3 25 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1 26 #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8) 27 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3 28 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10) 29 30 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2) 31 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6) 32 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7) 33 #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8) 34 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3 35 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10) 36 37 #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51) 38 39 #define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55) 40 41 #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54) 42 43 #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54) 44 45 #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \ 46 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \ 47 KVM_PTE_LEAF_ATTR_HI_S2_XN) 48 49 #define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2) 50 #define KVM_MAX_OWNER_ID 1 51 52 struct kvm_pgtable_walk_data { 53 struct kvm_pgtable *pgt; 54 struct kvm_pgtable_walker *walker; 55 56 u64 addr; 57 u64 end; 58 }; 59 60 #define KVM_PHYS_INVALID (-1ULL) 61 62 static bool kvm_phys_is_valid(u64 phys) 63 { 64 return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_PARANGE_MAX)); 65 } 66 67 static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level) 68 { 69 u64 granule = kvm_granule_size(level); 70 71 if (!kvm_level_supports_block_mapping(level)) 72 return false; 73 74 if (granule > (end - addr)) 75 return false; 76 77 if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule)) 78 return false; 79 80 return IS_ALIGNED(addr, granule); 81 } 82 83 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level) 84 { 85 u64 shift = kvm_granule_shift(level); 86 u64 mask = BIT(PAGE_SHIFT - 3) - 1; 87 88 return (data->addr >> shift) & mask; 89 } 90 91 static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr) 92 { 93 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */ 94 u64 mask = BIT(pgt->ia_bits) - 1; 95 96 return (addr & mask) >> shift; 97 } 98 99 static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data) 100 { 101 return __kvm_pgd_page_idx(data->pgt, data->addr); 102 } 103 104 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level) 105 { 106 struct kvm_pgtable pgt = { 107 .ia_bits = ia_bits, 108 .start_level = start_level, 109 }; 110 111 return __kvm_pgd_page_idx(&pgt, -1ULL) + 1; 112 } 113 114 static bool kvm_pte_table(kvm_pte_t pte, u32 level) 115 { 116 if (level == KVM_PGTABLE_MAX_LEVELS - 1) 117 return false; 118 119 if (!kvm_pte_valid(pte)) 120 return false; 121 122 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE; 123 } 124 125 static kvm_pte_t kvm_phys_to_pte(u64 pa) 126 { 127 kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK; 128 129 if (PAGE_SHIFT == 16) 130 pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48); 131 132 return pte; 133 } 134 135 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops) 136 { 137 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte)); 138 } 139 140 static void kvm_clear_pte(kvm_pte_t *ptep) 141 { 142 WRITE_ONCE(*ptep, 0); 143 } 144 145 static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp, 146 struct kvm_pgtable_mm_ops *mm_ops) 147 { 148 kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp)); 149 150 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE); 151 pte |= KVM_PTE_VALID; 152 153 WARN_ON(kvm_pte_valid(old)); 154 smp_store_release(ptep, pte); 155 } 156 157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level) 158 { 159 kvm_pte_t pte = kvm_phys_to_pte(pa); 160 u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE : 161 KVM_PTE_TYPE_BLOCK; 162 163 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI); 164 pte |= FIELD_PREP(KVM_PTE_TYPE, type); 165 pte |= KVM_PTE_VALID; 166 167 return pte; 168 } 169 170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id) 171 { 172 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id); 173 } 174 175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr, 