1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
4 * No bombay mix was harmed in the writing of this file.
5 *
6 * Copyright (C) 2020 Google LLC
7 * Author: Will Deacon <will@kernel.org>
8 */
9
10 #include <linux/bitfield.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13
14
15 #define KVM_PTE_TYPE BIT(1)
16 #define KVM_PTE_TYPE_BLOCK 0
17 #define KVM_PTE_TYPE_PAGE 1
18 #define KVM_PTE_TYPE_TABLE 1
19
20 #define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
21
22 #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
23 #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
24 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO \
25 ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; })
26 #define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW \
27 ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; })
28 #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
29 #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
30 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
31
32 #define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
33 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
34 #define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
35 #define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
36 #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
37 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
38
39 #define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 50)
40
41 #define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55)
42
43 #define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
44
45 #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
46
47 #define KVM_PTE_LEAF_ATTR_HI_S1_GP BIT(50)
48
49 #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
50 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
51 KVM_PTE_LEAF_ATTR_HI_S2_XN)
52
53 #define KVM_INVALID_PTE_OWNER_MASK GENMASK(9, 2)
54 #define KVM_MAX_OWNER_ID 1
55
56 /*
57 * Used to indicate a pte for which a 'break-before-make' sequence is in
58 * progress.
59 */
60 #define KVM_INVALID_PTE_LOCKED BIT(10)
61
62 struct kvm_pgtable_walk_data {
63 struct kvm_pgtable_walker *walker;
64
65 const u64 start;
66 u64 addr;
67 const u64 end;
68 };
69
kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx * ctx)70 static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx)
71 {
72 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI);
73 }
74
kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx * ctx)75 static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx)
76 {
77 return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO);
78 }
79
kvm_phys_is_valid(u64 phys)80 static bool kvm_phys_is_valid(u64 phys)
81 {
82 return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
83 }
84
kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx * ctx,u64 phys)85 static bool kvm_block_mapping_supported(const struct kvm_pgtable_visit_ctx *ctx, u64 phys)
86 {
87 u64 granule = kvm_granule_size(ctx->level);
88
89 if (!kvm_level_supports_block_mapping(ctx->level))
90 return false;
91
92 if (granule > (ctx->end - ctx->addr))
93 return false;
94
95 if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
96 return false;
97
98 return IS_ALIGNED(ctx->addr, granule);
99 }
100
kvm_pgtable_idx(struct kvm_pgtable_walk_data * data,u32 level)101 static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
102 {
103 u64 shift = kvm_granule_shift(level);
104 u64 mask = BIT(PAGE_SHIFT - 3) - 1;
105
106 return (data->addr >> shift) & mask;
107 }
108
kvm_pgd_page_idx(struct kvm_pgtable * pgt,u64 addr)109 static u32 kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
110 {
111 u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
112 u64 mask = BIT(pgt->ia_bits) - 1;
113
114 return (addr & mask) >> shift;
115 }
116
kvm_pgd_pages(u32 ia_bits,u32 start_level)117 static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
118 {
119 struct kvm_pgtable pgt = {
120 .ia_bits = ia_bits,
121 .start_level = start_level,
122 };
123
124 return kvm_pgd_page_idx(&pgt, -1ULL) + 1;
125 }
126
kvm_pte_table(kvm_pte_t pte,u32 level)127 static bool kvm_pte_table(kvm_pte_t pte, u32 level)
128 {
129 if (level == KVM_PGTABLE_MAX_LEVELS - 1)
130 return false;
131
132 if (!kvm_pte_valid(pte))
133 return false;
134
135 return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
136 }
137
kvm_pte_follow(kvm_pte_t pte,struct kvm_pgtable_mm_ops * mm_ops)138 static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte, struct kvm_pgtable_mm_ops *mm_ops)
139 {
140 return mm_ops->phys_to_virt(kvm_pte_to_phys(pte));
141 }
142
kvm_clear_pte(kvm_pte_t * ptep)143 static void kvm_clear_pte(kvm_pte_t *ptep)
144 {
145 WRITE_ONCE(*ptep, 0);
146 }
147
kvm_init_table_pte(kvm_pte_t * childp,struct kvm_pgtable_mm_ops * mm_ops)148 static kvm_pte_t kvm_init_table_pte(kvm_pte_t *childp, struct kvm_pgtable_mm_ops *mm_ops)
149 {
150 kvm_pte_t pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
151
152 pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
153 pte |= KVM_PTE_VALID;
154 return pte;
155 }
156
kvm_init_valid_leaf_pte(u64 pa,kvm_pte_t attr,u32 level)157 static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
158 {
159 kvm_pte_t pte = kvm_phys_to_pte(pa);
160 u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
161 KVM_PTE_TYPE_BLOCK;
162
163 pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
164 pte |= FIELD_PREP(KVM_PTE_TYPE, type);
165 pte |= KVM_PTE_VALID;
166
167 return pte;
168 }
169
kvm_init_invalid_leaf_owner(u8 owner_id)170 static kvm_pte_t kvm_init_invalid_leaf_owner(u8 owner_id)
171 {
172 return FIELD_PREP(KVM_INVALID_PTE_OWNER_MASK, owner_id);
173 }
174
kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data * data,const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)175 static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data,
176 const struct kvm_pgtable_visit_ctx *ctx,
177 enum kvm_pgtable_walk_flags visit)
178 {
179 struct kvm_pgtable_walker *walker = data->walker;
180
181 /* Ensure the appropriate lock is held (e.g. RCU lock for stage-2 MMU) */
182 WARN_ON_ONCE(kvm_pgtable_walk_shared(ctx) && !kvm_pgtable_walk_lock_held());
183 return walker->cb(ctx, visit);
184 }
185
kvm_pgtable_walk_continue(const struct kvm_pgtable_walker * walker,int r)186 static bool kvm_pgtable_walk_continue(const struct kvm_pgtable_walker *walker,
187 int r)
188 {
189 /*
190 * Visitor callbacks return EAGAIN when the conditions that led to a
191 * fault are no longer reflected in the page tables due to a race to
192 * update a PTE. In the context of a fault handler this is interpreted
193 * as a signal to retry guest execution.
194 *
195 * Ignore the return code altogether for walkers outside a fault handler
196 * (e.g. write protecting a range of memory) and chug along with the
197 * page table walk.
