xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision a0936e9e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14 
15 #include <hyp/fault.h>
16 
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21 
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23 
24 struct host_mmu host_mmu;
25 
26 static struct hyp_pool host_s2_pool;
27 
28 static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
29 #define current_vm (*this_cpu_ptr(&__current_vm))
30 
31 static void guest_lock_component(struct pkvm_hyp_vm *vm)
32 {
33 	hyp_spin_lock(&vm->lock);
34 	current_vm = vm;
35 }
36 
37 static void guest_unlock_component(struct pkvm_hyp_vm *vm)
38 {
39 	current_vm = NULL;
40 	hyp_spin_unlock(&vm->lock);
41 }
42 
43 static void host_lock_component(void)
44 {
45 	hyp_spin_lock(&host_mmu.lock);
46 }
47 
48 static void host_unlock_component(void)
49 {
50 	hyp_spin_unlock(&host_mmu.lock);
51 }
52 
53 static void hyp_lock_component(void)
54 {
55 	hyp_spin_lock(&pkvm_pgd_lock);
56 }
57 
58 static void hyp_unlock_component(void)
59 {
60 	hyp_spin_unlock(&pkvm_pgd_lock);
61 }
62 
63 static void *host_s2_zalloc_pages_exact(size_t size)
64 {
65 	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
66 
67 	hyp_split_page(hyp_virt_to_page(addr));
68 
69 	/*
70 	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
71 	 * so there should be no need to free any of the tail pages to make the
72 	 * allocation exact.
73 	 */
74 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
75 
76 	return addr;
77 }
78 
79 static void *host_s2_zalloc_page(void *pool)
80 {
81 	return hyp_alloc_pages(pool, 0);
82 }
83 
84 static void host_s2_get_page(void *addr)
85 {
86 	hyp_get_page(&host_s2_pool, addr);
87 }
88 
89 static void host_s2_put_page(void *addr)
90 {
91 	hyp_put_page(&host_s2_pool, addr);
92 }
93 
94 static void host_s2_free_removed_table(void *addr, u32 level)
95 {
96 	kvm_pgtable_stage2_free_removed(&host_mmu.mm_ops, addr, level);
97 }
98 
99 static int prepare_s2_pool(void *pgt_pool_base)
100 {
101 	unsigned long nr_pages, pfn;
102 	int ret;
103 
104 	pfn = hyp_virt_to_pfn(pgt_pool_base);
105 	nr_pages = host_s2_pgtable_pages();
106 	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
107 	if (ret)
108 		return ret;
109 
110 	host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
111 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
112 		.zalloc_page = host_s2_zalloc_page,
113 		.free_removed_table = host_s2_free_removed_table,
114 		.phys_to_virt = hyp_phys_to_virt,
115 		.virt_to_phys = hyp_virt_to_phys,
116 		.page_count = hyp_page_count,
117 		.get_page = host_s2_get_page,
118 		.put_page = host_s2_put_page,
119 	};
120 
121 	return 0;
122 }
123 
124 static void prepare_host_vtcr(void)
125 {
126 	u32 parange, phys_shift;
127 
128 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
129 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
130 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
131 
132 	host_mmu.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
133 					  id_aa64mmfr1_el1_sys_val, phys_shift);
134 }
135 
136 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
137 
138 int kvm_host_prepare_stage2(void *pgt_pool_base)
139 {
140 	struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
141 	int ret;
142 
143 	prepare_host_vtcr();
144 	hyp_spin_lock_init(&host_mmu.lock);
145 	mmu->arch = &host_mmu.arch;
146 
147 	ret = prepare_s2_pool(pgt_pool_base);
148 	if (ret)
149 		return ret;
150 
151 	ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
152 					&host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
153 					host_stage2_force_pte_cb);
154 	if (ret)
155 		return ret;
156 
157 	mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
158 	mmu->pgt = &host_mmu.pgt;
159 	atomic64_set(&mmu->vmid.id, 0);
160 
161 	return 0;
162 }
163 
164 static bool guest_stage2_force_pte_cb(u64 addr, u64 end,
165 				      enum kvm_pgtable_prot prot)
166 {
167 	return true;
