xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision c0891ac1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 #include <hyp/switch.h>
15 
16 #include <nvhe/gfp.h>
17 #include <nvhe/memory.h>
18 #include <nvhe/mem_protect.h>
19 #include <nvhe/mm.h>
20 
21 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
22 
23 extern unsigned long hyp_nr_cpus;
24 struct host_kvm host_kvm;
25 
26 static struct hyp_pool host_s2_pool;
27 
28 /*
29  * Copies of the host's CPU features registers holding sanitized values.
30  */
31 u64 id_aa64mmfr0_el1_sys_val;
32 u64 id_aa64mmfr1_el1_sys_val;
33 
34 static const u8 pkvm_hyp_id = 1;
35 
36 static void *host_s2_zalloc_pages_exact(size_t size)
37 {
38 	return hyp_alloc_pages(&host_s2_pool, get_order(size));
39 }
40 
41 static void *host_s2_zalloc_page(void *pool)
42 {
43 	return hyp_alloc_pages(pool, 0);
44 }
45 
46 static void host_s2_get_page(void *addr)
47 {
48 	hyp_get_page(&host_s2_pool, addr);
49 }
50 
51 static void host_s2_put_page(void *addr)
52 {
53 	hyp_put_page(&host_s2_pool, addr);
54 }
55 
56 static int prepare_s2_pool(void *pgt_pool_base)
57 {
58 	unsigned long nr_pages, pfn;
59 	int ret;
60 
61 	pfn = hyp_virt_to_pfn(pgt_pool_base);
62 	nr_pages = host_s2_pgtable_pages();
63 	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
64 	if (ret)
65 		return ret;
66 
67 	host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
68 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
69 		.zalloc_page = host_s2_zalloc_page,
70 		.phys_to_virt = hyp_phys_to_virt,
71 		.virt_to_phys = hyp_virt_to_phys,
72 		.page_count = hyp_page_count,
73 		.get_page = host_s2_get_page,
74 		.put_page = host_s2_put_page,
75 	};
76 
77 	return 0;
78 }
79 
80 static void prepare_host_vtcr(void)
81 {
82 	u32 parange, phys_shift;
83 
84 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
85 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
86 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
87 
88 	host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
89 					  id_aa64mmfr1_el1_sys_val, phys_shift);
90 }
91 
92 int kvm_host_prepare_stage2(void *pgt_pool_base)
93 {
94 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
95 	int ret;
96 
97 	prepare_host_vtcr();
98 	hyp_spin_lock_init(&host_kvm.lock);
99 
100 	ret = prepare_s2_pool(pgt_pool_base);
101 	if (ret)
102 		return ret;
103 
104 	ret = kvm_pgtable_stage2_init_flags(&host_kvm.pgt, &host_kvm.arch,
105 					    &host_kvm.mm_ops, KVM_HOST_S2_FLAGS);
106 	if (ret)
107 		return ret;
108 
109 	mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
110 	mmu->arch = &host_kvm.arch;
111 	mmu->pgt = &host_kvm.pgt;
112 	mmu->vmid.vmid_gen = 0;
113 	mmu->vmid.vmid = 0;
114 
115 	return 0;
116 }
117 
118 int __pkvm_prot_finalize(void)
119 {
120 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
121 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
122 
123 	params->vttbr = kvm_get_vttbr(mmu);
124 	params->vtcr = host_kvm.arch.vtcr;
125 	params->hcr_el2 |= HCR_VM;
126 	kvm_flush_dcache_to_poc(params, sizeof(*params));
127 
128 	write_sysreg(params->hcr_el2, hcr_el2);
129 	__load_stage2(&host_kvm.arch.mmu, host_kvm.arch.vtcr);
130 
131 	/*
132 	 * Make sure to have an ISB before the TLB maintenance below but only
133 	 * when __load_stage2() doesn't include one already.
