xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/switch.c (revision e6b9d8eddb1772d99a676a906d42865293934edd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9 
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 
29 #include <nvhe/fixed_config.h>
30 #include <nvhe/mem_protect.h>
31 
32 /* Non-VHE specific context */
33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
36 
37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
38 
39 static void __activate_traps(struct kvm_vcpu *vcpu)
40 {
41 	u64 val;
42 
43 	___activate_traps(vcpu);
44 	__activate_traps_common(vcpu);
45 
46 	val = vcpu->arch.cptr_el2;
47 	val |= CPTR_EL2_TTA | CPTR_EL2_TAM;
48 	if (!guest_owns_fp_regs(vcpu)) {
49 		val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
50 		__activate_traps_fpsimd32(vcpu);
51 	}
52 	if (cpus_have_final_cap(ARM64_SME))
53 		val |= CPTR_EL2_TSM;
54 
55 	write_sysreg(val, cptr_el2);
56 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
57 
58 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
59 		struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
60 
61 		isb();
62 		/*
63 		 * At this stage, and thanks to the above isb(), S2 is
64 		 * configured and enabled. We can now restore the guest's S1
65 		 * configuration: SCTLR, and only then TCR.
66 		 */
67 		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
68 		isb();
69 		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
70 	}
71 }
72 
73 static void __deactivate_traps(struct kvm_vcpu *vcpu)
74 {
75 	extern char __kvm_hyp_host_vector[];
76 	u64 cptr;
77 
78 	___deactivate_traps(vcpu);
79 
80 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
81 		u64 val;
82 
83 		/*
84 		 * Set the TCR and SCTLR registers in the exact opposite
85 		 * sequence as __activate_traps (first prevent walks,
86 		 * then force the MMU on). A generous sprinkling of isb()
87 		 * ensure that things happen in this exact order.
88 		 */
89 		val = read_sysreg_el1(SYS_TCR);
90 		write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
91 		isb();
92 		val = read_sysreg_el1(SYS_SCTLR);
93 		write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
94 		isb();
95 	}
96 
97 	__deactivate_traps_common(vcpu);
98 
99 	write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
100 
101 	cptr = CPTR_EL2_DEFAULT;
102 	if (vcpu_has_sve(vcpu) && (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED))
103 		cptr |= CPTR_EL2_TZ;
104 	if (cpus_have_final_cap(ARM64_SME))
105 		cptr &= ~CPTR_EL2_TSM;
106 
107 	write_sysreg(cptr, cptr_el2);
108 	write_sysreg(__kvm_hyp_host_vector, vbar_el2);
109 }
110 
111 /* Save VGICv3 state on non-VHE systems */
112 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
113 {
114 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
115 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
116 		__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
117 	}
118 }
119 
120 /* Restore VGICv3 state on non-VHE systems */
121 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
122 {
123 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
124 		__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
125 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
126 	}
127 }
128 
129 /*
130  * Disable host events, enable guest events
131  */
132 #ifdef CONFIG_HW_PERF_EVENTS
133 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
134 {
135 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
136 
137 	if (pmu->events_host)
138 		write_sysreg(pmu->events_host, pmcntenclr_el0);
139 
140 	if (pmu->events_guest)
141 		write_sysreg(pmu->events_guest, pmcntenset_el0);
142 
143 	return (pmu->events_host || pmu->events_guest);
144 }
145 
146 /*
147  * Disable guest events, enable host events
148  */
149 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
150 {
151 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
152 
153 	if (pmu->events_guest)
154 		write_sysreg(pmu->events_guest, pmcntenclr_el0);
155 
156 	if (pmu->events_host)
157 		write_sysreg(pmu->events_host, pmcntenset_el0);
158 }
159 #else
160 #define __pmu_switch_to_guest(v)	({ false; })
161 #define __pmu_switch_to_host(v)		do {} while (0)
162 #endif
163 
164 /*
165  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
166  *
167  * Returns true if the hypervisor has handled the exit, and control should go
168  * back to the guest, or false if it hasn't.