198 */
199 if (r == -EAGAIN)
200 return !(walker->flags & KVM_PGTABLE_WALK_HANDLE_FAULT);
201
202 return !r;
203 }
204
205 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
206 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level);
207
__kvm_pgtable_visit(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pteref,u32 level)208 static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
209 struct kvm_pgtable_mm_ops *mm_ops,
210 kvm_pteref_t pteref, u32 level)
211 {
212 enum kvm_pgtable_walk_flags flags = data->walker->flags;
213 kvm_pte_t *ptep = kvm_dereference_pteref(data->walker, pteref);
214 struct kvm_pgtable_visit_ctx ctx = {
215 .ptep = ptep,
216 .old = READ_ONCE(*ptep),
217 .arg = data->walker->arg,
218 .mm_ops = mm_ops,
219 .start = data->start,
220 .addr = data->addr,
221 .end = data->end,
222 .level = level,
223 .flags = flags,
224 };
225 int ret = 0;
226 bool reload = false;
227 kvm_pteref_t childp;
228 bool table = kvm_pte_table(ctx.old, level);
229
230 if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
231 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE);
232 reload = true;
233 }
234
235 if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) {
236 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF);
237 reload = true;
238 }
239
240 /*
241 * Reload the page table after invoking the walker callback for leaf
242 * entries or after pre-order traversal, to allow the walker to descend
243 * into a newly installed or replaced table.
244 */
245 if (reload) {
246 ctx.old = READ_ONCE(*ptep);
247 table = kvm_pte_table(ctx.old, level);
248 }
249
250 if (!kvm_pgtable_walk_continue(data->walker, ret))
251 goto out;
252
253 if (!table) {
254 data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
255 data->addr += kvm_granule_size(level);
256 goto out;
257 }
258
259 childp = (kvm_pteref_t)kvm_pte_follow(ctx.old, mm_ops);
260 ret = __kvm_pgtable_walk(data, mm_ops, childp, level + 1);
261 if (!kvm_pgtable_walk_continue(data->walker, ret))
262 goto out;
263
264 if (ctx.flags & KVM_PGTABLE_WALK_TABLE_POST)
265 ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_POST);
266
267 out:
268 if (kvm_pgtable_walk_continue(data->walker, ret))
269 return 0;
270
271 return ret;
272 }
273
__kvm_pgtable_walk(struct kvm_pgtable_walk_data * data,struct kvm_pgtable_mm_ops * mm_ops,kvm_pteref_t pgtable,u32 level)274 static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
275 struct kvm_pgtable_mm_ops *mm_ops, kvm_pteref_t pgtable, u32 level)
276 {
277 u32 idx;
278 int ret = 0;
279
280 if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
281 return -EINVAL;
282
283 for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
284 kvm_pteref_t pteref = &pgtable[idx];
285
286 if (data->addr >= data->end)
287 break;
288
289 ret = __kvm_pgtable_visit(data, mm_ops, pteref, level);
290 if (ret)
291 break;
292 }
293
294 return ret;
295 }
296
_kvm_pgtable_walk(struct kvm_pgtable * pgt,struct kvm_pgtable_walk_data * data)297 static int _kvm_pgtable_walk(struct kvm_pgtable *pgt, struct kvm_pgtable_walk_data *data)
298 {
299 u32 idx;
300 int ret = 0;
301 u64 limit = BIT(pgt->ia_bits);
302
303 if (data->addr > limit || data->end > limit)
304 return -ERANGE;
305
306 if (!pgt->pgd)
307 return -EINVAL;
308
309 for (idx = kvm_pgd_page_idx(pgt, data->addr); data->addr < data->end; ++idx) {
310 kvm_pteref_t pteref = &pgt->pgd[idx * PTRS_PER_PTE];
311
312 ret = __kvm_pgtable_walk(data, pgt->mm_ops, pteref, pgt->start_level);
313 if (ret)
314 break;
315 }
316
317 return ret;
318 }
319
kvm_pgtable_walk(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_pgtable_walker * walker)320 int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
321 struct kvm_pgtable_walker *walker)
322 {
323 struct kvm_pgtable_walk_data walk_data = {
324 .start = ALIGN_DOWN(addr, PAGE_SIZE),
325 .addr = ALIGN_DOWN(addr, PAGE_SIZE),
326 .end = PAGE_ALIGN(walk_data.addr + size),
327 .walker = walker,
328 };
329 int r;
330
331 r = kvm_pgtable_walk_begin(walker);
332 if (r)
333 return r;
334
335 r = _kvm_pgtable_walk(pgt, &walk_data);
336 kvm_pgtable_walk_end(walker);
337
338 return r;
339 }
340
341 struct leaf_walk_data {
342 kvm_pte_t pte;
343 u32 level;
344 };
345
leaf_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)346 static int leaf_walker(const struct kvm_pgtable_visit_ctx *ctx,
347 enum kvm_pgtable_walk_flags visit)
348 {
349 struct leaf_walk_data *data = ctx->arg;
350
351 data->pte = ctx->old;
352 data->level = ctx->level;
353
354 return 0;
355 }
356
kvm_pgtable_get_leaf(struct kvm_pgtable * pgt,u64 addr,kvm_pte_t * ptep,u32 * level)357 int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
358 kvm_pte_t *ptep, u32 *level)
359 {
360 struct leaf_walk_data data;
361 struct kvm_pgtable_walker walker = {
362 .cb = leaf_walker,
363 .flags = KVM_PGTABLE_WALK_LEAF,
364 .arg = &data,
365 };
366 int ret;
367
368 ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
369 PAGE_SIZE, &walker);
370 if (!ret) {
371 if (ptep)
372 *ptep = data.pte;
373 if (level)
374 *level = data.level;
375 }
376
377 return ret;
378 }
379
380 struct hyp_map_data {
381 const u64 phys;
382 kvm_pte_t attr;
383 };
384
hyp_set_prot_attr(enum kvm_pgtable_prot prot,kvm_pte_t * ptep)385 static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
386 {
387 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
388 u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
389 kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
390 u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
391 u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
392 KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
393
394 if (!(prot & KVM_PGTABLE_PROT_R))
395 return -EINVAL;
396
397 if (prot & KVM_PGTABLE_PROT_X) {
398 if (prot & KVM_PGTABLE_PROT_W)
399 return -EINVAL;
400
401 if (device)
402 return -EINVAL;
403
404 if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) && system_supports_bti())
405 attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP;
406 } else {
407 attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
408 }
409
410 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
411 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
412 attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
413 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
414 *ptep = attr;
415
416 return 0;
417 }
418
kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)419 enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
420 {
421 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
422 u32 ap;
423
424 if (!kvm_pte_valid(pte))
425 return prot;
426
427 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
428 prot |= KVM_PGTABLE_PROT_X;
429
430 ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
