xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/switch.c (revision d2a3b501)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <hyp/switch.h>
8 #include <hyp/sysreg-sr.h>
9 
10 #include <linux/arm-smccc.h>
11 #include <linux/kvm_host.h>
12 #include <linux/types.h>
13 #include <linux/jump_label.h>
14 #include <uapi/linux/psci.h>
15 
16 #include <kvm/arm_psci.h>
17 
18 #include <asm/barrier.h>
19 #include <asm/cpufeature.h>
20 #include <asm/kprobes.h>
21 #include <asm/kvm_asm.h>
22 #include <asm/kvm_emulate.h>
23 #include <asm/kvm_hyp.h>
24 #include <asm/kvm_mmu.h>
25 #include <asm/fpsimd.h>
26 #include <asm/debug-monitors.h>
27 #include <asm/processor.h>
28 
29 #include <nvhe/fixed_config.h>
30 #include <nvhe/mem_protect.h>
31 
32 /* Non-VHE specific context */
33 DEFINE_PER_CPU(struct kvm_host_data, kvm_host_data);
34 DEFINE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
35 DEFINE_PER_CPU(unsigned long, kvm_hyp_vector);
36 
37 extern void kvm_nvhe_prepare_backtrace(unsigned long fp, unsigned long pc);
38 
39 static void __activate_traps(struct kvm_vcpu *vcpu)
40 {
41 	u64 val;
42 
43 	___activate_traps(vcpu);
44 	__activate_traps_common(vcpu);
45 
46 	val = vcpu->arch.cptr_el2;
47 	val |= CPTR_EL2_TAM;	/* Same bit irrespective of E2H */
48 	val |= has_hvhe() ? CPACR_EL1_TTA : CPTR_EL2_TTA;
49 	if (cpus_have_final_cap(ARM64_SME)) {
50 		if (has_hvhe())
51 			val &= ~(CPACR_EL1_SMEN_EL1EN | CPACR_EL1_SMEN_EL0EN);
52 		else
53 			val |= CPTR_EL2_TSM;
54 	}
55 
56 	if (!guest_owns_fp_regs(vcpu)) {
57 		if (has_hvhe())
58 			val &= ~(CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN |
59 				 CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN);
60 		else
61 			val |= CPTR_EL2_TFP | CPTR_EL2_TZ;
62 
63 		__activate_traps_fpsimd32(vcpu);
64 	}
65 
66 	kvm_write_cptr_el2(val);
67 	write_sysreg(__this_cpu_read(kvm_hyp_vector), vbar_el2);
68 
69 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
70 		struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
71 
72 		isb();
73 		/*
74 		 * At this stage, and thanks to the above isb(), S2 is
75 		 * configured and enabled. We can now restore the guest's S1
76 		 * configuration: SCTLR, and only then TCR.
77 		 */
78 		write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1),	SYS_SCTLR);
79 		isb();
80 		write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1),	SYS_TCR);
81 	}
82 }
83 
84 static void __deactivate_traps(struct kvm_vcpu *vcpu)
85 {
86 	extern char __kvm_hyp_host_vector[];
87 
88 	___deactivate_traps(vcpu);
89 
90 	if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) {
91 		u64 val;
92 
93 		/*
94 		 * Set the TCR and SCTLR registers in the exact opposite
95 		 * sequence as __activate_traps (first prevent walks,
96 		 * then force the MMU on). A generous sprinkling of isb()
97 		 * ensure that things happen in this exact order.
98 		 */
99 		val = read_sysreg_el1(SYS_TCR);
100 		write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
101 		isb();
102 		val = read_sysreg_el1(SYS_SCTLR);
103 		write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
104 		isb();
105 	}
106 
107 	__deactivate_traps_common(vcpu);
108 
109 	write_sysreg(this_cpu_ptr(&kvm_init_params)->hcr_el2, hcr_el2);
110 
111 	kvm_reset_cptr_el2(vcpu);
112 	write_sysreg(__kvm_hyp_host_vector, vbar_el2);
113 }
114 
115 /* Save VGICv3 state on non-VHE systems */
116 static void __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
117 {
118 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
119 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
120 		__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
121 	}
122 }
123 
124 /* Restore VGICv3 state on non-VHE systems */
125 static void __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
126 {
127 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
128 		__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
129 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
130 	}
131 }
132 
133 /*
134  * Disable host events, enable guest events
135  */
136 #ifdef CONFIG_HW_PERF_EVENTS
137 static bool __pmu_switch_to_guest(struct kvm_vcpu *vcpu)
138 {
139 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
140 
141 	if (pmu->events_host)
142 		write_sysreg(pmu->events_host, pmcntenclr_el0);
143 
144 	if (pmu->events_guest)
145 		write_sysreg(pmu->events_guest, pmcntenset_el0);
146 
147 	return (pmu->events_host || pmu->events_guest);
148 }
149 
150 /*
151  * Disable guest events, enable host events
152  */
153 static void __pmu_switch_to_host(struct kvm_vcpu *vcpu)
154 {
155 	struct kvm_pmu_events *pmu = &vcpu->arch.pmu.events;
156 
157 	if (pmu->events_guest)
158 		write_sysreg(pmu->events_guest, pmcntenclr_el0);
159 
160 	if (pmu->events_host)
161 		write_sysreg(pmu->events_host, pmcntenset_el0);
162 }
163 #else
164 #define __pmu_switch_to_guest(v)	({ false; })
165 #define __pmu_switch_to_host(v)		do {} while (0)
166 #endif
167 
168 /*
169  * Handler for protected VM MSR, MRS or System instruction execution in AArch64.
