xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/mm.c (revision 436396f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_hyp.h>
9 #include <asm/kvm_mmu.h>
10 #include <asm/kvm_pgtable.h>
11 #include <asm/kvm_pkvm.h>
12 #include <asm/spectre.h>
13 
14 #include <nvhe/early_alloc.h>
15 #include <nvhe/gfp.h>
16 #include <nvhe/memory.h>
17 #include <nvhe/mem_protect.h>
18 #include <nvhe/mm.h>
19 #include <nvhe/spinlock.h>
20 
21 struct kvm_pgtable pkvm_pgtable;
22 hyp_spinlock_t pkvm_pgd_lock;
23 
24 struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS];
25 unsigned int hyp_memblock_nr;
26 
27 static u64 __io_map_base;
28 
29 struct hyp_fixmap_slot {
30 	u64 addr;
31 	kvm_pte_t *ptep;
32 };
33 static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots);
34 
35 static int __pkvm_create_mappings(unsigned long start, unsigned long size,
36 				  unsigned long phys, enum kvm_pgtable_prot prot)
37 {
38 	int err;
39 
40 	hyp_spin_lock(&pkvm_pgd_lock);
41 	err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot);
42 	hyp_spin_unlock(&pkvm_pgd_lock);
43 
44 	return err;
45 }
46 
47 /**
48  * pkvm_alloc_private_va_range - Allocates a private VA range.
49  * @size:	The size of the VA range to reserve.
50  * @haddr:	The hypervisor virtual start address of the allocation.
51  *
52  * The private virtual address (VA) range is allocated above __io_map_base
53  * and aligned based on the order of @size.
54  *
55  * Return: 0 on success or negative error code on failure.
56  */
57 int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr)
58 {
59 	unsigned long base, addr;
60 	int ret = 0;
61 
62 	hyp_spin_lock(&pkvm_pgd_lock);
63 
64 	/* Align the allocation based on the order of its size */
65 	addr = ALIGN(__io_map_base, PAGE_SIZE << get_order(size));
66 
67 	/* The allocated size is always a multiple of PAGE_SIZE */
68 	base = addr + PAGE_ALIGN(size);
69 
70 	/* Are we overflowing on the vmemmap ? */
71 	if (!addr || base > __hyp_vmemmap)
72 		ret = -ENOMEM;
73 	else {
74 		__io_map_base = base;
75 		*haddr = addr;
76 	}
77 
78 	hyp_spin_unlock(&pkvm_pgd_lock);
79 
80 	return ret;
81 }
82 
83 int __pkvm_create_private_mapping(phys_addr_t phys, size_t size,
84 				  enum kvm_pgtable_prot prot,
85 				  unsigned long *haddr)
86 {
87 	unsigned long addr;
88 	int err;
89 
90 	size = PAGE_ALIGN(size + offset_in_page(phys));
91 	err = pkvm_alloc_private_va_range(size, &addr);
92 	if (err)
93 		return err;
94 
95 	err = __pkvm_create_mappings(addr, size, phys, prot);
96 	if (err)
97 		return err;
98 
99 	*haddr = addr + offset_in_page(phys);
100 	return err;
101 }
102 
103 int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot)
104 {
105 	unsigned long start = (unsigned long)from;
106 	unsigned long end = (unsigned long)to;
107 	unsigned long virt_addr;
108 	phys_addr_t phys;
109 
110 	hyp_assert_lock_held(&pkvm_pgd_lock);
111 
112 	start = start & PAGE_MASK;
113 	end = PAGE_ALIGN(end);
114 
115 	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
116 		int err;
117 
118 		phys = hyp_virt_to_phys((void *)virt_addr);
119 		err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE,
120 					  phys, prot);
121 		if (err)
122 			return err;
123 	}
124 
125 	return 0;
126 }
127 
128 int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
129 {
130 	int ret;
131 
132 	hyp_spin_lock(&pkvm_pgd_lock);
133 	ret = pkvm_create_mappings_locked(from, to, prot);
134 	hyp_spin_unlock(&pkvm_pgd_lock);
135 
136 	return ret;
137 }
138 
139 int hyp_back_vmemmap(phys_addr_t back)
140 {
141 	unsigned long i, start, size, end = 0;
142 	int ret;
143 
144 	for (i = 0; i < hyp_memblock_nr; i++) {
145 		start = hyp_memory[i].base;
146 		start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE);
147 		/*
148 		 * The begining of the hyp_vmemmap region for the current
149 		 * memblock may already be backed by the page backing the end
150 		 * the previous region, so avoid mapping it twice.