431 if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
432 prot |= KVM_PGTABLE_PROT_R;
433 else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
434 prot |= KVM_PGTABLE_PROT_RW;
435
436 return prot;
437 }
438
hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct hyp_map_data * data)439 static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
440 struct hyp_map_data *data)
441 {
442 u64 phys = data->phys + (ctx->addr - ctx->start);
443 kvm_pte_t new;
444
445 if (!kvm_block_mapping_supported(ctx, phys))
446 return false;
447
448 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
449 if (ctx->old == new)
450 return true;
451 if (!kvm_pte_valid(ctx->old))
452 ctx->mm_ops->get_page(ctx->ptep);
453 else if (WARN_ON((ctx->old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
454 return false;
455
456 smp_store_release(ctx->ptep, new);
457 return true;
458 }
459
hyp_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)460 static int hyp_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
461 enum kvm_pgtable_walk_flags visit)
462 {
463 kvm_pte_t *childp, new;
464 struct hyp_map_data *data = ctx->arg;
465 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
466
467 if (hyp_map_walker_try_leaf(ctx, data))
468 return 0;
469
470 if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
471 return -EINVAL;
472
473 childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
474 if (!childp)
475 return -ENOMEM;
476
477 new = kvm_init_table_pte(childp, mm_ops);
478 mm_ops->get_page(ctx->ptep);
479 smp_store_release(ctx->ptep, new);
480
481 return 0;
482 }
483
kvm_pgtable_hyp_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot)484 int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
485 enum kvm_pgtable_prot prot)
486 {
487 int ret;
488 struct hyp_map_data map_data = {
489 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
490 };
491 struct kvm_pgtable_walker walker = {
492 .cb = hyp_map_walker,
493 .flags = KVM_PGTABLE_WALK_LEAF,
494 .arg = &map_data,
495 };
496
497 ret = hyp_set_prot_attr(prot, &map_data.attr);
498 if (ret)
499 return ret;
500
501 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
502 dsb(ishst);
503 isb();
504 return ret;
505 }
506
hyp_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)507 static int hyp_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
508 enum kvm_pgtable_walk_flags visit)
509 {
510 kvm_pte_t *childp = NULL;
511 u64 granule = kvm_granule_size(ctx->level);
512 u64 *unmapped = ctx->arg;
513 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
514
515 if (!kvm_pte_valid(ctx->old))
516 return -EINVAL;
517
518 if (kvm_pte_table(ctx->old, ctx->level)) {
519 childp = kvm_pte_follow(ctx->old, mm_ops);
520
521 if (mm_ops->page_count(childp) != 1)
522 return 0;
523
524 kvm_clear_pte(ctx->ptep);
525 dsb(ishst);
526 __tlbi_level(vae2is, __TLBI_VADDR(ctx->addr, 0), 0);
527 } else {
528 if (ctx->end - ctx->addr < granule)
529 return -EINVAL;
530
531 kvm_clear_pte(ctx->ptep);
532 dsb(ishst);
533 __tlbi_level(vale2is, __TLBI_VADDR(ctx->addr, 0), ctx->level);
534 *unmapped += granule;
535 }
536
537 dsb(ish);
538 isb();
539 mm_ops->put_page(ctx->ptep);
540
541 if (childp)
542 mm_ops->put_page(childp);
543
544 return 0;
545 }
546
kvm_pgtable_hyp_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)547 u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
548 {
549 u64 unmapped = 0;
550 struct kvm_pgtable_walker walker = {
551 .cb = hyp_unmap_walker,
552 .arg = &unmapped,
553 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
554 };
555
556 if (!pgt->mm_ops->page_count)
557 return 0;
558
559 kvm_pgtable_walk(pgt, addr, size, &walker);
560 return unmapped;
561 }
562
kvm_pgtable_hyp_init(struct kvm_pgtable * pgt,u32 va_bits,struct kvm_pgtable_mm_ops * mm_ops)563 int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
564 struct kvm_pgtable_mm_ops *mm_ops)
565 {
566 u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
567
568 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_page(NULL);
569 if (!pgt->pgd)
570 return -ENOMEM;
571
572 pgt->ia_bits = va_bits;
573 pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels;
574 pgt->mm_ops = mm_ops;
575 pgt->mmu = NULL;
576 pgt->force_pte_cb = NULL;
577
578 return 0;
579 }
580
hyp_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)581 static int hyp_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
582 enum kvm_pgtable_walk_flags visit)
583 {
584 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
585
586 if (!kvm_pte_valid(ctx->old))
587 return 0;
588
589 mm_ops->put_page(ctx->ptep);
590
591 if (kvm_pte_table(ctx->old, ctx->level))
592 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
593
594 return 0;
595 }
596
kvm_pgtable_hyp_destroy(struct kvm_pgtable * pgt)597 void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
598 {
599 struct kvm_pgtable_walker walker = {
600 .cb = hyp_free_walker,
601 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
602 };
603
604 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
605 pgt->mm_ops->put_page(kvm_dereference_pteref(&walker, pgt->pgd));
606 pgt->pgd = NULL;
607 }
608
609 struct stage2_map_data {
610 const u64 phys;
611 kvm_pte_t attr;
612 u8 owner_id;
613
614 kvm_pte_t *anchor;
615 kvm_pte_t *childp;
616
617 struct kvm_s2_mmu *mmu;
618 void *memcache;
619
620 /* Force mappings to page granularity */
621 bool force_pte;
622 };
623
kvm_get_vtcr(u64 mmfr0,u64 mmfr1,u32 phys_shift)624 u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
625 {
626 u64 vtcr = VTCR_EL2_FLAGS;
627 u8 lvls;
628
629 vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
630 vtcr |= VTCR_EL2_T0SZ(phys_shift);
631 /*
632 * Use a minimum 2 level page table to prevent splitting
633 * host PMD huge pages at stage2.
634 */
635 lvls = stage2_pgtable_levels(phys_shift);
636 if (lvls < 2)
637 lvls = 2;
638 vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
639
640 #ifdef CONFIG_ARM64_HW_AFDBM
641 /*
642 * Enable the Hardware Access Flag management, unconditionally
643 * on all CPUs. In systems that have asymmetric support for the feature
644 * this allows KVM to leverage hardware support on the subset of cores
645 * that implement the feature.
646 *
647 * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by
648 * hardware) on implementations that do not advertise support for the
649 * feature. As such, setting HA unconditionally is safe, unless you
650 * happen to be running on a design that has unadvertised support for
651 * HAFDBS. Here be dragons.
652 */
653 if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
654 vtcr |= VTCR_EL2_HA;
655 #endif /* CONFIG_ARM64_HW_AFDBM */
656
657 /* Set the vmid bits */
658 vtcr |= (get_vmid_bits(mmfr1) == 16) ?