168 }
169 
170 static void *guest_s2_zalloc_pages_exact(size_t size)
171 {
172 	void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
173 
174 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
175 	hyp_split_page(hyp_virt_to_page(addr));
176 
177 	return addr;
178 }
179 
180 static void guest_s2_free_pages_exact(void *addr, unsigned long size)
181 {
182 	u8 order = get_order(size);
183 	unsigned int i;
184 
185 	for (i = 0; i < (1 << order); i++)
186 		hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
187 }
188 
189 static void *guest_s2_zalloc_page(void *mc)
190 {
191 	struct hyp_page *p;
192 	void *addr;
193 
194 	addr = hyp_alloc_pages(&current_vm->pool, 0);
195 	if (addr)
196 		return addr;
197 
198 	addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
199 	if (!addr)
200 		return addr;
201 
202 	memset(addr, 0, PAGE_SIZE);
203 	p = hyp_virt_to_page(addr);
204 	memset(p, 0, sizeof(*p));
205 	p->refcount = 1;
206 
207 	return addr;
208 }
209 
210 static void guest_s2_get_page(void *addr)
211 {
212 	hyp_get_page(&current_vm->pool, addr);
213 }
214 
215 static void guest_s2_put_page(void *addr)
216 {
217 	hyp_put_page(&current_vm->pool, addr);
218 }
219 
220 static void clean_dcache_guest_page(void *va, size_t size)
221 {
222 	__clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
223 	hyp_fixmap_unmap();
224 }
225 
226 static void invalidate_icache_guest_page(void *va, size_t size)
227 {
228 	__invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
229 	hyp_fixmap_unmap();
230 }
231 
232 int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
233 {
234 	struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
235 	unsigned long nr_pages;
236 	int ret;
237 
238 	nr_pages = kvm_pgtable_stage2_pgd_size(vm->kvm.arch.vtcr) >> PAGE_SHIFT;
239 	ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
240 	if (ret)
241 		return ret;
242 
243 	hyp_spin_lock_init(&vm->lock);
244 	vm->mm_ops = (struct kvm_pgtable_mm_ops) {
245 		.zalloc_pages_exact	= guest_s2_zalloc_pages_exact,
246 		.free_pages_exact	= guest_s2_free_pages_exact,
247 		.zalloc_page		= guest_s2_zalloc_page,
248 		.phys_to_virt		= hyp_phys_to_virt,
249 		.virt_to_phys		= hyp_virt_to_phys,
250 		.page_count		= hyp_page_count,
251 		.get_page		= guest_s2_get_page,
252 		.put_page		= guest_s2_put_page,
253 		.dcache_clean_inval_poc	= clean_dcache_guest_page,
254 		.icache_inval_pou	= invalidate_icache_guest_page,
255 	};
256 
257 	guest_lock_component(vm);
258 	ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0,
259 					guest_stage2_force_pte_cb);
260 	guest_unlock_component(vm);
261 	if (ret)
262 		return ret;
263 
264 	vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
265 
266 	return 0;
267 }
268 
269 void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
270 {
271 	void *addr;
272 
273 	/* Dump all pgtable pages in the hyp_pool */
274 	guest_lock_component(vm);
275 	kvm_pgtable_stage2_destroy(&vm->pgt);
276 	vm->kvm.arch.mmu.pgd_phys = 0ULL;
277 	guest_unlock_component(vm);
278 
279 	/* Drain the hyp_pool into the memcache */
280 	addr = hyp_alloc_pages(&vm->pool, 0);
281 	while (addr) {
282 		memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page));
283 		push_hyp_memcache(mc, addr, hyp_virt_to_phys);
284 		WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
285 		addr = hyp_alloc_pages(&vm->pool, 0);
286 	}
287 }
288 
289 int __pkvm_prot_finalize(void)
290 {
291 	struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
292 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
293 
294 	if (params->hcr_el2 & HCR_VM)
295 		return -EPERM;
296 
297 	params->vttbr = kvm_get_vttbr(mmu);
298 	params->vtcr = host_mmu.arch.vtcr;
299 	params->hcr_el2 |= HCR_VM;
300 
301 	/*
302 	 * The CMO below not only cleans the updated params to the
303 	 * PoC, but also provides the DSB that ensures ongoing
304 	 * page-table walks that have started before we trapped to EL2
305 	 * have completed.
