xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/mm.c (revision 8957261c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_hyp.h>
9 #include <asm/kvm_mmu.h>
10 #include <asm/kvm_pgtable.h>
11 #include <asm/kvm_pkvm.h>
12 #include <asm/spectre.h>
13 
14 #include <nvhe/early_alloc.h>
15 #include <nvhe/gfp.h>
16 #include <nvhe/memory.h>
17 #include <nvhe/mem_protect.h>
18 #include <nvhe/mm.h>
19 #include <nvhe/spinlock.h>
20 
21 struct kvm_pgtable pkvm_pgtable;
22 hyp_spinlock_t pkvm_pgd_lock;
23 
24 struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
25 unsigned int hyp_memblock_nr;
26 
27 static u64 __io_map_base;
28 
29 struct hyp_fixmap_slot {
30 	u64 addr;
31 	kvm_pte_t *ptep;
32 };
33 static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots);
34 
35 static int __pkvm_create_mappings(unsigned long start, unsigned long size,
36 				  unsigned long phys, enum kvm_pgtable_prot prot)
37 {
38 	int err;
39 
40 	hyp_spin_lock(&pkvm_pgd_lock);
41 	err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
42 	hyp_spin_unlock(&pkvm_pgd_lock);
43 
44 	return err;
45 }
46 
47 static int __pkvm_alloc_private_va_range(unsigned long start, size_t size)
48 {
49 	unsigned long cur;
50 
51 	hyp_assert_lock_held(&pkvm_pgd_lock);
52 
53 	if (!start || start < __io_map_base)
54 		return -EINVAL;
55 
56 	/* The allocated size is always a multiple of PAGE_SIZE */
57 	cur = start + PAGE_ALIGN(size);
58 
59 	/* Are we overflowing on the vmemmap ? */
60 	if (cur > __hyp_vmemmap)
61 		return -ENOMEM;
62 
63 	__io_map_base = cur;
64 
65 	return 0;
66 }
67 
68 /**
69  * pkvm_alloc_private_va_range - Allocates a private VA range.
70  * @size:	The size of the VA range to reserve.
71  * @haddr:	The hypervisor virtual start address of the allocation.
72  *
73  * The private virtual address (VA) range is allocated above __io_map_base
74  * and aligned based on the order of @size.
75  *
76  * Return: 0 on success or negative error code on failure.
77  */
78 int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
79 {
80 	unsigned long addr;
81 	int ret;
82 
83 	hyp_spin_lock(&pkvm_pgd_lock);
84 	addr = __io_map_base;
85 	ret = __pkvm_alloc_private_va_range(addr, size);
86 	hyp_spin_unlock(&pkvm_pgd_lock);
87 
88 	*haddr = addr;
89 
90 	return ret;
91 }
92 
93 int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
94 				  enum kvm_pgtable_prot prot,
95 				  unsigned long *haddr)
96 {
97 	unsigned long addr;
98 	int err;
99 
100 	size = PAGE_ALIGN(size + offset_in_page(phys));
101 	err = pkvm_alloc_private_va_range(size, &addr);
102 	if (err)
103 		return err;
104 
105 	err = __pkvm_create_mappings(addr, size, phys, prot);
106 	if (err)
107 		return err;
108 
109 	*haddr = addr + offset_in_page(phys);
110 	return err;
111 }
112 
113 int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
114 {
115 	unsigned long start = (unsigned long)from;
116 	unsigned long end = (unsigned long)to;
117 	unsigned long virt_addr;
118 	phys_addr_t phys;
119 
120 	hyp_assert_lock_held(&pkvm_pgd_lock);
121 
122 	start = start & PAGE_MASK;
123 	end = PAGE_ALIGN(end);
124 
125 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
126 		int err;
127 
128 		phys = hyp_virt_to_phys((void *)virt_addr);
129 		err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
130 					  phys, prot);
131 		if (err)
132 			return err;
133 	}
134 
135 	return 0;
136 }
137 
138 int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
139 {
140 	int ret;
141 
142 	hyp_spin_lock(&pkvm_pgd_lock);
143 	ret = pkvm_create_mappings_locked(from, to, prot);
144 	hyp_spin_unlock(&pkvm_pgd_lock);
145 
146 	return ret;
147 }
148 
149 int hyp_back_vmemmap(phys_addr_t back)
150 {
151 	unsigned long i, start, size, end = 0;
152 	int ret;
153 
154 	for (i = 0; i < hyp_memblock_nr; i++) {
155 		start = hyp_memory[i].base;
156 		start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
157 		/*
158 		 * The begining of the hyp_vmemmap region for the current
159 		 * memblock may already be backed by the page backing the end
160 		 * the previous region, so avoid mapping it twice.