659 VTCR_EL2_VS_16BIT :
660 VTCR_EL2_VS_8BIT;
661
662 return vtcr;
663 }
664
stage2_has_fwb(struct kvm_pgtable * pgt)665 static bool stage2_has_fwb(struct kvm_pgtable *pgt)
666 {
667 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
668 return false;
669
670 return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
671 }
672
kvm_tlb_flush_vmid_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,size_t size)673 void kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu,
674 phys_addr_t addr, size_t size)
675 {
676 unsigned long pages, inval_pages;
677
678 if (!system_supports_tlb_range()) {
679 kvm_call_hyp(__kvm_tlb_flush_vmid, mmu);
680 return;
681 }
682
683 pages = size >> PAGE_SHIFT;
684 while (pages > 0) {
685 inval_pages = min(pages, MAX_TLBI_RANGE_PAGES);
686 kvm_call_hyp(__kvm_tlb_flush_vmid_range, mmu, addr, inval_pages);
687
688 addr += inval_pages << PAGE_SHIFT;
689 pages -= inval_pages;
690 }
691 }
692
693 #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
694
stage2_set_prot_attr(struct kvm_pgtable * pgt,enum kvm_pgtable_prot prot,kvm_pte_t * ptep)695 static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
696 kvm_pte_t *ptep)
697 {
698 bool device = prot & KVM_PGTABLE_PROT_DEVICE;
699 kvm_pte_t attr = device ? KVM_S2_MEMATTR(pgt, DEVICE_nGnRE) :
700 KVM_S2_MEMATTR(pgt, NORMAL);
701 u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
702
703 if (!(prot & KVM_PGTABLE_PROT_X))
704 attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
705 else if (device)
706 return -EINVAL;
707
708 if (prot & KVM_PGTABLE_PROT_R)
709 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
710
711 if (prot & KVM_PGTABLE_PROT_W)
712 attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
713
714 attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
715 attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
716 attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
717 *ptep = attr;
718
719 return 0;
720 }
721
kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)722 enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
723 {
724 enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
725
726 if (!kvm_pte_valid(pte))
727 return prot;
728
729 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
730 prot |= KVM_PGTABLE_PROT_R;
731 if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
732 prot |= KVM_PGTABLE_PROT_W;
733 if (!(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN))
734 prot |= KVM_PGTABLE_PROT_X;
735
736 return prot;
737 }
738
stage2_pte_needs_update(kvm_pte_t old,kvm_pte_t new)739 static bool stage2_pte_needs_update(kvm_pte_t old, kvm_pte_t new)
740 {
741 if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
742 return true;
743
744 return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
745 }
746
stage2_pte_is_counted(kvm_pte_t pte)747 static bool stage2_pte_is_counted(kvm_pte_t pte)
748 {
749 /*
750 * The refcount tracks valid entries as well as invalid entries if they
751 * encode ownership of a page to another entity than the page-table
752 * owner, whose id is 0.
753 */
754 return !!pte;
755 }
756
stage2_pte_is_locked(kvm_pte_t pte)757 static bool stage2_pte_is_locked(kvm_pte_t pte)
758 {
759 return !kvm_pte_valid(pte) && (pte & KVM_INVALID_PTE_LOCKED);
760 }
761
stage2_try_set_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)762 static bool stage2_try_set_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
763 {
764 if (!kvm_pgtable_walk_shared(ctx)) {
765 WRITE_ONCE(*ctx->ptep, new);
766 return true;
767 }
768
769 return cmpxchg(ctx->ptep, ctx->old, new) == ctx->old;
770 }
771
772 /**
773 * stage2_try_break_pte() - Invalidates a pte according to the
774 * 'break-before-make' requirements of the
775 * architecture.
776 *
777 * @ctx: context of the visited pte.
778 * @mmu: stage-2 mmu
779 *
780 * Returns: true if the pte was successfully broken.
781 *
782 * If the removed pte was valid, performs the necessary serialization and TLB
783 * invalidation for the old value. For counted ptes, drops the reference count
784 * on the containing table page.
785 */
stage2_try_break_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu)786 static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx,
787 struct kvm_s2_mmu *mmu)
788 {
789 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
790
791 if (stage2_pte_is_locked(ctx->old)) {
792 /*
793 * Should never occur if this walker has exclusive access to the
794 * page tables.
795 */
796 WARN_ON(!kvm_pgtable_walk_shared(ctx));
797 return false;
798 }
799
800 if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED))
801 return false;
802
803 if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) {
804 /*
805 * Perform the appropriate TLB invalidation based on the
806 * evicted pte value (if any).
807 */
808 if (kvm_pte_table(ctx->old, ctx->level)) {
809 u64 size = kvm_granule_size(ctx->level);
810 u64 addr = ALIGN_DOWN(ctx->addr, size);
811
812 kvm_tlb_flush_vmid_range(mmu, addr, size);
813 } else if (kvm_pte_valid(ctx->old)) {
814 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu,
815 ctx->addr, ctx->level);
816 }
817 }
818
819 if (stage2_pte_is_counted(ctx->old))
820 mm_ops->put_page(ctx->ptep);
821
822 return true;
823 }
824
stage2_make_pte(const struct kvm_pgtable_visit_ctx * ctx,kvm_pte_t new)825 static void stage2_make_pte(const struct kvm_pgtable_visit_ctx *ctx, kvm_pte_t new)
826 {
827 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
828
829 WARN_ON(!stage2_pte_is_locked(*ctx->ptep));
830
831 if (stage2_pte_is_counted(new))
832 mm_ops->get_page(ctx->ptep);
833
834 smp_store_release(ctx->ptep, new);
835 }
836
stage2_unmap_defer_tlb_flush(struct kvm_pgtable * pgt)837 static bool stage2_unmap_defer_tlb_flush(struct kvm_pgtable *pgt)
838 {
839 /*
840 * If FEAT_TLBIRANGE is implemented, defer the individual
841 * TLB invalidations until the entire walk is finished, and
842 * then use the range-based TLBI instructions to do the
843 * invalidations. Condition deferred TLB invalidation on the
844 * system supporting FWB as the optimization is entirely
845 * pointless when the unmap walker needs to perform CMOs.
846 */
847 return system_supports_tlb_range() && stage2_has_fwb(pgt);
848 }
849
stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx * ctx,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops)850 static void stage2_unmap_put_pte(const struct kvm_pgtable_visit_ctx *ctx,
851 struct kvm_s2_mmu *mmu,
852 struct kvm_pgtable_mm_ops *mm_ops)
853 {
854 struct kvm_pgtable *pgt = ctx->arg;
855
856 /*
857 * Clear the existing PTE, and perform break-before-make if it was
858 * valid. Depending on the system support, defer the TLB maintenance
859 * for the same until the entire unmap walk is completed.