306 	 */
307 	kvm_flush_dcache_to_poc(params, sizeof(*params));
308 
309 	write_sysreg(params->hcr_el2, hcr_el2);
310 	__load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
311 
312 	/*
313 	 * Make sure to have an ISB before the TLB maintenance below but only
314 	 * when __load_stage2() doesn't include one already.
315 	 */
316 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
317 
318 	/* Invalidate stale HCR bits that may be cached in TLBs */
319 	__tlbi(vmalls12e1);
320 	dsb(nsh);
321 	isb();
322 
323 	return 0;
324 }
325 
326 static int host_stage2_unmap_dev_all(void)
327 {
328 	struct kvm_pgtable *pgt = &host_mmu.pgt;
329 	struct memblock_region *reg;
330 	u64 addr = 0;
331 	int i, ret;
332 
333 	/* Unmap all non-memory regions to recycle the pages */
334 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
335 		reg = &hyp_memory[i];
336 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
337 		if (ret)
338 			return ret;
339 	}
340 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
341 }
342 
343 struct kvm_mem_range {
344 	u64 start;
345 	u64 end;
346 };
347 
348 static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
349 {
350 	int cur, left = 0, right = hyp_memblock_nr;
351 	struct memblock_region *reg;
352 	phys_addr_t end;
353 
354 	range->start = 0;
355 	range->end = ULONG_MAX;
356 
357 	/* The list of memblock regions is sorted, binary search it */
358 	while (left < right) {
359 		cur = (left + right) >> 1;
360 		reg = &hyp_memory[cur];
361 		end = reg->base + reg->size;
362 		if (addr < reg->base) {
363 			right = cur;
364 			range->end = reg->base;
365 		} else if (addr >= end) {
366 			left = cur + 1;
367 			range->start = end;
368 		} else {
369 			range->start = reg->base;
370 			range->end = end;
371 			return reg;
372 		}
373 	}
374 
375 	return NULL;
376 }
377 
378 bool addr_is_memory(phys_addr_t phys)
379 {
380 	struct kvm_mem_range range;
381 
382 	return !!find_mem_range(phys, &range);
383 }
384 
385 static bool addr_is_allowed_memory(phys_addr_t phys)
386 {
387 	struct memblock_region *reg;
388 	struct kvm_mem_range range;
389 
390 	reg = find_mem_range(phys, &range);
391 
392 	return reg && !(reg->flags & MEMBLOCK_NOMAP);
393 }
394 
395 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
396 {
397 	return range->start <= addr && addr < range->end;
398 }
399 
400 static bool range_is_memory(u64 start, u64 end)
401 {
402 	struct kvm_mem_range r;
403 
404 	if (!find_mem_range(start, &r))
405 		return false;
406 
407 	return is_in_mem_range(end - 1, &r);
408 }
409 
410 static inline int __host_stage2_idmap(u64 start, u64 end,
411 				      enum kvm_pgtable_prot prot)
412 {
413 	return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
414 				      prot, &host_s2_pool, 0);
415 }
416 
417 /*
418  * The pool has been provided with enough pages to cover all of memory with
419  * page granularity, but it is difficult to know how much of the MMIO range
420  * we will need to cover upfront, so we may need to 'recycle' the pages if we
421  * run out.