176 u32 level, kvm_pte_t *ptep, 177 enum kvm_pgtable_walk_flags flag) 178 { 179 struct kvm_pgtable_walker *walker = data->walker; 180 return walker->cb(addr, data->end, level, ptep, flag, walker->arg); 181 } 182 183 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, 184 kvm_pte_t *pgtable, u32 level); 185 186 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, 187 kvm_pte_t *ptep, u32 level) 188 { 189 int ret = 0; 190 u64 addr = data->addr; 191 kvm_pte_t *childp, pte = *ptep; 192 bool table = kvm_pte_table(pte, level); 193 enum kvm_pgtable_walk_flags flags = data->walker->flags; 194 195 if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) { 196 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, 197 KVM_PGTABLE_WALK_TABLE_PRE); 198 } 199 200 if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) { 201 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, 202 KVM_PGTABLE_WALK_LEAF); 203 pte = *ptep; 204 table = kvm_pte_table(pte, level); 205 } 206 207 if (ret) 208 goto out; 209 210 if (!table) { 211 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level)); 212 data->addr += kvm_granule_size(level); 213 goto out; 214 } 215 216 childp = kvm_pte_follow(pte, data->pgt->mm_ops); 217 ret = __kvm_pgtable_walk(data, childp, level + 1); 218 if (ret) 219 goto out; 220 221 if (flags & KVM_PGTABLE_WALK_TABLE_POST) { 222 ret = kvm_pgtable_visitor_cb(data, addr, level, ptep, 223 KVM_PGTABLE_WALK_TABLE_POST); 224 } 225 226 out: 227 return ret; 228 } 229 230 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data, 231 kvm_pte_t *pgtable, u32 level) 232 { 233 u32 idx; 234 int ret = 0; 235 236 if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS)) 237 return -EINVAL; 238 239 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) { 240 kvm_pte_t *ptep = &pgtable[idx]; 241 242 if (data->addr >= data->end) 243 break; 244 245 ret = __kvm_pgtable_visit(data, ptep, level); 246 if (ret) 247 break; 248 } 249 250 return ret; 251 } 252 253 static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data) 254 { 255 u32 idx; 256 int ret = 0; 257 struct kvm_pgtable *pgt = data->pgt; 258 u64 limit = BIT(pgt->ia_bits); 259 260 if (data->addr > limit || data->end > limit) 261 return -ERANGE; 262 263 if (!pgt->pgd) 264 return -EINVAL; 265 266 for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) { 267 kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE]; 268 269 ret = __kvm_pgtable_walk(data, ptep, pgt->start_level); 270 if (ret) 271 break; 272 } 273 274 return ret; 275 } 276 277 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, 278 struct kvm_pgtable_walker *walker) 279 { 280 struct kvm_pgtable_walk_data walk_data = { 281 .pgt = pgt, 282 .addr = ALIGN_DOWN(addr, PAGE_SIZE), 283 .end = PAGE_ALIGN(walk_data.addr + size), 284 .walker = walker, 285 }; 286 287 return _kvm_pgtable_walk(&walk_data); 288 } 289 290 struct leaf_walk_data { 291 kvm_pte_t pte; 292 u32 level; 293 }; 294 295 static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 296 enum kvm_pgtable_walk_flags flag, void * const arg) 297 { 298 struct leaf_walk_data *data = arg; 299 300 data->pte = *ptep; 301 data->level = level; 302 303 return 0; 304 } 305 306 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr, 307 kvm_pte_t *ptep, u32 *level) 308 { 309 struct leaf_walk_data data; 310 struct kvm_pgtable_walker walker = { 311 .cb = leaf_walker, 312 .flags = KVM_PGTABLE_WALK_LEAF, 313 .arg = &data, 314 }; 315 int ret; 316 317 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE), 318 PAGE_SIZE, &walker); 319 if (!ret) { 320 if (ptep) 321 *ptep = data.pte; 322 if (level) 323 *level = data.level; 324 } 325 326 return ret; 327 } 328 329 struct hyp_map_data { 330 u64 phys; 331 kvm_pte_t attr; 332 struct kvm_pgtable_mm_ops *mm_ops; 333 }; 334 335 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep) 336 { 337 bool device = prot & KVM_PGTABLE_PROT_DEVICE; 338 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL; 339 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype); 340 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS; 341 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW : 342 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO; 343 344 if (!