860 */
861 if (kvm_pte_valid(ctx->old)) {
862 kvm_clear_pte(ctx->ptep);
863
864 if (kvm_pte_table(ctx->old, ctx->level)) {
865 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
866 0);
867 } else if (!stage2_unmap_defer_tlb_flush(pgt)) {
868 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr,
869 ctx->level);
870 }
871 }
872
873 mm_ops->put_page(ctx->ptep);
874 }
875
stage2_pte_cacheable(struct kvm_pgtable * pgt,kvm_pte_t pte)876 static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
877 {
878 u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
879 return memattr == KVM_S2_MEMATTR(pgt, NORMAL);
880 }
881
stage2_pte_executable(kvm_pte_t pte)882 static bool stage2_pte_executable(kvm_pte_t pte)
883 {
884 return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN);
885 }
886
stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx * ctx,const struct stage2_map_data * data)887 static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx,
888 const struct stage2_map_data *data)
889 {
890 u64 phys = data->phys;
891
892 /*
893 * Stage-2 walks to update ownership data are communicated to the map
894 * walker using an invalid PA. Avoid offsetting an already invalid PA,
895 * which could overflow and make the address valid again.
896 */
897 if (!kvm_phys_is_valid(phys))
898 return phys;
899
900 /*
901 * Otherwise, work out the correct PA based on how far the walk has
902 * gotten.
903 */
904 return phys + (ctx->addr - ctx->start);
905 }
906
stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)907 static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx,
908 struct stage2_map_data *data)
909 {
910 u64 phys = stage2_map_walker_phys_addr(ctx, data);
911
912 if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1)))
913 return false;
914
915 return kvm_block_mapping_supported(ctx, phys);
916 }
917
stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)918 static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx,
919 struct stage2_map_data *data)
920 {
921 kvm_pte_t new;
922 u64 phys = stage2_map_walker_phys_addr(ctx, data);
923 u64 granule = kvm_granule_size(ctx->level);
924 struct kvm_pgtable *pgt = data->mmu->pgt;
925 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
926
927 if (!stage2_leaf_mapping_allowed(ctx, data))
928 return -E2BIG;
929
930 if (kvm_phys_is_valid(phys))
931 new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level);
932 else
933 new = kvm_init_invalid_leaf_owner(data->owner_id);
934
935 /*
936 * Skip updating the PTE if we are trying to recreate the exact
937 * same mapping or only change the access permissions. Instead,
938 * the vCPU will exit one more time from guest if still needed
939 * and then go through the path of relaxing permissions.
940 */
941 if (!stage2_pte_needs_update(ctx->old, new))
942 return -EAGAIN;
943
944 if (!stage2_try_break_pte(ctx, data->mmu))
945 return -EAGAIN;
946
947 /* Perform CMOs before installation of the guest stage-2 PTE */
948 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc &&
949 stage2_pte_cacheable(pgt, new))
950 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
951 granule);
952
953 if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou &&
954 stage2_pte_executable(new))
955 mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
956
957 stage2_make_pte(ctx, new);
958
959 return 0;
960 }
961
stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)962 static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx,
963 struct stage2_map_data *data)
964 {
965 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
966 kvm_pte_t *childp = kvm_pte_follow(ctx->old, mm_ops);
967 int ret;
968
969 if (!stage2_leaf_mapping_allowed(ctx, data))
970 return 0;
971
972 ret = stage2_map_walker_try_leaf(ctx, data);
973 if (ret)
974 return ret;
975
976 mm_ops->free_unlinked_table(childp, ctx->level);
977 return 0;
978 }
979
stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx * ctx,struct stage2_map_data * data)980 static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx,
981 struct stage2_map_data *data)
982 {
983 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
984 kvm_pte_t *childp, new;
985 int ret;
986
987 ret = stage2_map_walker_try_leaf(ctx, data);
988 if (ret != -E2BIG)
989 return ret;
990
991 if (WARN_ON(ctx->level == KVM_PGTABLE_MAX_LEVELS - 1))
992 return -EINVAL;
993
994 if (!data->memcache)
995 return -ENOMEM;
996
997 childp = mm_ops->zalloc_page(data->memcache);
998 if (!childp)
999 return -ENOMEM;
1000
1001 if (!stage2_try_break_pte(ctx, data->mmu)) {
1002 mm_ops->put_page(childp);
1003 return -EAGAIN;
1004 }
1005
1006 /*
1007 * If we've run into an existing block mapping then replace it with
1008 * a table. Accesses beyond 'end' that fall within the new table
1009 * will be mapped lazily.
1010 */
1011 new = kvm_init_table_pte(childp, mm_ops);
1012 stage2_make_pte(ctx, new);
1013
1014 return 0;
1015 }
1016
1017 /*
1018 * The TABLE_PRE callback runs for table entries on the way down, looking
1019 * for table entries which we could conceivably replace with a block entry
1020 * for this mapping. If it finds one it replaces the entry and calls
1021 * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table.
1022 *
1023 * Otherwise, the LEAF callback performs the mapping at the existing leaves
1024 * instead.