422  */
423 #define host_stage2_try(fn, ...)					\
424 	({								\
425 		int __ret;						\
426 		hyp_assert_lock_held(&host_mmu.lock);			\
427 		__ret = fn(__VA_ARGS__);				\
428 		if (__ret == -ENOMEM) {					\
429 			__ret = host_stage2_unmap_dev_all();		\
430 			if (!__ret)					\
431 				__ret = fn(__VA_ARGS__);		\
432 		}							\
433 		__ret;							\
434 	 })
435 
436 static inline bool range_included(struct kvm_mem_range *child,
437 				  struct kvm_mem_range *parent)
438 {
439 	return parent->start <= child->start && child->end <= parent->end;
440 }
441 
442 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
443 {
444 	struct kvm_mem_range cur;
445 	kvm_pte_t pte;
446 	u32 level;
447 	int ret;
448 
449 	hyp_assert_lock_held(&host_mmu.lock);
450 	ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
451 	if (ret)
452 		return ret;
453 
454 	if (kvm_pte_valid(pte))
455 		return -EAGAIN;
456 
457 	if (pte)
458 		return -EPERM;
459 
460 	do {
461 		u64 granule = kvm_granule_size(level);
462 		cur.start = ALIGN_DOWN(addr, granule);
463 		cur.end = cur.start + granule;
464 		level++;
465 	} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
466 			!(kvm_level_supports_block_mapping(level) &&
467 			  range_included(&cur, range)));
468 
469 	*range = cur;
470 
471 	return 0;
472 }
473 
474 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
475 			     enum kvm_pgtable_prot prot)
476 {
477 	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
478 }
479 
480 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
481 {
482 	return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt,
483 			       addr, size, &host_s2_pool, owner_id);
484 }
485 
486 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
487 {
488 	/*
489 	 * Block mappings must be used with care in the host stage-2 as a
490 	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
491 	 * an existing block will delete the block under the assumption that
492 	 * mappings in the rest of the block range can always be rebuilt lazily.
493 	 * That assumption is correct for the host stage-2 with RWX mappings
494 	 * targeting memory or RW mappings targeting MMIO ranges (see
495 	 * host_stage2_idmap() below which implements some of the host memory
496 	 * abort logic). However, this is not safe for any other mappings where
497 	 * the host stage-2 page-table is in fact the only place where this
498 	 * state is stored. In all those cases, it is safer to use page-level
499 	 * mappings, hence avoiding to lose the state because of side-effects in
500 	 * kvm_pgtable_stage2_map().
501 	 */
502 	if (range_is_memory(addr, end))
503 		return prot != PKVM_HOST_MEM_PROT;
504 	else
505 		return prot != PKVM_HOST_MMIO_PROT;
506 }
507 
508 static int host_stage2_idmap(u64 addr)
509 {
510 	struct kvm_mem_range range;
511 	bool is_memory = !!find_mem_range(addr, &range);
512 	enum kvm_pgtable_prot prot;
513 	int ret;
514 
515 	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
516 
517 	host_lock_component();
518 	ret = host_stage2_adjust_range(addr, &range);
519 	if (ret)
520 		goto unlock;
521 
522 	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
523 unlock:
524 	host_unlock_component();
525 
526 	return ret;
527 }
528 
529 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
530 {
531 	struct kvm_vcpu_fault_info fault;
532 	u64 esr, addr;
533 	int ret = 0;
534 
535 	esr = read_sysreg_el2(SYS_ESR);
536 	BUG_ON(!__get_fault_info(esr, &fault));
537 
538 	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
539 	ret = host_stage2_idmap(addr);
540 	BUG_ON(ret && ret != -EAGAIN);
541 }
542 
543 struct pkvm_mem_transition {
544 	u64				nr_pages;
545 
546 	struct {
547 		enum pkvm_component_id	id;
548 		/* Address in the initiator's address space */
549 		u64			addr;
550 
551 		union {
552 			struct {
553 				/* Address in the completer's address space */
554 				u64	completer_addr;
555 			} host;
556 			struct {
557 				u64	completer_addr;
558 			} hyp;
559 		};
560 	} initiator;
561 
562 	struct {
563 		enum pkvm_component_id	id;
564 	} completer;
565 };
566 
567 struct pkvm_mem_share {
568 	const struct pkvm_mem_transition	tx;
569 	const enum kvm_pgtable_prot		completer_prot;
570 };
571 
572 struct pkvm_mem_donation {
573 	const struct pkvm_mem_transition	tx;
574 };
575 