(prot & KVM_PGTABLE_PROT_R)) 345 return -EINVAL; 346 347 if (prot & KVM_PGTABLE_PROT_X) { 348 if (prot & KVM_PGTABLE_PROT_W) 349 return -EINVAL; 350 351 if (device) 352 return -EINVAL; 353 } else { 354 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; 355 } 356 357 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap); 358 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh); 359 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF; 360 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; 361 *ptep = attr; 362 363 return 0; 364 } 365 366 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte) 367 { 368 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; 369 u32 ap; 370 371 if (!kvm_pte_valid(pte)) 372 return prot; 373 374 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN)) 375 prot |= KVM_PGTABLE_PROT_X; 376 377 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte); 378 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO) 379 prot |= KVM_PGTABLE_PROT_R; 380 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW) 381 prot |= KVM_PGTABLE_PROT_RW; 382 383 return prot; 384 } 385 386 static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level, 387 kvm_pte_t *ptep, struct hyp_map_data *data) 388 { 389 kvm_pte_t new, old = *ptep; 390 u64 granule = kvm_granule_size(level), phys = data->phys; 391 392 if (!kvm_block_mapping_supported(addr, end, phys, level)) 393 return false; 394 395 data->phys += granule; 396 new = kvm_init_valid_leaf_pte(phys, data->attr, level); 397 if (old == new) 398 return true; 399 if (!kvm_pte_valid(old)) 400 data->mm_ops->get_page(ptep); 401 else if (WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW)) 402 return false; 403 404 smp_store_release(ptep, new); 405 return true; 406 } 407 408 static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 409 enum kvm_pgtable_walk_flags flag, void * const arg) 410 { 411 kvm_pte_t *childp; 412 struct hyp_map_data *data = arg; 413 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 414 415 if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg)) 416 return 0; 417 418 if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) 419 return -EINVAL; 420 421 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL); 422 if (!childp) 423 return -ENOMEM; 424 425 kvm_set_table_pte(ptep, childp, mm_ops); 426 mm_ops->get_page(ptep); 427 return 0; 428 } 429 430 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys, 431 enum kvm_pgtable_prot prot) 432 { 433 int ret; 434 struct hyp_map_data map_data = { 435 .phys = ALIGN_DOWN(phys, PAGE_SIZE), 436 .mm_ops = pgt->mm_ops, 437 }; 438 struct kvm_pgtable_walker walker = { 439 .cb = hyp_map_walker, 440 .flags = KVM_PGTABLE_WALK_LEAF, 441 .arg = &map_data, 442 }; 443 444 ret = hyp_set_prot_attr(prot, &map_data.attr); 445 if (ret) 446 return ret; 447 448 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 449 dsb(ishst); 450 isb(); 451 return ret; 452 } 453 454 struct hyp_unmap_data { 455 u64 unmapped; 456 struct kvm_pgtable_mm_ops *mm_ops; 457 }; 458 459 static int hyp_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 460 enum kvm_pgtable_walk_flags flag, void * const arg) 461 { 462 kvm_pte_t pte = *ptep, *childp = NULL; 463 u64 granule = kvm_granule_size(level); 464 struct hyp_unmap_data *data = arg; 465 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 466 467 if (!kvm_pte_valid(pte)) 468 return -EINVAL; 469 470 if (kvm_pte_table(pte, level)) { 471 childp = kvm_pte_follow(pte, mm_ops); 472 473 if (mm_ops->page_count(childp) != 1) 474 return 0; 475 476 kvm_clear_pte(ptep); 477 dsb(ishst); 478 __tlbi_level(vae2is, __TLBI_VADDR(addr, 0), level); 479 } else { 480 if (end - addr < granule) 481 return -EINVAL; 482 483 kvm_clear_pte(ptep); 484 dsb(ishst); 485 __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level); 486 data->unmapped += granule; 487 } 488 489 dsb(ish); 490 isb(); 491 mm_ops->put_page(ptep); 492 493 if (childp) 494 mm_ops->put_page(childp); 495 496 return 0; 497 } 498 499 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) 500 { 501 struct hyp_unmap_data unmap_data = { 502 .mm_ops = pgt->mm_ops, 503 }; 504 struct kvm_pgtable_walker walker = { 505 .cb = hyp_unmap_walker, 506 .arg = &unmap_data, 507 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 508 }; 509 510 if (!pgt->mm_ops->page_count) 511 return 0; 512 513 kvm_pgtable_walk(pgt, addr, size, &walker); 514 return unmap_data.unmapped; 515 } 516 517 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits, 518 struct kvm_pgtable_mm_ops *mm_ops) 519 { 520 u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits); 521 522 pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL); 523 if (!pgt->pgd) 524 return -ENOMEM; 525 526 pgt->ia_bits = va_bits; 527 pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels; 528 pgt->mm_ops = mm_ops; 529 pgt->mmu = NULL; 530 pgt->force_pte_cb = NULL; 531 532 return 0; 533 } 534 535 static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 536 enum kvm_pgtable_walk_flags flag, void * const arg) 537 { 538 struct kvm_pgtable_mm_ops *mm_ops = arg; 539 kvm_pte_t pte = *ptep; 540 541 if (!kvm_pte_valid(pte)) 542 return 0; 543 544 mm_ops->put_page(ptep); 545 546 if (kvm_pte_table(pte, level)) 547 mm_ops->put_page(kvm_pte_follow(pte, mm_ops)); 548 549 return 0; 550 } 551 552 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) 553 { 554 struct kvm_pgtable_walker walker = { 555 .cb = hyp_free_walker, 556 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 557 .arg = pgt->mm_ops, 558 }; 559 560 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); 561 pgt->mm_ops->put_page(pgt->pgd); 562 pgt->pgd = NULL; 563 } 564 565 struct stage2_map_data { 566 u64 phys; 567 kvm_pte_t attr; 568 u8 owner_id; 569 570 kvm_pte_t *anchor; 571 kvm_pte_t *childp; 572 573 struct kvm_s2_mmu *mmu; 574 void *memcache; 575 576 struct kvm_pgtable_mm_ops *mm_ops; 577 578 /* Force mappings to page granularity */ 579 bool force_pte; 580 }; 581 582 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift) 583 { 584 u64 vtcr = VTCR_EL2_FLAGS; 585 u8 lvls; 586 587 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT; 588 vtcr |= VTCR_EL2_T0SZ(phys_shift); 589 /* 590 * Use a minimum 2 level page table to prevent splitting 591 * host PMD huge pages at stage2. 592 */ 593 lvls = stage2_pgtable_levels(phys_shift); 594 if (lvls < 2) 595 lvls = 2; 596 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls); 597 598 /* 599 * Enable the Hardware Access Flag management, unconditionally 600 * on all CPUs. The features is RES0 on CPUs without the support 601 * and must be ignored by the CPUs. 602 */ 603 vtcr |= VTCR_EL2_HA; 604 605 /* Set the vmid bits */ 606 vtcr |= (get_vmid_bits(mmfr1) == 16) ? 607 VTCR_EL2_VS_16BIT : 608 VTCR_EL2_VS_8BIT; 609 610 return vtcr; 611 } 612 613 static bool stage2_has_fwb(struct kvm_pgtable *pgt) 614 { 615 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 616 return false; 617 618 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB); 619 } 620 621 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt)) 622 623 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot, 624 kvm_pte_t *ptep) 625 { 626 bool device = prot & KVM_PGTABLE_PROT_DEVICE; 627 kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) : 628 KVM_S2_MEMATTR(pgt, NORMAL); 629 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS; 630 631 if (!(prot & KVM_PGTABLE_PROT_X)) 632 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; 633 else if (device) 634 return -EINVAL; 635 636 if (prot & KVM_PGTABLE_PROT_R) 637 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; 638 639 if (prot & KVM_PGTABLE_PROT_W) 640 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; 641 642 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh); 643 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF; 644 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW; 645 *ptep = attr; 646 647 return 0; 648 } 649 650 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte) 651 { 652 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW; 653 654 if (!kvm_pte_valid(pte)) 655 return prot; 656 657 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R) 658 prot |= KVM_PGTABLE_PROT_R; 659 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W) 660 prot |= KVM_PGTABLE_PROT_W; 661 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN)) 662 prot |= KVM_PGTABLE_PROT_X; 663 664 return prot; 665 } 666 667 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new) 668 { 669 if (!kvm_pte_valid(old) || !kvm_pte_valid(new)) 670 return true; 671 672 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS)); 673 } 674 675 static bool stage2_pte_is_counted(kvm_pte_t pte) 676 { 677 /* 678 * The refcount tracks valid entries as well as invalid entries if they 679 * encode ownership of a page to another entity than the page-table 680 * owner, whose id is 0. 