1025 */
stage2_map_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1026 static int stage2_map_walker(const struct kvm_pgtable_visit_ctx *ctx,
1027 enum kvm_pgtable_walk_flags visit)
1028 {
1029 struct stage2_map_data *data = ctx->arg;
1030
1031 switch (visit) {
1032 case KVM_PGTABLE_WALK_TABLE_PRE:
1033 return stage2_map_walk_table_pre(ctx, data);
1034 case KVM_PGTABLE_WALK_LEAF:
1035 return stage2_map_walk_leaf(ctx, data);
1036 default:
1037 return -EINVAL;
1038 }
1039 }
1040
kvm_pgtable_stage2_map(struct kvm_pgtable * pgt,u64 addr,u64 size,u64 phys,enum kvm_pgtable_prot prot,void * mc,enum kvm_pgtable_walk_flags flags)1041 int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
1042 u64 phys, enum kvm_pgtable_prot prot,
1043 void *mc, enum kvm_pgtable_walk_flags flags)
1044 {
1045 int ret;
1046 struct stage2_map_data map_data = {
1047 .phys = ALIGN_DOWN(phys, PAGE_SIZE),
1048 .mmu = pgt->mmu,
1049 .memcache = mc,
1050 .force_pte = pgt->force_pte_cb && pgt->force_pte_cb(addr, addr + size, prot),
1051 };
1052 struct kvm_pgtable_walker walker = {
1053 .cb = stage2_map_walker,
1054 .flags = flags |
1055 KVM_PGTABLE_WALK_TABLE_PRE |
1056 KVM_PGTABLE_WALK_LEAF,
1057 .arg = &map_data,
1058 };
1059
1060 if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
1061 return -EINVAL;
1062
1063 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1064 if (ret)
1065 return ret;
1066
1067 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1068 dsb(ishst);
1069 return ret;
1070 }
1071
kvm_pgtable_stage2_set_owner(struct kvm_pgtable * pgt,u64 addr,u64 size,void * mc,u8 owner_id)1072 int kvm_pgtable_stage2_set_owner(struct kvm_pgtable *pgt, u64 addr, u64 size,
1073 void *mc, u8 owner_id)
1074 {
1075 int ret;
1076 struct stage2_map_data map_data = {
1077 .phys = KVM_PHYS_INVALID,
1078 .mmu = pgt->mmu,
1079 .memcache = mc,
1080 .owner_id = owner_id,
1081 .force_pte = true,
1082 };
1083 struct kvm_pgtable_walker walker = {
1084 .cb = stage2_map_walker,
1085 .flags = KVM_PGTABLE_WALK_TABLE_PRE |
1086 KVM_PGTABLE_WALK_LEAF,
1087 .arg = &map_data,
1088 };
1089
1090 if (owner_id > KVM_MAX_OWNER_ID)
1091 return -EINVAL;
1092
1093 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1094 return ret;
1095 }
1096
stage2_unmap_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1097 static int stage2_unmap_walker(const struct kvm_pgtable_visit_ctx *ctx,
1098 enum kvm_pgtable_walk_flags visit)
1099 {
1100 struct kvm_pgtable *pgt = ctx->arg;
1101 struct kvm_s2_mmu *mmu = pgt->mmu;
1102 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1103 kvm_pte_t *childp = NULL;
1104 bool need_flush = false;
1105
1106 if (!kvm_pte_valid(ctx->old)) {
1107 if (stage2_pte_is_counted(ctx->old)) {
1108 kvm_clear_pte(ctx->ptep);
1109 mm_ops->put_page(ctx->ptep);
1110 }
1111 return 0;
1112 }
1113
1114 if (kvm_pte_table(ctx->old, ctx->level)) {
1115 childp = kvm_pte_follow(ctx->old, mm_ops);
1116
1117 if (mm_ops->page_count(childp) != 1)
1118 return 0;
1119 } else if (stage2_pte_cacheable(pgt, ctx->old)) {
1120 need_flush = !stage2_has_fwb(pgt);
1121 }
1122
1123 /*
1124 * This is similar to the map() path in that we unmap the entire
1125 * block entry and rely on the remaining portions being faulted
1126 * back lazily.
1127 */
1128 stage2_unmap_put_pte(ctx, mmu, mm_ops);
1129
1130 if (need_flush && mm_ops->dcache_clean_inval_poc)
1131 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1132 kvm_granule_size(ctx->level));
1133
1134 if (childp)
1135 mm_ops->put_page(childp);
1136
1137 return 0;
1138 }
1139
kvm_pgtable_stage2_unmap(struct kvm_pgtable * pgt,u64 addr,u64 size)1140 int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
1141 {
1142 int ret;
1143 struct kvm_pgtable_walker walker = {
1144 .cb = stage2_unmap_walker,
1145 .arg = pgt,
1146 .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
1147 };
1148
1149 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1150 if (stage2_unmap_defer_tlb_flush(pgt))
1151 /* Perform the deferred TLB invalidations */
1152 kvm_tlb_flush_vmid_range(pgt->mmu, addr, size);
1153
1154 return ret;
1155 }
1156
1157 struct stage2_attr_data {
1158 kvm_pte_t attr_set;
1159 kvm_pte_t attr_clr;
1160 kvm_pte_t pte;
1161 u32 level;
1162 };
1163
stage2_attr_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1164 static int stage2_attr_walker(const struct kvm_pgtable_visit_ctx *ctx,
1165 enum kvm_pgtable_walk_flags visit)
1166 {
1167 kvm_pte_t pte = ctx->old;
1168 struct stage2_attr_data *data = ctx->arg;
1169 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1170
1171 if (!kvm_pte_valid(ctx->old))
1172 return -EAGAIN;
1173
1174 data->level = ctx->level;
1175 data->pte = pte;
1176 pte &= ~data->attr_clr;
1177 pte |= data->attr_set;
1178
1179 /*
1180 * We may race with the CPU trying to set the access flag here,
1181 * but worst-case the access flag update gets lost and will be
1182 * set on the next access instead.
1183 */
1184 if (data->pte != pte) {
1185 /*
1186 * Invalidate instruction cache before updating the guest
1187 * stage-2 PTE if we are going to add executable permission.
1188 */
1189 if (mm_ops->icache_inval_pou &&
1190 stage2_pte_executable(pte) && !stage2_pte_executable(ctx->old))
1191 mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
1192 kvm_granule_size(ctx->level));
1193
1194 if (!stage2_try_set_pte(ctx, pte))
1195 return -EAGAIN;
1196 }
1197
1198 return 0;
1199 }
1200
stage2_update_leaf_attrs(struct kvm_pgtable * pgt,u64 addr,u64 size,kvm_pte_t attr_set,kvm_pte_t attr_clr,kvm_pte_t * orig_pte,u32 * level,enum kvm_pgtable_walk_flags flags)1201 static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
1202 u64 size, kvm_pte_t attr_set,
1203 kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
1204 u32 *level, enum kvm_pgtable_walk_flags flags)
1205 {
1206 int ret;
1207 kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
1208 struct stage2_attr_data data = {
1209 .attr_set = attr_set & attr_mask,
1210 .attr_clr = attr_clr & attr_mask,
1211 };
1212 struct kvm_pgtable_walker walker = {
1213 .cb = stage2_attr_walker,
1214 .arg = &data,
1215 .flags = flags | KVM_PGTABLE_WALK_LEAF,
1216 };
1217
1218 ret = kvm_pgtable_walk(pgt, addr, size, &walker);
1219 if (ret)
1220 return ret;
1221
1222 if (orig_pte)
1223 *orig_pte = data.pte;
1224
1225 if (level)
1226 *level = data.level;
1227 return 0;
1228 }
1229
kvm_pgtable_stage2_wrprotect(struct kvm_pgtable * pgt,u64 addr,u64 size)1230 int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
1231 {
1232 return stage2_update_leaf_attrs(pgt, addr, size, 0,
1233 KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
1234 NULL, NULL, 0);
1235 }
1236
kvm_pgtable_stage2_mkyoung(struct kvm_pgtable * pgt,u64 addr)1237 kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
1238 {
1239 kvm_pte_t pte = 0;
1240 int ret;
1241
1242 ret = stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
1243 &pte, NULL,
1244 KVM_PGTABLE_WALK_HANDLE_FAULT |
1245 KVM_PGTABLE_WALK_SHARED);
1246 if (!ret)
1247 dsb(ishst);
1248
1249 return pte;
1250 }
1251
1252 struct stage2_age_data {
1253 bool mkold;
1254 bool young;
1255 };
1256
stage2_age_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1257 static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx,
1258 enum kvm_pgtable_walk_flags visit)
1259 {
1260 kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF;
1261 struct stage2_age_data *data = ctx->arg;
1262
1263 if (!kvm_pte_valid(ctx->old) || new == ctx->old)
1264 return 0;
1265
1266 data->young = true;
1267
1268 /*
1269 * stage2_age_walker() is always called while holding the MMU lock for
1270 * write, so this will always succeed. Nonetheless, this deliberately
1271 * follows the race detection pattern of the other stage-2 walkers in
1272 * case the locking mechanics of the MMU notifiers is ever changed.
