xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 #include <hyp/fault.h>
15 
16 #include <nvhe/gfp.h>
17 #include <nvhe/memory.h>
18 #include <nvhe/mem_protect.h>
19 #include <nvhe/mm.h>
20 
21 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
22 
23 extern unsigned long hyp_nr_cpus;
24 struct host_kvm host_kvm;
25 
26 static struct hyp_pool host_s2_pool;
27 
28 const u8 pkvm_hyp_id = 1;
29 
30 static void *host_s2_zalloc_pages_exact(size_t size)
31 {
32 	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
33 
34 	hyp_split_page(hyp_virt_to_page(addr));
35 
36 	/*
37 	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
38 	 * so there should be no need to free any of the tail pages to make the
39 	 * allocation exact.
40 	 */
41 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
42 
43 	return addr;
44 }
45 
46 static void *host_s2_zalloc_page(void *pool)
47 {
48 	return hyp_alloc_pages(pool, 0);
49 }
50 
51 static void host_s2_get_page(void *addr)
52 {
53 	hyp_get_page(&host_s2_pool, addr);
54 }
55 
56 static void host_s2_put_page(void *addr)
57 {
58 	hyp_put_page(&host_s2_pool, addr);
59 }
60 
61 static int prepare_s2_pool(void *pgt_pool_base)
62 {
63 	unsigned long nr_pages, pfn;
64 	int ret;
65 
66 	pfn = hyp_virt_to_pfn(pgt_pool_base);
67 	nr_pages = host_s2_pgtable_pages();
68 	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
69 	if (ret)
70 		return ret;
71 
72 	host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
73 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
74 		.zalloc_page = host_s2_zalloc_page,
75 		.phys_to_virt = hyp_phys_to_virt,
76 		.virt_to_phys = hyp_virt_to_phys,
77 		.page_count = hyp_page_count,
78 		.get_page = host_s2_get_page,
79 		.put_page = host_s2_put_page,
80 	};
81 
82 	return 0;
83 }
84 
85 static void prepare_host_vtcr(void)
86 {
87 	u32 parange, phys_shift;
88 
89 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
90 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
91 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
92 
93 	host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
94 					  id_aa64mmfr1_el1_sys_val, phys_shift);
95 }
96 
97 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
98 
99 int kvm_host_prepare_stage2(void *pgt_pool_base)
100 {
101 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
102 	int ret;
103 
104 	prepare_host_vtcr();
105 	hyp_spin_lock_init(&host_kvm.lock);
106 
107 	ret = prepare_s2_pool(pgt_pool_base);
108 	if (ret)
109 		return ret;
110 
111 	ret = __kvm_pgtable_stage2_init(&host_kvm.pgt, &host_kvm.arch,
112 					&host_kvm.mm_ops, KVM_HOST_S2_FLAGS,
113 					host_stage2_force_pte_cb);
114 	if (ret)
115 		return ret;
116 
117 	mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
118 	mmu->arch = &host_kvm.arch;
119 	mmu->pgt = &host_kvm.pgt;
120 	WRITE_ONCE(mmu->vmid.vmid_gen, 0);
121 	WRITE_ONCE(mmu->vmid.vmid, 0);
122 
123 	return 0;
124 }
125 
126 int __pkvm_prot_finalize(void)
127 {
128 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
129 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
130 
131 	if (params->hcr_el2 & HCR_VM)
132 		return -EPERM;
133 
134 	params->vttbr = kvm_get_vttbr(mmu);
135 	params->vtcr = host_kvm.arch.vtcr;
136 	params->hcr_el2 |= HCR_VM;
137 	kvm_flush_dcache_to_poc(params, sizeof(*params));
138 
139 	write_sysreg(params->hcr_el2, hcr_el2);
140 	__load_stage2(&host_kvm.arch.mmu, &host_kvm.arch);
141 
142 	/*
143 	 * Make sure to have an ISB before the TLB maintenance below but only
144 	 * when __load_stage2() doesn't include one already.