169  */
170 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
171 {
172 	/*
173 	 * Make sure we handle the exit for workarounds and ptrauth
174 	 * before the pKVM handling, as the latter could decide to
175 	 * UNDEF.
176 	 */
177 	return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
178 		kvm_handle_pvm_sysreg(vcpu, exit_code));
179 }
180 
181 static const exit_handler_fn hyp_exit_handlers[] = {
182 	[0 ... ESR_ELx_EC_MAX]		= NULL,
183 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
184 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
185 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
186 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
187 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
188 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
189 	[ESR_ELx_EC_PAC]		= kvm_hyp_handle_ptrauth,
190 };
191 
192 static const exit_handler_fn pvm_exit_handlers[] = {
193 	[0 ... ESR_ELx_EC_MAX]		= NULL,
194 	[ESR_ELx_EC_SYS64]		= kvm_handle_pvm_sys64,
195 	[ESR_ELx_EC_SVE]		= kvm_handle_pvm_restricted,
196 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
197 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
198 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
199 	[ESR_ELx_EC_PAC]		= kvm_hyp_handle_ptrauth,
200 };
201 
202 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
203 {
204 	if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm))))
205 		return pvm_exit_handlers;
206 
207 	return hyp_exit_handlers;
208 }
209 
210 /*
211  * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
212  * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
213  * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
214  * hypervisor spots a guest in such a state ensure it is handled, and don't
215  * trust the host to spot or fix it.  The check below is based on the one in
216  * kvm_arch_vcpu_ioctl_run().
217  *
218  * Returns false if the guest ran in AArch32 when it shouldn't have, and
219  * thus should exit to the host, or true if a the guest run loop can continue.
220  */
221 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
222 {
223 	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
224 
225 	if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) {
226 		/*
227 		 * As we have caught the guest red-handed, decide that it isn't
228 		 * fit for purpose anymore by making the vcpu invalid. The VMM
229 		 * can try and fix it by re-initializing the vcpu with
230 		 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
231 		 * protected VMs.
232 		 */
233 		vcpu->arch.target = -1;
234 		*exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
235 		*exit_code |= ARM_EXCEPTION_IL;
236 	}
237 }
238 
239 /* Switch to the guest for legacy non-VHE systems */
240 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
241 {
242 	struct kvm_cpu_context *host_ctxt;
243 	struct kvm_cpu_context *guest_ctxt;
244 	struct kvm_s2_mmu *mmu;
245 	bool pmu_switch_needed;
246 	u64 exit_code;
247 
248 	/*
249 	 * Having IRQs masked via PMR when entering the guest means the GIC
250 	 * will not signal the CPU of interrupts of lower priority, and the
251 	 * only way to get out will be via guest exceptions.
252 	 * Naturally, we want to avoid this.
253 	 */
254 	if (system_uses_irq_prio_masking()) {
255 		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
256 		pmr_sync();
257 	}
258 
259 	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
260 	host_ctxt->__hyp_running_vcpu = vcpu;
261 	guest_ctxt = &vcpu->arch.ctxt;
262 
263 	pmu_switch_needed = __pmu_switch_to_guest(vcpu);
264 
265 	__sysreg_save_state_nvhe(host_ctxt);
266 	/*
267 	 * We must flush and disable the SPE buffer for nVHE, as
268 	 * the translation regime(EL1&0) is going to be loaded with
269 	 * that of the guest. And we must do this before we change the
270 	 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
271 	 * before we load guest Stage1.
272 	 */
273 	__debug_save_host_buffers_nvhe(vcpu);
274 
275 	/*
276 	 * We're about to restore some new MMU state. Make sure
277 	 * ongoing page-table walks that have started before we
278 	 * trapped to EL2 have completed. This also synchronises the
279 	 * above disabling of SPE and TRBE.