1273 */
1274 if (data->mkold && !stage2_try_set_pte(ctx, new))
1275 return -EAGAIN;
1276
1277 /*
1278 * "But where's the TLBI?!", you scream.
1279 * "Over in the core code", I sigh.
1280 *
1281 * See the '->clear_flush_young()' callback on the KVM mmu notifier.
1282 */
1283 return 0;
1284 }
1285
kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable * pgt,u64 addr,u64 size,bool mkold)1286 bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr,
1287 u64 size, bool mkold)
1288 {
1289 struct stage2_age_data data = {
1290 .mkold = mkold,
1291 };
1292 struct kvm_pgtable_walker walker = {
1293 .cb = stage2_age_walker,
1294 .arg = &data,
1295 .flags = KVM_PGTABLE_WALK_LEAF,
1296 };
1297
1298 WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker));
1299 return data.young;
1300 }
1301
kvm_pgtable_stage2_relax_perms(struct kvm_pgtable * pgt,u64 addr,enum kvm_pgtable_prot prot)1302 int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
1303 enum kvm_pgtable_prot prot)
1304 {
1305 int ret;
1306 u32 level;
1307 kvm_pte_t set = 0, clr = 0;
1308
1309 if (prot & KVM_PTE_LEAF_ATTR_HI_SW)
1310 return -EINVAL;
1311
1312 if (prot & KVM_PGTABLE_PROT_R)
1313 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
1314
1315 if (prot & KVM_PGTABLE_PROT_W)
1316 set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
1317
1318 if (prot & KVM_PGTABLE_PROT_X)
1319 clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
1320
1321 ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level,
1322 KVM_PGTABLE_WALK_HANDLE_FAULT |
1323 KVM_PGTABLE_WALK_SHARED);
1324 if (!ret)
1325 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level);
1326 return ret;
1327 }
1328
stage2_flush_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1329 static int stage2_flush_walker(const struct kvm_pgtable_visit_ctx *ctx,
1330 enum kvm_pgtable_walk_flags visit)
1331 {
1332 struct kvm_pgtable *pgt = ctx->arg;
1333 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1334
1335 if (!kvm_pte_valid(ctx->old) || !stage2_pte_cacheable(pgt, ctx->old))
1336 return 0;
1337
1338 if (mm_ops->dcache_clean_inval_poc)
1339 mm_ops->dcache_clean_inval_poc(kvm_pte_follow(ctx->old, mm_ops),
1340 kvm_granule_size(ctx->level));
1341 return 0;
1342 }
1343
kvm_pgtable_stage2_flush(struct kvm_pgtable * pgt,u64 addr,u64 size)1344 int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
1345 {
1346 struct kvm_pgtable_walker walker = {
1347 .cb = stage2_flush_walker,
1348 .flags = KVM_PGTABLE_WALK_LEAF,
1349 .arg = pgt,
1350 };
1351
1352 if (stage2_has_fwb(pgt))
1353 return 0;
1354
1355 return kvm_pgtable_walk(pgt, addr, size, &walker);
1356 }
1357
kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable * pgt,u64 phys,u32 level,enum kvm_pgtable_prot prot,void * mc,bool force_pte)1358 kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt,
1359 u64 phys, u32 level,
1360 enum kvm_pgtable_prot prot,
1361 void *mc, bool force_pte)
1362 {
1363 struct stage2_map_data map_data = {
1364 .phys = phys,
1365 .mmu = pgt->mmu,
1366 .memcache = mc,
1367 .force_pte = force_pte,
1368 };
1369 struct kvm_pgtable_walker walker = {
1370 .cb = stage2_map_walker,
1371 .flags = KVM_PGTABLE_WALK_LEAF |
1372 KVM_PGTABLE_WALK_SKIP_BBM_TLBI |
1373 KVM_PGTABLE_WALK_SKIP_CMO,
1374 .arg = &map_data,
1375 };
1376 /*
1377 * The input address (.addr) is irrelevant for walking an
1378 * unlinked table. Construct an ambiguous IA range to map
1379 * kvm_granule_size(level) worth of memory.
1380 */
1381 struct kvm_pgtable_walk_data data = {
1382 .walker = &walker,
1383 .addr = 0,
1384 .end = kvm_granule_size(level),
1385 };
1386 struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
1387 kvm_pte_t *pgtable;
1388 int ret;
1389
1390 if (!IS_ALIGNED(phys, kvm_granule_size(level)))
1391 return ERR_PTR(-EINVAL);
1392
1393 ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
1394 if (ret)
1395 return ERR_PTR(ret);
1396
1397 pgtable = mm_ops->zalloc_page(mc);
1398 if (!pgtable)
1399 return ERR_PTR(-ENOMEM);
1400
1401 ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable,
1402 level + 1);
1403 if (ret) {
1404 kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level);
1405 mm_ops->put_page(pgtable);
1406 return ERR_PTR(ret);
1407 }
1408
1409 return pgtable;
1410 }
1411
1412 /*
1413 * Get the number of page-tables needed to replace a block with a
1414 * fully populated tree up to the PTE entries. Note that @level is
1415 * interpreted as in "level @level entry".