170  *
171  * Returns true if the hypervisor has handled the exit, and control should go
172  * back to the guest, or false if it hasn't.
173  */
174 static bool kvm_handle_pvm_sys64(struct kvm_vcpu *vcpu, u64 *exit_code)
175 {
176 	/*
177 	 * Make sure we handle the exit for workarounds and ptrauth
178 	 * before the pKVM handling, as the latter could decide to
179 	 * UNDEF.
180 	 */
181 	return (kvm_hyp_handle_sysreg(vcpu, exit_code) ||
182 		kvm_handle_pvm_sysreg(vcpu, exit_code));
183 }
184 
185 static const exit_handler_fn hyp_exit_handlers[] = {
186 	[0 ... ESR_ELx_EC_MAX]		= NULL,
187 	[ESR_ELx_EC_CP15_32]		= kvm_hyp_handle_cp15_32,
188 	[ESR_ELx_EC_SYS64]		= kvm_hyp_handle_sysreg,
189 	[ESR_ELx_EC_SVE]		= kvm_hyp_handle_fpsimd,
190 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
191 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
192 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
193 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
194 	[ESR_ELx_EC_PAC]		= kvm_hyp_handle_ptrauth,
195 };
196 
197 static const exit_handler_fn pvm_exit_handlers[] = {
198 	[0 ... ESR_ELx_EC_MAX]		= NULL,
199 	[ESR_ELx_EC_SYS64]		= kvm_handle_pvm_sys64,
200 	[ESR_ELx_EC_SVE]		= kvm_handle_pvm_restricted,
201 	[ESR_ELx_EC_FP_ASIMD]		= kvm_hyp_handle_fpsimd,
202 	[ESR_ELx_EC_IABT_LOW]		= kvm_hyp_handle_iabt_low,
203 	[ESR_ELx_EC_DABT_LOW]		= kvm_hyp_handle_dabt_low,
204 	[ESR_ELx_EC_WATCHPT_LOW]	= kvm_hyp_handle_watchpt_low,
205 	[ESR_ELx_EC_PAC]		= kvm_hyp_handle_ptrauth,
206 };
207 
208 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu)
209 {
210 	if (unlikely(kvm_vm_is_protected(kern_hyp_va(vcpu->kvm))))
211 		return pvm_exit_handlers;
212 
213 	return hyp_exit_handlers;
214 }
215 
216 /*
217  * Some guests (e.g., protected VMs) are not be allowed to run in AArch32.
218  * The ARMv8 architecture does not give the hypervisor a mechanism to prevent a
219  * guest from dropping to AArch32 EL0 if implemented by the CPU. If the
220  * hypervisor spots a guest in such a state ensure it is handled, and don't
221  * trust the host to spot or fix it.  The check below is based on the one in
222  * kvm_arch_vcpu_ioctl_run().
223  *
224  * Returns false if the guest ran in AArch32 when it shouldn't have, and
225  * thus should exit to the host, or true if a the guest run loop can continue.
226  */
227 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code)
228 {
229 	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
230 
231 	if (kvm_vm_is_protected(kvm) && vcpu_mode_is_32bit(vcpu)) {
232 		/*
233 		 * As we have caught the guest red-handed, decide that it isn't
234 		 * fit for purpose anymore by making the vcpu invalid. The VMM
235 		 * can try and fix it by re-initializing the vcpu with
236 		 * KVM_ARM_VCPU_INIT, however, this is likely not possible for
237 		 * protected VMs.
238 		 */
239 		vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
240 		*exit_code &= BIT(ARM_EXIT_WITH_SERROR_BIT);
241 		*exit_code |= ARM_EXCEPTION_IL;
242 	}
243 }
244 
245 /* Switch to the guest for legacy non-VHE systems */
246 int __kvm_vcpu_run(struct kvm_vcpu *vcpu)
247 {
248 	struct kvm_cpu_context *host_ctxt;
249 	struct kvm_cpu_context *guest_ctxt;
250 	struct kvm_s2_mmu *mmu;
251 	bool pmu_switch_needed;
252 	u64 exit_code;
253 
254 	/*
255 	 * Having IRQs masked via PMR when entering the guest means the GIC
256 	 * will not signal the CPU of interrupts of lower priority, and the
257 	 * only way to get out will be via guest exceptions.
258 	 * Naturally, we want to avoid this.