161 		 */
162 		start = max(start, end);
163 
164 		end = hyp_memory[i].base + hyp_memory[i].size;
165 		end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
166 		if (start >= end)
167 			continue;
168 
169 		size = end - start;
170 		ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
171 		if (ret)
172 			return ret;
173 
174 		memset(hyp_phys_to_virt(back), 0, size);
175 		back += size;
176 	}
177 
178 	return 0;
179 }
180 
181 static void *__hyp_bp_vect_base;
182 int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
183 {
184 	void *vector;
185 
186 	switch (slot) {
187 	case HYP_VECTOR_DIRECT: {
188 		vector = __kvm_hyp_vector;
189 		break;
190 	}
191 	case HYP_VECTOR_SPECTRE_DIRECT: {
192 		vector = __bp_harden_hyp_vecs;
193 		break;
194 	}
195 	case HYP_VECTOR_INDIRECT:
196 	case HYP_VECTOR_SPECTRE_INDIRECT: {
197 		vector = (void *)__hyp_bp_vect_base;
198 		break;
199 	}
200 	default:
201 		return -EINVAL;
202 	}
203 
204 	vector = __kvm_vector_slot2addr(vector, slot);
205 	*this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
206 
207 	return 0;
208 }
209 
210 int hyp_map_vectors(void)
211 {
212 	phys_addr_t phys;
213 	unsigned long bp_base;
214 	int ret;
215 
216 	if (!kvm_system_needs_idmapped_vectors()) {
217 		__hyp_bp_vect_base = __bp_harden_hyp_vecs;
218 		return 0;
219 	}
220 
221 	phys = __hyp_pa(__bp_harden_hyp_vecs);
222 	ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ,
223 					    PAGE_HYP_EXEC, &bp_base);
224 	if (ret)
225 		return ret;
226 
227 	__hyp_bp_vect_base = (void *)bp_base;
228 
229 	return 0;
230 }
231 
232 void *hyp_fixmap_map(phys_addr_t phys)
233 {
234 	struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots);
235 	kvm_pte_t pte, *ptep = slot->ptep;
236 
237 	pte = *ptep;
238 	pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID);
239 	pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID;
240 	WRITE_ONCE(*ptep, pte);
241 	dsb(ishst);
242 
243 	return (void *)slot->addr;
244 }
245 
246 static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
247 {
248 	kvm_pte_t *ptep = slot->ptep;
249 	u64 addr = slot->addr;
250 
251 	WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID);
252 
253 	/*
254 	 * Irritatingly, the architecture requires that we use inner-shareable
255 	 * broadcast TLB invalidation here in case another CPU speculates
256 	 * through our fixmap and decides to create an "amalagamation of the
257 	 * values held in the TLB" due to the apparent lack of a
258 	 * break-before-make sequence.
259 	 *
260 	 * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03
261 	 */
262 	dsb(ishst);
263 	__tlbi_level(vale2is, __TLBI_VADDR(addr, 0), (KVM_PGTABLE_MAX_LEVELS - 1));
264 	dsb(ish);
265 	isb();
266 }
267 
268 void hyp_fixmap_unmap(void)
269 {
270 	fixmap_clear_slot(this_cpu_ptr(&fixmap_slots));
271 }
272 
273 static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx,
274 				   enum kvm_pgtable_walk_flags visit)
275 {
276 	struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg);
277 
278 	if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_MAX_LEVELS - 1)
279 		return -EINVAL;
280 
281 	slot->addr = ctx->addr;
282 	slot->ptep = ctx->ptep;
283 
284 	/*
285 	 * Clear the PTE, but keep the page-table page refcount elevated to
286 	 * prevent it from ever being freed. This lets us manipulate the PTEs
287 	 * by hand safely without ever needing to allocate memory.