145 	 */
146 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
147 
148 	/* Invalidate stale HCR bits that may be cached in TLBs */
149 	__tlbi(vmalls12e1);
150 	dsb(nsh);
151 	isb();
152 
153 	return 0;
154 }
155 
156 static int host_stage2_unmap_dev_all(void)
157 {
158 	struct kvm_pgtable *pgt = &host_kvm.pgt;
159 	struct memblock_region *reg;
160 	u64 addr = 0;
161 	int i, ret;
162 
163 	/* Unmap all non-memory regions to recycle the pages */
164 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
165 		reg = &hyp_memory[i];
166 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
167 		if (ret)
168 			return ret;
169 	}
170 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
171 }
172 
173 struct kvm_mem_range {
174 	u64 start;
175 	u64 end;
176 };
177 
178 static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
179 {
180 	int cur, left = 0, right = hyp_memblock_nr;
181 	struct memblock_region *reg;
182 	phys_addr_t end;
183 
184 	range->start = 0;
185 	range->end = ULONG_MAX;
186 
187 	/* The list of memblock regions is sorted, binary search it */
188 	while (left < right) {
189 		cur = (left + right) >> 1;
190 		reg = &hyp_memory[cur];
191 		end = reg->base + reg->size;
192 		if (addr < reg->base) {
193 			right = cur;
194 			range->end = reg->base;
195 		} else if (addr >= end) {
196 			left = cur + 1;
197 			range->start = end;
198 		} else {
199 			range->start = reg->base;
200 			range->end = end;
201 			return true;
202 		}
203 	}
204 
205 	return false;
206 }
207 
208 bool addr_is_memory(phys_addr_t phys)
209 {
210 	struct kvm_mem_range range;
211 
212 	return find_mem_range(phys, &range);
213 }
214 
215 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
216 {
217 	return range->start <= addr && addr < range->end;
218 }
219 
220 static bool range_is_memory(u64 start, u64 end)
221 {
222 	struct kvm_mem_range r;
223 
224 	if (!find_mem_range(start, &r))
225 		return false;
226 
227 	return is_in_mem_range(end - 1, &r);
228 }
229 
230 static inline int __host_stage2_idmap(u64 start, u64 end,
231 				      enum kvm_pgtable_prot prot)
232 {
233 	return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
234 				      prot, &host_s2_pool);
235 }
236 
237 /*
238  * The pool has been provided with enough pages to cover all of memory with
239  * page granularity, but it is difficult to know how much of the MMIO range
240  * we will need to cover upfront, so we may need to 'recycle' the pages if we
241  * run out.
242  */
243 #define host_stage2_try(fn, ...)					\
244 	({								\
245 		int __ret;						\
246 		hyp_assert_lock_held(&host_kvm.lock);			\
247 		__ret = fn(__VA_ARGS__);				\
248 		if (__ret == -ENOMEM) {					\
249 			__ret = host_stage2_unmap_dev_all();		\
250 			if (!__ret)					\
251 				__ret = fn(__VA_ARGS__);		\
252 		}							\
253 		__ret;							\
254 	 })
255 
256 static inline bool range_included(struct kvm_mem_range *child,
257 				  struct kvm_mem_range *parent)
258 {
259 	return parent->start <= child->start && child->end <= parent->end;
260 }
261 
262 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
263 {
264 	struct kvm_mem_range cur;
265 	kvm_pte_t pte;
266 	u32 level;
267 	int ret;
268 
269 	hyp_assert_lock_held(&host_kvm.lock);
270 	ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, &level);
271 	if (ret)
272 		return ret;
273 
274 	if (kvm_pte_valid(pte))
275 		return -EAGAIN;
276 
277 	if (pte)
278 		return -EPERM;
279 
280 	do {
281 		u64 granule = kvm_granule_size(level);
282 		cur.start = ALIGN_DOWN(addr, granule);
283 		cur.end = cur.start + granule;
284 		level++;
285 	} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
286 			!(kvm_level_supports_block_mapping(level) &&
287 			  range_included(&cur, range)));
288 
289 	*range = cur;
290 
291 	return 0;
292 }
293 
294 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
295 			     enum kvm_pgtable_prot prot)
296 {
297 	hyp_assert_lock_held(&host_kvm.lock);
298 
299 	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
300 }
301 
302 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
303 {
304 	hyp_assert_lock_held(&host_kvm.lock);
305 
306 	return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_kvm.pgt,
307 			       addr, size, &host_s2_pool, owner_id);
308 }
309 
310 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
311 {
312 	/*
313 	 * Block mappings must be used with care in the host stage-2 as a
314 	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
315 	 * an existing block will delete the block under the assumption that
316 	 * mappings in the rest of the block range can always be rebuilt lazily.
317 	 * That assumption is correct for the host stage-2 with RWX mappings
318 	 * targeting memory or RW mappings targeting MMIO ranges (see
319 	 * host_stage2_idmap() below which implements some of the host memory
320 	 * abort logic). However, this is not safe for any other mappings where
321 	 * the host stage-2 page-table is in fact the only place where this
322 	 * state is stored. In all those cases, it is safer to use page-level
323 	 * mappings, hence avoiding to lose the state because of side-effects in
324 	 * kvm_pgtable_stage2_map().