681 */ 682 return !!pte; 683 } 684 685 static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr, 686 u32 level, struct kvm_pgtable_mm_ops *mm_ops) 687 { 688 /* 689 * Clear the existing PTE, and perform break-before-make with 690 * TLB maintenance if it was valid. 691 */ 692 if (kvm_pte_valid(*ptep)) { 693 kvm_clear_pte(ptep); 694 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level); 695 } 696 697 mm_ops->put_page(ptep); 698 } 699 700 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte) 701 { 702 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR; 703 return memattr == KVM_S2_MEMATTR(pgt, NORMAL); 704 } 705 706 static bool stage2_pte_executable(kvm_pte_t pte) 707 { 708 return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN); 709 } 710 711 static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level, 712 struct stage2_map_data *data) 713 { 714 if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1))) 715 return false; 716 717 return kvm_block_mapping_supported(addr, end, data->phys, level); 718 } 719 720 static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level, 721 kvm_pte_t *ptep, 722 struct stage2_map_data *data) 723 { 724 kvm_pte_t new, old = *ptep; 725 u64 granule = kvm_granule_size(level), phys = data->phys; 726 struct kvm_pgtable *pgt = data->mmu->pgt; 727 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 728 729 if (!stage2_leaf_mapping_allowed(addr, end, level, data)) 730 return -E2BIG; 731 732 if (kvm_phys_is_valid(phys)) 733 new = kvm_init_valid_leaf_pte(phys, data->attr, level); 734 else 735 new = kvm_init_invalid_leaf_owner(data->owner_id); 736 737 if (stage2_pte_is_counted(old)) { 738 /* 739 * Skip updating the PTE if we are trying to recreate the exact 740 * same mapping or only change the access permissions. Instead, 741 * the vCPU will exit one more time from guest if still needed 742 * and then go through the path of relaxing permissions. 743 */ 744 if (!stage2_pte_needs_update(old, new)) 745 return -EAGAIN; 746 747 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops); 748 } 749 750 /* Perform CMOs before installation of the guest stage-2 PTE */ 751 if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new)) 752 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops), 753 granule); 754 755 if (mm_ops->icache_inval_pou && stage2_pte_executable(new)) 756 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule); 757 758 smp_store_release(ptep, new); 759 if (stage2_pte_is_counted(new)) 760 mm_ops->get_page(ptep); 761 if (kvm_phys_is_valid(phys)) 762 data->phys += granule; 763 return 0; 764 } 765 766 static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level, 767 kvm_pte_t *ptep, 768 struct stage2_map_data *data) 769 { 770 if (data->anchor) 771 return 0; 772 773 if (!stage2_leaf_mapping_allowed(addr, end, level, data)) 774 return 0; 775 776 data->childp = kvm_pte_follow(*ptep, data->mm_ops); 777 kvm_clear_pte(ptep); 778 779 /* 780 * Invalidate the whole stage-2, as we may have numerous leaf 781 * entries below us which would otherwise need invalidating 782 * individually. 