576 struct check_walk_data {
577 	enum pkvm_page_state	desired;
578 	enum pkvm_page_state	(*get_page_state)(kvm_pte_t pte);
579 };
580 
581 static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
582 				      enum kvm_pgtable_walk_flags visit)
583 {
584 	struct check_walk_data *d = ctx->arg;
585 
586 	if (kvm_pte_valid(ctx->old) && !addr_is_allowed_memory(kvm_pte_to_phys(ctx->old)))
587 		return -EINVAL;
588 
589 	return d->get_page_state(ctx->old) == d->desired ? 0 : -EPERM;
590 }
591 
592 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
593 				  struct check_walk_data *data)
594 {
595 	struct kvm_pgtable_walker walker = {
596 		.cb	= __check_page_state_visitor,
597 		.arg	= data,
598 		.flags	= KVM_PGTABLE_WALK_LEAF,
599 	};
600 
601 	return kvm_pgtable_walk(pgt, addr, size, &walker);
602 }
603 
604 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte)
605 {
606 	if (!kvm_pte_valid(pte) && pte)
607 		return PKVM_NOPAGE;
608 
609 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
610 }
611 
612 static int __host_check_page_state_range(u64 addr, u64 size,
613 					 enum pkvm_page_state state)
614 {
615 	struct check_walk_data d = {
616 		.desired	= state,
617 		.get_page_state	= host_get_page_state,
618 	};
619 
620 	hyp_assert_lock_held(&host_mmu.lock);
621 	return check_page_state_range(&host_mmu.pgt, addr, size, &d);
622 }
623 
624 static int __host_set_page_state_range(u64 addr, u64 size,
625 				       enum pkvm_page_state state)
626 {
627 	enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
628 
629 	return host_stage2_idmap_locked(addr, size, prot);
630 }
631 
632 static int host_request_owned_transition(u64 *completer_addr,
633 					 const struct pkvm_mem_transition *tx)
634 {
635 	u64 size = tx->nr_pages * PAGE_SIZE;
636 	u64 addr = tx->initiator.addr;
637 
638 	*completer_addr = tx->initiator.host.completer_addr;
639 	return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
640 }
641 
642 static int host_request_unshare(u64 *completer_addr,
643 				const struct pkvm_mem_transition *tx)
644 {
645 	u64 size = tx->nr_pages * PAGE_SIZE;
646 	u64 addr = tx->initiator.addr;
647 
648 	*completer_addr = tx->initiator.host.completer_addr;
649 	return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
650 }
651 
652 static int host_initiate_share(u64 *completer_addr,
653 			       const struct pkvm_mem_transition *tx)
654 {
655 	u64 size = tx->nr_pages * PAGE_SIZE;
656 	u64 addr = tx->initiator.addr;
657 
658 	*completer_addr = tx->initiator.host.completer_addr;
659 	return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
660 }
661 
662 static int host_initiate_unshare(u64 *completer_addr,
663 				 const struct pkvm_mem_transition *tx)
664 {
665 	u64 size = tx->nr_pages * PAGE_SIZE;
666 	u64 addr = tx->initiator.addr;
667 
668 	*completer_addr = tx->initiator.host.completer_addr;
669 	return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
670 }
671 
672 static int host_initiate_donation(u64 *completer_addr,
673 				  const struct pkvm_mem_transition *tx)
674 {
675 	u8 owner_id = tx->completer.id;
676 	u64 size = tx->nr_pages * PAGE_SIZE;
677 
678 	*completer_addr = tx->initiator.host.completer_addr;
679 	return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id);
680 }
681 
682 static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
683 {
684 	return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
685 		 tx->initiator.id != PKVM_ID_HYP);
686 }
687 
688 static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx,
689 				 enum pkvm_page_state state)
690 {
691 	u64 size = tx->nr_pages * PAGE_SIZE;
692 
693 	if (__host_ack_skip_pgtable_check(tx))
694 		return 0;
695 
696 	return __host_check_page_state_range(addr, size, state);
697 }
698 
699 static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
700 {
701 	return __host_ack_transition(addr, tx, PKVM_NOPAGE);
702 }
703 
704 static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx)
705 {
706 	u64 size = tx->nr_pages * PAGE_SIZE;
707 	u8 host_id = tx->completer.id;
708 
709 	return host_stage2_set_owner_locked(addr, size, host_id);
710 }
711 
712 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte)
713 {
714 	if (!kvm_pte_valid(pte))
715 		return PKVM_NOPAGE;
716 
717 	return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte));
718 }
719 