134 	 */
135 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
136 
137 	/* Invalidate stale HCR bits that may be cached in TLBs */
138 	__tlbi(vmalls12e1);
139 	dsb(nsh);
140 	isb();
141 
142 	return 0;
143 }
144 
145 static int host_stage2_unmap_dev_all(void)
146 {
147 	struct kvm_pgtable *pgt = &host_kvm.pgt;
148 	struct memblock_region *reg;
149 	u64 addr = 0;
150 	int i, ret;
151 
152 	/* Unmap all non-memory regions to recycle the pages */
153 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
154 		reg = &hyp_memory[i];
155 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
156 		if (ret)
157 			return ret;
158 	}
159 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
160 }
161 
162 static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
163 {
164 	int cur, left = 0, right = hyp_memblock_nr;
165 	struct memblock_region *reg;
166 	phys_addr_t end;
167 
168 	range->start = 0;
169 	range->end = ULONG_MAX;
170 
171 	/* The list of memblock regions is sorted, binary search it */
172 	while (left < right) {
173 		cur = (left + right) >> 1;
174 		reg = &hyp_memory[cur];
175 		end = reg->base + reg->size;
176 		if (addr < reg->base) {
177 			right = cur;
178 			range->end = reg->base;
179 		} else if (addr >= end) {
180 			left = cur + 1;
181 			range->start = end;
182 		} else {
183 			range->start = reg->base;
184 			range->end = end;
185 			return true;
186 		}
187 	}
188 
189 	return false;
190 }
191 
192 static bool range_is_memory(u64 start, u64 end)
193 {
194 	struct kvm_mem_range r1, r2;
195 
196 	if (!find_mem_range(start, &r1) || !find_mem_range(end, &r2))
197 		return false;
198 	if (r1.start != r2.start)
199 		return false;
200 
201 	return true;
202 }
203 
204 static inline int __host_stage2_idmap(u64 start, u64 end,
205 				      enum kvm_pgtable_prot prot)
206 {
207 	return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
208 				      prot, &host_s2_pool);
209 }
210 
211 static int host_stage2_idmap(u64 addr)
212 {
213 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_W;
214 	struct kvm_mem_range range;
215 	bool is_memory = find_mem_range(addr, &range);
216 	int ret;
217 
218 	if (is_memory)
219 		prot |= KVM_PGTABLE_PROT_X;
220 
221 	hyp_spin_lock(&host_kvm.lock);
222 	ret = kvm_pgtable_stage2_find_range(&host_kvm.pgt, addr, prot, &range);
223 	if (ret)
224 		goto unlock;
225 
226 	ret = __host_stage2_idmap(range.start, range.end, prot);
227 	if (ret != -ENOMEM)
228 		goto unlock;
229 
230 	/*
231 	 * The pool has been provided with enough pages to cover all of memory
232 	 * with page granularity, but it is difficult to know how much of the
233 	 * MMIO range we will need to cover upfront, so we may need to 'recycle'
234 	 * the pages if we run out.
235 	 */
236 	ret = host_stage2_unmap_dev_all();
237 	if (ret)
238 		goto unlock;
239 
240 	ret = __host_stage2_idmap(range.start, range.end, prot);
241 
242 unlock:
243 	hyp_spin_unlock(&host_kvm.lock);
244 
245 	return ret;
246 }
247 
248 int __pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
249 {
250 	int ret;
251 
252 	/*
253 	 * host_stage2_unmap_dev_all() currently relies on MMIO mappings being
254 	 * non-persistent, so don't allow changing page ownership in MMIO range.
255 	 */
256 	if (!range_is_memory(start, end))
257 		return -EINVAL;
258 
259 	hyp_spin_lock(&host_kvm.lock);
260 	ret = kvm_pgtable_stage2_set_owner(&host_kvm.pgt, start, end - start,
261 					   &host_s2_pool, pkvm_hyp_id);
262 	hyp_spin_unlock(&host_kvm.lock);
263 
264 	return ret != -EAGAIN ? ret : 0;
265 }
266 
267 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
268 {
269 	struct kvm_vcpu_fault_info fault;
270 	u64 esr, addr;
271 	int ret = 0;
272 
273 	esr = read_sysreg_el2(SYS_ESR);
274 	BUG_ON(!__get_fault_info(esr, &fault));
275 
276 	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
277 	ret = host_stage2_idmap(addr);
278 	BUG_ON(ret && ret != -EAGAIN);
279 }
280