783 */ 784 kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu); 785 data->anchor = ptep; 786 return 0; 787 } 788 789 static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 790 struct stage2_map_data *data) 791 { 792 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 793 kvm_pte_t *childp, pte = *ptep; 794 int ret; 795 796 if (data->anchor) { 797 if (stage2_pte_is_counted(pte)) 798 mm_ops->put_page(ptep); 799 800 return 0; 801 } 802 803 ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data); 804 if (ret != -E2BIG) 805 return ret; 806 807 if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1)) 808 return -EINVAL; 809 810 if (!data->memcache) 811 return -ENOMEM; 812 813 childp = mm_ops->zalloc_page(data->memcache); 814 if (!childp) 815 return -ENOMEM; 816 817 /* 818 * If we've run into an existing block mapping then replace it with 819 * a table. Accesses beyond 'end' that fall within the new table 820 * will be mapped lazily. 821 */ 822 if (stage2_pte_is_counted(pte)) 823 stage2_put_pte(ptep, data->mmu, addr, level, mm_ops); 824 825 kvm_set_table_pte(ptep, childp, mm_ops); 826 mm_ops->get_page(ptep); 827 828 return 0; 829 } 830 831 static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level, 832 kvm_pte_t *ptep, 833 struct stage2_map_data *data) 834 { 835 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 836 kvm_pte_t *childp; 837 int ret = 0; 838 839 if (!data->anchor) 840 return 0; 841 842 if (data->anchor == ptep) { 843 childp = data->childp; 844 data->anchor = NULL; 845 data->childp = NULL; 846 ret = stage2_map_walk_leaf(addr, end, level, ptep, data); 847 } else { 848 childp = kvm_pte_follow(*ptep, mm_ops); 849 } 850 851 mm_ops->put_page(childp); 852 mm_ops->put_page(ptep); 853 854 return ret; 855 } 856 857 /* 858 * This is a little fiddly, as we use all three of the walk flags. The idea 859 * is that the TABLE_PRE callback runs for table entries on the way down, 860 * looking for table entries which we could conceivably replace with a 861 * block entry for this mapping. If it finds one, then it sets the 'anchor' 862 * field in 'struct stage2_map_data' to point at the table entry, before 863 * clearing the entry to zero and descending into the now detached table. 864 * 865 * The behaviour of the LEAF callback then depends on whether or not the 866 * anchor has been set. If not, then we're not using a block mapping higher 867 * up the table and we perform the mapping at the existing leaves instead. 868 * If, on the other hand, the anchor _is_ set, then we drop references to 869 * all valid leaves so that the pages beneath the anchor can be freed. 870 * 871 * Finally, the TABLE_POST callback does nothing if the anchor has not 872 * been set, but otherwise frees the page-table pages while walking back up 873 * the page-table, installing the block entry when it revisits the anchor 874 * pointer and clearing the anchor to NULL. 875 */ 876 static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 877 enum kvm_pgtable_walk_flags flag, void * const arg) 878 { 879 struct stage2_map_data *data = arg; 880 881 switch (flag) { 882 case KVM_PGTABLE_WALK_TABLE_PRE: 883 return stage2_map_walk_table_pre(addr, end, level, ptep, data); 884 case KVM_PGTABLE_WALK_LEAF: 885 return stage2_map_walk_leaf(addr, end, level, ptep, data); 886 case KVM_PGTABLE_WALK_TABLE_POST: 887 return stage2_map_walk_table_post(addr, end, level, ptep, data); 888 } 889 890 return -EINVAL; 891 } 892 893 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size, 894 u64 phys, enum kvm_pgtable_prot prot, 895 void *mc) 896 { 897 int ret; 898 struct stage2_map_data map_data = { 899 .phys = ALIGN_DOWN(phys, PAGE_SIZE), 900 .mmu = pgt->mmu, 901 .memcache = mc, 902 .mm_ops = pgt->mm_ops, 903 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot), 904 }; 905 struct kvm_pgtable_walker walker = { 906 .cb = stage2_map_walker, 907 .flags = KVM_PGTABLE_WALK_TABLE_PRE | 908 KVM_PGTABLE_WALK_LEAF | 909 KVM_PGTABLE_WALK_TABLE_POST, 910 .arg = &map_data, 911 }; 912 913 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys))) 914 return -EINVAL; 915 916 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); 917 if (ret) 918 return ret; 919 920 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 921 dsb(ishst); 922 return ret; 923 } 924 925 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size, 926 void *mc, u8 owner_id) 927 { 928 int ret; 929 struct stage2_map_data map_data = { 930 .phys = KVM_PHYS_INVALID, 931 .mmu = pgt->mmu, 932 .memcache = mc, 933 .mm_ops = pgt->mm_ops, 934 .owner_id = owner_id, 935 .force_pte = true, 936 }; 937 struct kvm_pgtable_walker