288 	 */
289 	fixmap_clear_slot(slot);
290 
291 	return 0;
292 }
293 
294 static int create_fixmap_slot(u64 addr, u64 cpu)
295 {
296 	struct kvm_pgtable_walker walker = {
297 		.cb	= __create_fixmap_slot_cb,
298 		.flags	= KVM_PGTABLE_WALK_LEAF,
299 		.arg = (void *)cpu,
300 	};
301 
302 	return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
303 }
304 
305 int hyp_create_pcpu_fixmap(void)
306 {
307 	unsigned long addr, i;
308 	int ret;
309 
310 	for (i = 0; i < hyp_nr_cpus; i++) {
311 		ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr);
312 		if (ret)
313 			return ret;
314 
315 		ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
316 					  __hyp_pa(__hyp_bss_start), PAGE_HYP);
317 		if (ret)
318 			return ret;
319 
320 		ret = create_fixmap_slot(addr, i);
321 		if (ret)
322 			return ret;
323 	}
324 
325 	return 0;
326 }
327 
328 int hyp_create_idmap(u32 hyp_va_bits)
329 {
330 	unsigned long start, end;
331 
332 	start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
333 	start = ALIGN_DOWN(start, PAGE_SIZE);
334 
335 	end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
336 	end = ALIGN(end, PAGE_SIZE);
337 
338 	/*
339 	 * One half of the VA space is reserved to linearly map portions of
340 	 * memory -- see va_layout.c for more details. The other half of the VA
341 	 * space contains the trampoline page, and needs some care. Split that
342 	 * second half in two and find the quarter of VA space not conflicting
343 	 * with the idmap to place the IOs and the vmemmap. IOs use the lower
344 	 * half of the quarter and the vmemmap the upper half.
345 	 */
346 	__io_map_base = start & BIT(hyp_va_bits - 2);
347 	__io_map_base ^= BIT(hyp_va_bits - 2);
348 	__hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
349 
350 	return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
351 }
352 
353 int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr)
354 {
355 	unsigned long addr, prev_base;
356 	size_t size;
357 	int ret;
358 
359 	hyp_spin_lock(&pkvm_pgd_lock);
360 
361 	prev_base = __io_map_base;
362 	/*
363 	 * Efficient stack verification using the PAGE_SHIFT bit implies
364 	 * an alignment of our allocation on the order of the size.
365 	 */
366 	size = PAGE_SIZE * 2;
367 	addr = ALIGN(__io_map_base, size);
368 
369 	ret = __pkvm_alloc_private_va_range(addr, size);
370 	if (!ret) {
371 		/*
372 		 * Since the stack grows downwards, map the stack to the page
373 		 * at the higher address and leave the lower guard page
374 		 * unbacked.
375 		 *
376 		 * Any valid stack address now has the PAGE_SHIFT bit as 1
377 		 * and addresses corresponding to the guard page have the
378 		 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
379 		 */
380 		ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + PAGE_SIZE,
381 					  PAGE_SIZE, phys, PAGE_HYP);
382 		if (ret)
383 			__io_map_base = prev_base;
384 	}
385 	hyp_spin_unlock(&pkvm_pgd_lock);
386 
387 	*haddr = addr + size;
388 
389 	return ret;
390 }
391 
392 static void *admit_host_page(void *arg)
393 {
394 	struct kvm_hyp_memcache *host_mc = arg;
395 
396 	if (!host_mc->nr_pages)
397 		return NULL;
398 
399 	/*
400 	 * The host still owns the pages in its memcache, so we need to go
401 	 * through a full host-to-hyp donation cycle to change it. Fortunately,
402 	 * __pkvm_host_donate_hyp() takes care of races for us, so if it
403 	 * succeeds we're good to go.
404 	 */
405 	if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1))
406 		return NULL;
407 
408 	return pop_hyp_memcache(host_mc, hyp_phys_to_virt);
409 }
410 
411 /* Refill our local memcache by poping pages from the one provided by the host. */
412 int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
413 		    struct kvm_hyp_memcache *host_mc)
414 {
415 	struct kvm_hyp_memcache tmp = *host_mc;
416 	int ret;
417 
418 	ret =  __topup_hyp_memcache(mc, min_pages, admit_host_page,
419 				    hyp_virt_to_phys, &tmp);
420 	*host_mc = tmp;
421 
422 	return ret;
423 }
424