1416 */
stage2_block_get_nr_page_tables(u32 level)1417 static int stage2_block_get_nr_page_tables(u32 level)
1418 {
1419 switch (level) {
1420 case 1:
1421 return PTRS_PER_PTE + 1;
1422 case 2:
1423 return 1;
1424 case 3:
1425 return 0;
1426 default:
1427 WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL ||
1428 level >= KVM_PGTABLE_MAX_LEVELS);
1429 return -EINVAL;
1430 };
1431 }
1432
stage2_split_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1433 static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx,
1434 enum kvm_pgtable_walk_flags visit)
1435 {
1436 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1437 struct kvm_mmu_memory_cache *mc = ctx->arg;
1438 struct kvm_s2_mmu *mmu;
1439 kvm_pte_t pte = ctx->old, new, *childp;
1440 enum kvm_pgtable_prot prot;
1441 u32 level = ctx->level;
1442 bool force_pte;
1443 int nr_pages;
1444 u64 phys;
1445
1446 /* No huge-pages exist at the last level */
1447 if (level == KVM_PGTABLE_MAX_LEVELS - 1)
1448 return 0;
1449
1450 /* We only split valid block mappings */
1451 if (!kvm_pte_valid(pte))
1452 return 0;
1453
1454 nr_pages = stage2_block_get_nr_page_tables(level);
1455 if (nr_pages < 0)
1456 return nr_pages;
1457
1458 if (mc->nobjs >= nr_pages) {
1459 /* Build a tree mapped down to the PTE granularity. */
1460 force_pte = true;
1461 } else {
1462 /*
1463 * Don't force PTEs, so create_unlinked() below does
1464 * not populate the tree up to the PTE level. The
1465 * consequence is that the call will require a single
1466 * page of level 2 entries at level 1, or a single
1467 * page of PTEs at level 2. If we are at level 1, the
1468 * PTEs will be created recursively.
1469 */
1470 force_pte = false;
1471 nr_pages = 1;
1472 }
1473
1474 if (mc->nobjs < nr_pages)
1475 return -ENOMEM;
1476
1477 mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache);
1478 phys = kvm_pte_to_phys(pte);
1479 prot = kvm_pgtable_stage2_pte_prot(pte);
1480
1481 childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys,
1482 level, prot, mc, force_pte);
1483 if (IS_ERR(childp))
1484 return PTR_ERR(childp);
1485
1486 if (!stage2_try_break_pte(ctx, mmu)) {
1487 kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level);
1488 mm_ops->put_page(childp);
1489 return -EAGAIN;
1490 }
1491
1492 /*
1493 * Note, the contents of the page table are guaranteed to be made
1494 * visible before the new PTE is assigned because stage2_make_pte()
1495 * writes the PTE using smp_store_release().
1496 */
1497 new = kvm_init_table_pte(childp, mm_ops);
1498 stage2_make_pte(ctx, new);
1499 dsb(ishst);
1500 return 0;
1501 }
1502
kvm_pgtable_stage2_split(struct kvm_pgtable * pgt,u64 addr,u64 size,struct kvm_mmu_memory_cache * mc)1503 int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size,
1504 struct kvm_mmu_memory_cache *mc)
1505 {
1506 struct kvm_pgtable_walker walker = {
1507 .cb = stage2_split_walker,
1508 .flags = KVM_PGTABLE_WALK_LEAF,
1509 .arg = mc,
1510 };
1511
1512 return kvm_pgtable_walk(pgt, addr, size, &walker);
1513 }
1514
__kvm_pgtable_stage2_init(struct kvm_pgtable * pgt,struct kvm_s2_mmu * mmu,struct kvm_pgtable_mm_ops * mm_ops,enum kvm_pgtable_stage2_flags flags,kvm_pgtable_force_pte_cb_t force_pte_cb)1515 int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
1516 struct kvm_pgtable_mm_ops *mm_ops,
1517 enum kvm_pgtable_stage2_flags flags,
1518 kvm_pgtable_force_pte_cb_t force_pte_cb)
1519 {
1520 size_t pgd_sz;
1521 u64 vtcr = mmu->arch->vtcr;
1522 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1523 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1524 u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1525
1526 pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1527 pgt->pgd = (kvm_pteref_t)mm_ops->zalloc_pages_exact(pgd_sz);
1528 if (!pgt->pgd)
1529 return -ENOMEM;
1530
1531 pgt->ia_bits = ia_bits;
1532 pgt->start_level = start_level;
1533 pgt->mm_ops = mm_ops;
1534 pgt->mmu = mmu;
1535 pgt->flags = flags;
1536 pgt->force_pte_cb = force_pte_cb;
1537
1538 /* Ensure zeroed PGD pages are visible to the hardware walker */
1539 dsb(ishst);
1540 return 0;
1541 }
1542
kvm_pgtable_stage2_pgd_size(u64 vtcr)1543 size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
1544 {
1545 u32 ia_bits = VTCR_EL2_IPA(vtcr);
1546 u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
1547 u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
1548
1549 return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
1550 }
1551
stage2_free_walker(const struct kvm_pgtable_visit_ctx * ctx,enum kvm_pgtable_walk_flags visit)1552 static int stage2_free_walker(const struct kvm_pgtable_visit_ctx *ctx,
1553 enum kvm_pgtable_walk_flags visit)
1554 {
1555 struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops;
1556
1557 if (!stage2_pte_is_counted(ctx->old))
1558 return 0;
1559
1560 mm_ops->put_page(ctx->ptep);
1561
1562 if (kvm_pte_table(ctx->old, ctx->level))
1563 mm_ops->put_page(kvm_pte_follow(ctx->old, mm_ops));
1564
1565 return 0;
1566 }
1567
kvm_pgtable_stage2_destroy(struct kvm_pgtable * pgt)1568 void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
1569 {
1570 size_t pgd_sz;
1571 struct kvm_pgtable_walker walker = {
1572 .cb = stage2_free_walker,
1573 .flags = KVM_PGTABLE_WALK_LEAF |
1574 KVM_PGTABLE_WALK_TABLE_POST,
1575 };
1576
1577 WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
1578 pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
1579 pgt->mm_ops->free_pages_exact(kvm_dereference_pteref(&walker, pgt->pgd), pgd_sz);
1580 pgt->pgd = NULL;
1581 }
1582
kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops * mm_ops,void * pgtable,u32 level)1583 void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level)
1584 {
1585 kvm_pteref_t ptep = (kvm_pteref_t)pgtable;
1586 struct kvm_pgtable_walker walker = {
1587 .cb = stage2_free_walker,
1588 .flags = KVM_PGTABLE_WALK_LEAF |
1589 KVM_PGTABLE_WALK_TABLE_POST,
1590 };
1591 struct kvm_pgtable_walk_data data = {
1592 .walker = &walker,
1593
1594 /*
1595 * At this point the IPA really doesn't matter, as the page
1596 * table being traversed has already been removed from the stage
1597 * 2. Set an appropriate range to cover the entire page table.
1598 */
1599 .addr = 0,
1600 .end = kvm_granule_size(level),
1601 };
1602
1603 WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1));
1604
1605 WARN_ON(mm_ops->page_count(pgtable) != 1);
1606 mm_ops->put_page(pgtable);
1607 }
1608