walker = { 938 .cb = stage2_map_walker, 939 .flags = KVM_PGTABLE_WALK_TABLE_PRE | 940 KVM_PGTABLE_WALK_LEAF | 941 KVM_PGTABLE_WALK_TABLE_POST, 942 .arg = &map_data, 943 }; 944 945 if (owner_id > KVM_MAX_OWNER_ID) 946 return -EINVAL; 947 948 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 949 return ret; 950 } 951 952 static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 953 enum kvm_pgtable_walk_flags flag, 954 void * const arg) 955 { 956 struct kvm_pgtable *pgt = arg; 957 struct kvm_s2_mmu *mmu = pgt->mmu; 958 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; 959 kvm_pte_t pte = *ptep, *childp = NULL; 960 bool need_flush = false; 961 962 if (!kvm_pte_valid(pte)) { 963 if (stage2_pte_is_counted(pte)) { 964 kvm_clear_pte(ptep); 965 mm_ops->put_page(ptep); 966 } 967 return 0; 968 } 969 970 if (kvm_pte_table(pte, level)) { 971 childp = kvm_pte_follow(pte, mm_ops); 972 973 if (mm_ops->page_count(childp) != 1) 974 return 0; 975 } else if (stage2_pte_cacheable(pgt, pte)) { 976 need_flush = !stage2_has_fwb(pgt); 977 } 978 979 /* 980 * This is similar to the map() path in that we unmap the entire 981 * block entry and rely on the remaining portions being faulted 982 * back lazily. 983 */ 984 stage2_put_pte(ptep, mmu, addr, level, mm_ops); 985 986 if (need_flush) { 987 kvm_pte_t *pte_follow = kvm_pte_follow(pte, mm_ops); 988 989 dcache_clean_inval_poc((unsigned long)pte_follow, 990 (unsigned long)pte_follow + 991 kvm_granule_size(level)); 992 } 993 994 if (childp) 995 mm_ops->put_page(childp); 996 997 return 0; 998 } 999 1000 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size) 1001 { 1002 struct kvm_pgtable_walker walker = { 1003 .cb = stage2_unmap_walker, 1004 .arg = pgt, 1005 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST, 1006 }; 1007 1008 return kvm_pgtable_walk(pgt, addr, size, &walker); 1009 } 1010 1011 struct stage2_attr_data { 1012 kvm_pte_t attr_set; 1013 kvm_pte_t attr_clr; 1014 kvm_pte_t pte; 1015 u32 level; 1016 struct kvm_pgtable_mm_ops *mm_ops; 1017 }; 1018 1019 static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 1020 enum kvm_pgtable_walk_flags flag, 1021 void * const arg) 1022 { 1023 kvm_pte_t pte = *ptep; 1024 struct stage2_attr_data *data = arg; 1025 struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops; 1026 1027 if (!kvm_pte_valid(pte)) 1028 return 0; 1029 1030 data->level = level; 1031 data->pte = pte; 1032 pte &= ~data->attr_clr; 1033 pte |= data->attr_set; 1034 1035 /* 1036 * We may race with the CPU trying to set the access flag here, 1037 * but worst-case the access flag update gets lost and will be 1038 * set on the next access instead. 1039 */ 1040 if (data->pte != pte) { 1041 /* 1042 * Invalidate instruction cache before updating the guest 1043 * stage-2 PTE if we are going to add executable permission. 1044 */ 1045 if (mm_ops->icache_inval_pou && 1046 stage2_pte_executable(pte) && !stage2_pte_executable(*ptep)) 1047 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops), 1048 kvm_granule_size(level)); 1049 WRITE_ONCE(*ptep, pte); 1050 } 1051 1052 return 0; 1053 } 1054 1055 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr, 1056 u64 size, kvm_pte_t attr_set, 1057 kvm_pte_t attr_clr, kvm_pte_t *orig_pte, 1058 u32 *level) 1059 { 1060 int ret; 1061 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI; 1062 struct stage2_attr_data data = { 1063 .attr_set = attr_set & attr_mask, 1064 .attr_clr = attr_clr & attr_mask, 1065 .mm_ops = pgt->mm_ops, 1066 }; 1067 struct kvm_pgtable_walker walker = { 1068 .cb = stage2_attr_walker, 1069 .arg = &data, 1070 .flags = KVM_PGTABLE_WALK_LEAF, 1071 }; 1072 1073 ret = kvm_pgtable_walk(pgt, addr, size, &walker); 1074 if (ret) 1075 return ret; 1076 1077 if (orig_pte) 1078 *orig_pte = data.pte; 1079 1080 if (level) 1081 *level = data.level; 1082 return 0; 1083 } 1084 1085 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size) 1086 { 1087 return stage2_update_leaf_attrs(pgt, addr, size, 0, 1088 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W, 1089 NULL, NULL); 1090 } 1091 1092 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr) 1093 { 1094 kvm_pte_t pte = 0; 1095 stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0, 1096 &pte, NULL); 1097 dsb(ishst); 1098 return pte; 1099 } 1100 1101 kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr) 1102 { 1103 kvm_pte_t pte = 0; 1104 stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF, 1105 &pte, NULL); 1106 /* 1107 * "But where's the TLBI?!", you scream. 