720 static int __hyp_check_page_state_range(u64 addr, u64 size,
721 					enum pkvm_page_state state)
722 {
723 	struct check_walk_data d = {
724 		.desired	= state,
725 		.get_page_state	= hyp_get_page_state,
726 	};
727 
728 	hyp_assert_lock_held(&pkvm_pgd_lock);
729 	return check_page_state_range(&pkvm_pgtable, addr, size, &d);
730 }
731 
732 static int hyp_request_donation(u64 *completer_addr,
733 				const struct pkvm_mem_transition *tx)
734 {
735 	u64 size = tx->nr_pages * PAGE_SIZE;
736 	u64 addr = tx->initiator.addr;
737 
738 	*completer_addr = tx->initiator.hyp.completer_addr;
739 	return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
740 }
741 
742 static int hyp_initiate_donation(u64 *completer_addr,
743 				 const struct pkvm_mem_transition *tx)
744 {
745 	u64 size = tx->nr_pages * PAGE_SIZE;
746 	int ret;
747 
748 	*completer_addr = tx->initiator.hyp.completer_addr;
749 	ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size);
750 	return (ret != size) ? -EFAULT : 0;
751 }
752 
753 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
754 {
755 	return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
756 		 tx->initiator.id != PKVM_ID_HOST);
757 }
758 
759 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
760 			 enum kvm_pgtable_prot perms)
761 {
762 	u64 size = tx->nr_pages * PAGE_SIZE;
763 
764 	if (perms != PAGE_HYP)
765 		return -EPERM;
766 
767 	if (__hyp_ack_skip_pgtable_check(tx))
768 		return 0;
769 
770 	return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
771 }
772 
773 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
774 {
775 	u64 size = tx->nr_pages * PAGE_SIZE;
776 
777 	if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr))
778 		return -EBUSY;
779 
780 	if (__hyp_ack_skip_pgtable_check(tx))
781 		return 0;
782 
783 	return __hyp_check_page_state_range(addr, size,
784 					    PKVM_PAGE_SHARED_BORROWED);
785 }
786 
787 static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
788 {
789 	u64 size = tx->nr_pages * PAGE_SIZE;
790 
791 	if (__hyp_ack_skip_pgtable_check(tx))
792 		return 0;
793 
794 	return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
795 }
796 
797 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
798 			      enum kvm_pgtable_prot perms)
799 {
800 	void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
801 	enum kvm_pgtable_prot prot;
802 
803 	prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
804 	return pkvm_create_mappings_locked(start, end, prot);
805 }
806 
807 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
808 {
809 	u64 size = tx->nr_pages * PAGE_SIZE;
810 	int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
811 
812 	return (ret != size) ? -EFAULT : 0;
813 }
814 
815 static int hyp_complete_donation(u64 addr,
816 				 const struct pkvm_mem_transition *tx)
817 {
818 	void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
819 	enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED);
820 
821 	return pkvm_create_mappings_locked(start, end, prot);
822 }
823 
824 static int check_share(struct pkvm_mem_share *share)
825 {
826 	const struct pkvm_mem_transition *tx = &share->tx;
827 	u64 completer_addr;
828 	int ret;
829 
830 	switch (tx->initiator.id) {
831 	case PKVM_ID_HOST:
832 		ret = host_request_owned_transition(&completer_addr, tx);
833 		break;
834 	default:
835 		ret = -EINVAL;
836 	}
837 
838 	if (ret)
839 		return ret;
840 
841 	switch (tx->completer.id) {
842 	case PKVM_ID_HYP:
843 		ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
844 		break;
845 	default:
846 		ret = -EINVAL;
847 	}
848 
849 	return ret;
850 }
851 
852 static int __do_share(struct pkvm_mem_share *share)
853 {
854 	const struct pkvm_mem_transition *tx = &share->tx;
855 	u64 completer_addr;
856 	int ret;
857 
858 	switch (tx->initiator.id) {
859 	case PKVM_ID_HOST:
860 		ret = host_initiate_share(&completer_addr, tx);
861 		break;
862 	default:
863 		ret = -EINVAL;
864 	}
865 
866 	if (ret)
867 		return ret;
868 
869 	switch (tx->completer.id) {
870 	case PKVM_ID_HYP:
871 		ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
872 		break;
873 	default:
874 		ret = -EINVAL;
875 	}
876 
877 	return ret;
878 }
879 
880 /*
881  * do_share():
882  *
883  * The page owner grants access to another component with a given set
884  * of permissions.