280 	 *
281 	 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
282 	 * rule R_LFHQG and subsequent information statements.
283 	 */
284 	dsb(nsh);
285 
286 	__kvm_adjust_pc(vcpu);
287 
288 	/*
289 	 * We must restore the 32-bit state before the sysregs, thanks
290 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
291 	 *
292 	 * Also, and in order to be able to deal with erratum #1319537 (A57)
293 	 * and #1319367 (A72), we must ensure that all VM-related sysreg are
294 	 * restored before we enable S2 translation.
295 	 */
296 	__sysreg32_restore_state(vcpu);
297 	__sysreg_restore_state_nvhe(guest_ctxt);
298 
299 	mmu = kern_hyp_va(vcpu->arch.hw_mmu);
300 	__load_stage2(mmu, kern_hyp_va(mmu->arch));
301 	__activate_traps(vcpu);
302 
303 	__hyp_vgic_restore_state(vcpu);
304 	__timer_enable_traps(vcpu);
305 
306 	__debug_switch_to_guest(vcpu);
307 
308 	do {
309 		/* Jump in the fire! */
310 		exit_code = __guest_enter(vcpu);
311 
312 		/* And we're baaack! */
313 	} while (fixup_guest_exit(vcpu, &exit_code));
314 
315 	__sysreg_save_state_nvhe(guest_ctxt);
316 	__sysreg32_save_state(vcpu);
317 	__timer_disable_traps(vcpu);
318 	__hyp_vgic_save_state(vcpu);
319 
320 	/*
321 	 * Same thing as before the guest run: we're about to switch
322 	 * the MMU context, so let's make sure we don't have any
323 	 * ongoing EL1&0 translations.
324 	 */
325 	dsb(nsh);
326 
327 	__deactivate_traps(vcpu);
328 	__load_host_stage2();
329 
330 	__sysreg_restore_state_nvhe(host_ctxt);
331 
332 	if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)
333 		__fpsimd_save_fpexc32(vcpu);
334 
335 	__debug_switch_to_host(vcpu);
336 	/*
337 	 * This must come after restoring the host sysregs, since a non-VHE
338 	 * system may enable SPE here and make use of the TTBRs.
339 	 */
340 	__debug_restore_host_buffers_nvhe(vcpu);
341 
342 	if (pmu_switch_needed)
343 		__pmu_switch_to_host(vcpu);
344 
345 	/* Returning to host will clear PSR.I, remask PMR if needed */
346 	if (system_uses_irq_prio_masking())
347 		gic_write_pmr(GIC_PRIO_IRQOFF);
348 
349 	host_ctxt->__hyp_running_vcpu = NULL;
350 
351 	return exit_code;
352 }
353 
354 asmlinkage void __noreturn hyp_panic(void)
355 {
356 	u64 spsr = read_sysreg_el2(SYS_SPSR);
357 	u64 elr = read_sysreg_el2(SYS_ELR);
358 	u64 par = read_sysreg_par();
359 	struct kvm_cpu_context *host_ctxt;
360 	struct kvm_vcpu *vcpu;
361 
362 	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
363 	vcpu = host_ctxt->__hyp_running_vcpu;
364 
365 	if (vcpu) {
366 		__timer_disable_traps(vcpu);
367 		__deactivate_traps(vcpu);
368 		__load_host_stage2();
369 		__sysreg_restore_state_nvhe(host_ctxt);
370 	}
371 
372 	/* Prepare to dump kvm nvhe hyp stacktrace */
373 	kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
374 				   _THIS_IP_);
375 
376 	__hyp_do_panic(host_ctxt, spsr, elr, par);
377 	unreachable();
378 }
379 
380 asmlinkage void __noreturn hyp_panic_bad_stack(void)
381 {
382 	hyp_panic();
383 }
384 
385 asmlinkage void kvm_unexpected_el2_exception(void)
386 {
387 	__kvm_unexpected_el2_exception();
388 }
389