1108 * "Over in the core code", I sigh. 1109 * 1110 * See the '->clear_flush_young()' callback on the KVM mmu notifier. 1111 */ 1112 return pte; 1113 } 1114 1115 bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr) 1116 { 1117 kvm_pte_t pte = 0; 1118 stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL); 1119 return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF; 1120 } 1121 1122 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, 1123 enum kvm_pgtable_prot prot) 1124 { 1125 int ret; 1126 u32 level; 1127 kvm_pte_t set = 0, clr = 0; 1128 1129 if (prot & KVM_PTE_LEAF_ATTR_HI_SW) 1130 return -EINVAL; 1131 1132 if (prot & KVM_PGTABLE_PROT_R) 1133 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R; 1134 1135 if (prot & KVM_PGTABLE_PROT_W) 1136 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W; 1137 1138 if (prot & KVM_PGTABLE_PROT_X) 1139 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN; 1140 1141 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level); 1142 if (!ret) 1143 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level); 1144 return ret; 1145 } 1146 1147 static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 1148 enum kvm_pgtable_walk_flags flag, 1149 void * const arg) 1150 { 1151 struct kvm_pgtable *pgt = arg; 1152 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; 1153 kvm_pte_t pte = *ptep; 1154 kvm_pte_t *pte_follow; 1155 1156 if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pgt, pte)) 1157 return 0; 1158 1159 pte_follow = kvm_pte_follow(pte, mm_ops); 1160 dcache_clean_inval_poc((unsigned long)pte_follow, 1161 (unsigned long)pte_follow + 1162 kvm_granule_size(level)); 1163 return 0; 1164 } 1165 1166 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) 1167 { 1168 struct kvm_pgtable_walker walker = { 1169 .cb = stage2_flush_walker, 1170 .flags = KVM_PGTABLE_WALK_LEAF, 1171 .arg = pgt, 1172 }; 1173 1174 if (stage2_has_fwb(pgt)) 1175 return 0; 1176 1177 return kvm_pgtable_walk(pgt, addr, size, &walker); 1178 } 1179 1180 1181 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu, 1182 struct kvm_pgtable_mm_ops *mm_ops, 1183 enum kvm_pgtable_stage2_flags flags, 1184 kvm_pgtable_force_pte_cb_t force_pte_cb) 1185 { 1186 size_t pgd_sz; 1187 u64 vtcr = mmu->arch->vtcr; 1188 u32 ia_bits = VTCR_EL2_IPA(vtcr); 1189 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); 1190 u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0; 1191 1192 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE; 1193 pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz); 1194 if (!pgt->pgd) 1195 return -ENOMEM; 1196 1197 pgt->ia_bits = ia_bits; 1198 pgt->start_level = start_level; 1199 pgt->mm_ops = mm_ops; 1200 pgt->mmu = mmu; 1201 pgt->flags = flags; 1202 pgt->force_pte_cb = force_pte_cb; 1203 1204 /* Ensure zeroed PGD pages are visible to the hardware walker */ 1205 dsb(ishst); 1206 return 0; 1207 } 1208 1209 static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep, 1210 enum kvm_pgtable_walk_flags flag, 1211 void * const arg) 1212 { 1213 struct kvm_pgtable_mm_ops *mm_ops = arg; 1214 kvm_pte_t pte = *ptep; 1215 1216 if (!stage2_pte_is_counted(pte)) 1217 return 0; 1218 1219 mm_ops->put_page(ptep); 1220 1221 if (kvm_pte_table(pte, level)) 1222 mm_ops->put_page(kvm_pte_follow(pte, mm_ops)); 1223 1224 return 0; 1225 } 1226 1227 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) 1228 { 1229 size_t pgd_sz; 1230 struct kvm_pgtable_walker walker = { 1231 .cb = stage2_free_walker, 1232 .flags = KVM_PGTABLE_WALK_LEAF | 1233 KVM_PGTABLE_WALK_TABLE_POST, 1234 .arg = pgt->mm_ops, 1235 }; 1236 1237 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker)); 1238 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE; 1239 pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz); 1240 pgt->pgd = NULL; 1241 } 1242