259 	 */
260 	if (system_uses_irq_prio_masking()) {
261 		gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
262 		pmr_sync();
263 	}
264 
265 	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
266 	host_ctxt->__hyp_running_vcpu = vcpu;
267 	guest_ctxt = &vcpu->arch.ctxt;
268 
269 	pmu_switch_needed = __pmu_switch_to_guest(vcpu);
270 
271 	__sysreg_save_state_nvhe(host_ctxt);
272 	/*
273 	 * We must flush and disable the SPE buffer for nVHE, as
274 	 * the translation regime(EL1&0) is going to be loaded with
275 	 * that of the guest. And we must do this before we change the
276 	 * translation regime to EL2 (via MDCR_EL2_E2PB == 0) and
277 	 * before we load guest Stage1.
278 	 */
279 	__debug_save_host_buffers_nvhe(vcpu);
280 
281 	/*
282 	 * We're about to restore some new MMU state. Make sure
283 	 * ongoing page-table walks that have started before we
284 	 * trapped to EL2 have completed. This also synchronises the
285 	 * above disabling of SPE and TRBE.
286 	 *
287 	 * See DDI0487I.a D8.1.5 "Out-of-context translation regimes",
288 	 * rule R_LFHQG and subsequent information statements.
289 	 */
290 	dsb(nsh);
291 
292 	__kvm_adjust_pc(vcpu);
293 
294 	/*
295 	 * We must restore the 32-bit state before the sysregs, thanks
296 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
297 	 *
298 	 * Also, and in order to be able to deal with erratum #1319537 (A57)
299 	 * and #1319367 (A72), we must ensure that all VM-related sysreg are
300 	 * restored before we enable S2 translation.
301 	 */
302 	__sysreg32_restore_state(vcpu);
303 	__sysreg_restore_state_nvhe(guest_ctxt);
304 
305 	mmu = kern_hyp_va(vcpu->arch.hw_mmu);
306 	__load_stage2(mmu, kern_hyp_va(mmu->arch));
307 	__activate_traps(vcpu);
308 
309 	__hyp_vgic_restore_state(vcpu);
310 	__timer_enable_traps(vcpu);
311 
312 	__debug_switch_to_guest(vcpu);
313 
314 	do {
315 		/* Jump in the fire! */
316 		exit_code = __guest_enter(vcpu);
317 
318 		/* And we're baaack! */
319 	} while (fixup_guest_exit(vcpu, &exit_code));
320 
321 	__sysreg_save_state_nvhe(guest_ctxt);
322 	__sysreg32_save_state(vcpu);
323 	__timer_disable_traps(vcpu);
324 	__hyp_vgic_save_state(vcpu);
325 
326 	/*
327 	 * Same thing as before the guest run: we're about to switch
328 	 * the MMU context, so let's make sure we don't have any
329 	 * ongoing EL1&0 translations.
330 	 */
331 	dsb(nsh);
332 
333 	__deactivate_traps(vcpu);
334 	__load_host_stage2();
335 
336 	__sysreg_restore_state_nvhe(host_ctxt);
337 
338 	if (vcpu->arch.fp_state == FP_STATE_GUEST_OWNED)
339 		__fpsimd_save_fpexc32(vcpu);
340 
341 	__debug_switch_to_host(vcpu);
342 	/*
343 	 * This must come after restoring the host sysregs, since a non-VHE
344 	 * system may enable SPE here and make use of the TTBRs.
345 	 */
346 	__debug_restore_host_buffers_nvhe(vcpu);
347 
348 	if (pmu_switch_needed)
349 		__pmu_switch_to_host(vcpu);
350 
351 	/* Returning to host will clear PSR.I, remask PMR if needed */
352 	if (system_uses_irq_prio_masking())
353 		gic_write_pmr(GIC_PRIO_IRQOFF);
354 
355 	host_ctxt->__hyp_running_vcpu = NULL;
356 
357 	return exit_code;
358 }
359 
360 asmlinkage void __noreturn hyp_panic(void)
361 {
362 	u64 spsr = read_sysreg_el2(SYS_SPSR);
363 	u64 elr = read_sysreg_el2(SYS_ELR);
364 	u64 par = read_sysreg_par();
365 	struct kvm_cpu_context *host_ctxt;
366 	struct kvm_vcpu *vcpu;
367 
368 	host_ctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
369 	vcpu = host_ctxt->__hyp_running_vcpu;
370 
371 	if (vcpu) {
372 		__timer_disable_traps(vcpu);
373 		__deactivate_traps(vcpu);
374 		__load_host_stage2();
375 		__sysreg_restore_state_nvhe(host_ctxt);
376 	}
377 
378 	/* Prepare to dump kvm nvhe hyp stacktrace */
379 	kvm_nvhe_prepare_backtrace((unsigned long)__builtin_frame_address(0),
380 				   _THIS_IP_);
381 
382 	__hyp_do_panic(host_ctxt, spsr, elr, par);
383 	unreachable();
384 }
385 
386 asmlinkage void __noreturn hyp_panic_bad_stack(void)
387 {
388 	hyp_panic();
389 }
390 
391 asmlinkage void kvm_unexpected_el2_exception(void)
392 {
393 	__kvm_unexpected_el2_exception();
394 }
395