151 		 */
152 		start = max(start, end);
153 
154 		end = hyp_memory[i].base + hyp_memory[i].size;
155 		end = PAGE_ALIGN((u64)hyp_phys_to_page(end));
156 		if (start >= end)
157 			continue;
158 
159 		size = end - start;
160 		ret = __pkvm_create_mappings(start, size, back, PAGE_HYP);
161 		if (ret)
162 			return ret;
163 
164 		memset(hyp_phys_to_virt(back), 0, size);
165 		back += size;
166 	}
167 
168 	return 0;
169 }
170 
171 static void *__hyp_bp_vect_base;
172 int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot)
173 {
174 	void *vector;
175 
176 	switch (slot) {
177 	case HYP_VECTOR_DIRECT: {
178 		vector = __kvm_hyp_vector;
179 		break;
180 	}
181 	case HYP_VECTOR_SPECTRE_DIRECT: {
182 		vector = __bp_harden_hyp_vecs;
183 		break;
184 	}
185 	case HYP_VECTOR_INDIRECT:
186 	case HYP_VECTOR_SPECTRE_INDIRECT: {
187 		vector = (void *)__hyp_bp_vect_base;
188 		break;
189 	}
190 	default:
191 		return -EINVAL;
192 	}
193 
194 	vector = __kvm_vector_slot2addr(vector, slot);
195 	*this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector;
196 
197 	return 0;
198 }
199 
200 int hyp_map_vectors(void)
201 {
202 	phys_addr_t phys;
203 	unsigned long bp_base;
204 	int ret;
205 
206 	if (!kvm_system_needs_idmapped_vectors()) {
207 		__hyp_bp_vect_base = __bp_harden_hyp_vecs;
208 		return 0;
209 	}
210 
211 	phys = __hyp_pa(__bp_harden_hyp_vecs);
212 	ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ,
213 					    PAGE_HYP_EXEC, &bp_base);
214 	if (ret)
215 		return ret;
216 
217 	__hyp_bp_vect_base = (void *)bp_base;
218 
219 	return 0;
220 }
221 
222 void *hyp_fixmap_map(phys_addr_t phys)
223 {
224 	struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots);
225 	kvm_pte_t pte, *ptep = slot->ptep;
226 
227 	pte = *ptep;
228 	pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID);
229 	pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID;
230 	WRITE_ONCE(*ptep, pte);
231 	dsb(ishst);
232 
233 	return (void *)slot->addr;
234 }
235 
236 static void fixmap_clear_slot(struct hyp_fixmap_slot *slot)
237 {
238 	kvm_pte_t *ptep = slot->ptep;
239 	u64 addr = slot->addr;
240 
241 	WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID);
242 
243 	/*
244 	 * Irritatingly, the architecture requires that we use inner-shareable
245 	 * broadcast TLB invalidation here in case another CPU speculates
246 	 * through our fixmap and decides to create an "amalagamation of the
247 	 * values held in the TLB" due to the apparent lack of a
248 	 * break-before-make sequence.