325 	 */
326 	if (range_is_memory(addr, end))
327 		return prot != PKVM_HOST_MEM_PROT;
328 	else
329 		return prot != PKVM_HOST_MMIO_PROT;
330 }
331 
332 static int host_stage2_idmap(u64 addr)
333 {
334 	struct kvm_mem_range range;
335 	bool is_memory = find_mem_range(addr, &range);
336 	enum kvm_pgtable_prot prot;
337 	int ret;
338 
339 	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
340 
341 	hyp_spin_lock(&host_kvm.lock);
342 	ret = host_stage2_adjust_range(addr, &range);
343 	if (ret)
344 		goto unlock;
345 
346 	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
347 unlock:
348 	hyp_spin_unlock(&host_kvm.lock);
349 
350 	return ret;
351 }
352 
353 static inline bool check_prot(enum kvm_pgtable_prot prot,
354 			      enum kvm_pgtable_prot required,
355 			      enum kvm_pgtable_prot denied)
356 {
357 	return (prot & (required | denied)) == required;
358 }
359 
360 int __pkvm_host_share_hyp(u64 pfn)
361 {
362 	phys_addr_t addr = hyp_pfn_to_phys(pfn);
363 	enum kvm_pgtable_prot prot, cur;
364 	void *virt = __hyp_va(addr);
365 	enum pkvm_page_state state;
366 	kvm_pte_t pte;
367 	int ret;
368 
369 	if (!addr_is_memory(addr))
370 		return -EINVAL;
371 
372 	hyp_spin_lock(&host_kvm.lock);
373 	hyp_spin_lock(&pkvm_pgd_lock);
374 
375 	ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, NULL);
376 	if (ret)
377 		goto unlock;
378 	if (!pte)
379 		goto map_shared;
380 
381 	/*
382 	 * Check attributes in the host stage-2 PTE. We need the page to be:
383 	 *  - mapped RWX as we're sharing memory;
384 	 *  - not borrowed, as that implies absence of ownership.
385 	 * Otherwise, we can't let it got through
386 	 */
387 	cur = kvm_pgtable_stage2_pte_prot(pte);
388 	prot = pkvm_mkstate(0, PKVM_PAGE_SHARED_BORROWED);
389 	if (!check_prot(cur, PKVM_HOST_MEM_PROT, prot)) {
390 		ret = -EPERM;
391 		goto unlock;
392 	}
393 
394 	state = pkvm_getstate(cur);
395 	if (state == PKVM_PAGE_OWNED)
396 		goto map_shared;
397 
398 	/*
399 	 * Tolerate double-sharing the same page, but this requires
400 	 * cross-checking the hypervisor stage-1.
401 	 */
402 	if (state != PKVM_PAGE_SHARED_OWNED) {
403 		ret = -EPERM;
404 		goto unlock;
405 	}
406 
407 	ret = kvm_pgtable_get_leaf(&pkvm_pgtable, (u64)virt, &pte, NULL);
408 	if (ret)
409 		goto unlock;
410 
411 	/*
412 	 * If the page has been shared with the hypervisor, it must be
413 	 * already mapped as SHARED_BORROWED in its stage-1.
414 	 */
415 	cur = kvm_pgtable_hyp_pte_prot(pte);
416 	prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_SHARED_BORROWED);
417 	if (!check_prot(cur, prot, ~prot))
418 		ret = -EPERM;
419 	goto unlock;
420 
421 map_shared:
422 	/*
423 	 * If the page is not yet shared, adjust mappings in both page-tables
424 	 * while both locks are held.
425 	 */
426 	prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_SHARED_BORROWED);
427 	ret = pkvm_create_mappings_locked(virt, virt + PAGE_SIZE, prot);
428 	BUG_ON(ret);
429 
430 	prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, PKVM_PAGE_SHARED_OWNED);
431 	ret = host_stage2_idmap_locked(addr, PAGE_SIZE, prot);
432 	BUG_ON(ret);
433 
434 unlock:
435 	hyp_spin_unlock(&pkvm_pgd_lock);
436 	hyp_spin_unlock(&host_kvm.lock);
437 
438 	return ret;
439 }
440 
441 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
442 {
443 	struct kvm_vcpu_fault_info fault;
444 	u64 esr, addr;
445 	int ret = 0;
446 
447 	esr = read_sysreg_el2(SYS_ESR);
448 	BUG_ON(!__get_fault_info(esr, &fault));
449 
450 	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
451 	ret = host_stage2_idmap(addr);
452 	BUG_ON(ret && ret != -EAGAIN);
453 }
454