249 	 *
250 	 * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03
251 	 */
252 	dsb(ishst);
253 	__tlbi_level(vale2is, __TLBI_VADDR(addr, 0), (KVM_PGTABLE_MAX_LEVELS - 1));
254 	dsb(ish);
255 	isb();
256 }
257 
258 void hyp_fixmap_unmap(void)
259 {
260 	fixmap_clear_slot(this_cpu_ptr(&fixmap_slots));
261 }
262 
263 static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx,
264 				   enum kvm_pgtable_walk_flags visit)
265 {
266 	struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg);
267 
268 	if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_MAX_LEVELS - 1)
269 		return -EINVAL;
270 
271 	slot->addr = ctx->addr;
272 	slot->ptep = ctx->ptep;
273 
274 	/*
275 	 * Clear the PTE, but keep the page-table page refcount elevated to
276 	 * prevent it from ever being freed. This lets us manipulate the PTEs
277 	 * by hand safely without ever needing to allocate memory.
278 	 */
279 	fixmap_clear_slot(slot);
280 
281 	return 0;
282 }
283 
284 static int create_fixmap_slot(u64 addr, u64 cpu)
285 {
286 	struct kvm_pgtable_walker walker = {
287 		.cb	= __create_fixmap_slot_cb,
288 		.flags	= KVM_PGTABLE_WALK_LEAF,
289 		.arg = (void *)cpu,
290 	};
291 
292 	return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker);
293 }
294 
295 int hyp_create_pcpu_fixmap(void)
296 {
297 	unsigned long addr, i;
298 	int ret;
299 
300 	for (i = 0; i < hyp_nr_cpus; i++) {
301 		ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr);
302 		if (ret)
303 			return ret;
304 
305 		ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE,
306 					  __hyp_pa(__hyp_bss_start), PAGE_HYP);
307 		if (ret)
308 			return ret;
309 
310 		ret = create_fixmap_slot(addr, i);
311 		if (ret)
312 			return ret;
313 	}
314 
315 	return 0;
316 }
317 
318 int hyp_create_idmap(u32 hyp_va_bits)
319 {
320 	unsigned long start, end;
321 
322 	start = hyp_virt_to_phys((void *)__hyp_idmap_text_start);
323 	start = ALIGN_DOWN(start, PAGE_SIZE);
324 
325 	end = hyp_virt_to_phys((void *)__hyp_idmap_text_end);
326 	end = ALIGN(end, PAGE_SIZE);
327 
328 	/*
329 	 * One half of the VA space is reserved to linearly map portions of
330 	 * memory -- see va_layout.c for more details. The other half of the VA
331 	 * space contains the trampoline page, and needs some care. Split that
332 	 * second half in two and find the quarter of VA space not conflicting
333 	 * with the idmap to place the IOs and the vmemmap. IOs use the lower
334 	 * half of the quarter and the vmemmap the upper half.
335 	 */
336 	__io_map_base = start & BIT(hyp_va_bits - 2);
337 	__io_map_base ^= BIT(hyp_va_bits - 2);
338 	__hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3);
339 
340 	return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC);
341 }
342 
343 static void *admit_host_page(void *arg)
344 {
345 	struct kvm_hyp_memcache *host_mc = arg;
346 
347 	if (!host_mc->nr_pages)
348 		return NULL;
349 
350 	/*
351 	 * The host still owns the pages in its memcache, so we need to go
352 	 * through a full host-to-hyp donation cycle to change it. Fortunately,
353 	 * __pkvm_host_donate_hyp() takes care of races for us, so if it
354 	 * succeeds we're good to go.
355 	 */
356 	if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1))
357 		return NULL;
358 
359 	return pop_hyp_memcache(host_mc, hyp_phys_to_virt);
360 }
361 
362 /* Refill our local memcache by poping pages from the one provided by the host. */
363 int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages,
364 		    struct kvm_hyp_memcache *host_mc)
365 {
366 	struct kvm_hyp_memcache tmp = *host_mc;
367 	int ret;
368 
369 	ret =  __topup_hyp_memcache(mc, min_pages, admit_host_page,
370 				    hyp_virt_to_phys, &tmp);
371 	*host_mc = tmp;
372 
373 	return ret;
374 }
375