885  *
886  * Initiator: OWNED	=> SHARED_OWNED
887  * Completer: NOPAGE	=> SHARED_BORROWED
888  */
889 static int do_share(struct pkvm_mem_share *share)
890 {
891 	int ret;
892 
893 	ret = check_share(share);
894 	if (ret)
895 		return ret;
896 
897 	return WARN_ON(__do_share(share));
898 }
899 
900 static int check_unshare(struct pkvm_mem_share *share)
901 {
902 	const struct pkvm_mem_transition *tx = &share->tx;
903 	u64 completer_addr;
904 	int ret;
905 
906 	switch (tx->initiator.id) {
907 	case PKVM_ID_HOST:
908 		ret = host_request_unshare(&completer_addr, tx);
909 		break;
910 	default:
911 		ret = -EINVAL;
912 	}
913 
914 	if (ret)
915 		return ret;
916 
917 	switch (tx->completer.id) {
918 	case PKVM_ID_HYP:
919 		ret = hyp_ack_unshare(completer_addr, tx);
920 		break;
921 	default:
922 		ret = -EINVAL;
923 	}
924 
925 	return ret;
926 }
927 
928 static int __do_unshare(struct pkvm_mem_share *share)
929 {
930 	const struct pkvm_mem_transition *tx = &share->tx;
931 	u64 completer_addr;
932 	int ret;
933 
934 	switch (tx->initiator.id) {
935 	case PKVM_ID_HOST:
936 		ret = host_initiate_unshare(&completer_addr, tx);
937 		break;
938 	default:
939 		ret = -EINVAL;
940 	}
941 
942 	if (ret)
943 		return ret;
944 
945 	switch (tx->completer.id) {
946 	case PKVM_ID_HYP:
947 		ret = hyp_complete_unshare(completer_addr, tx);
948 		break;
949 	default:
950 		ret = -EINVAL;
951 	}
952 
953 	return ret;
954 }
955 
956 /*
957  * do_unshare():
958  *
959  * The page owner revokes access from another component for a range of
960  * pages which were previously shared using do_share().
961  *
962  * Initiator: SHARED_OWNED	=> OWNED
963  * Completer: SHARED_BORROWED	=> NOPAGE
964  */
965 static int do_unshare(struct pkvm_mem_share *share)
966 {
967 	int ret;
968 
969 	ret = check_unshare(share);
970 	if (ret)
971 		return ret;
972 
973 	return WARN_ON(__do_unshare(share));
974 }
975 
976 static int check_donation(struct pkvm_mem_donation *donation)
977 {
978 	const struct pkvm_mem_transition *tx = &donation->tx;
979 	u64 completer_addr;
980 	int ret;
981 
982 	switch (tx->initiator.id) {
983 	case PKVM_ID_HOST:
984 		ret = host_request_owned_transition(&completer_addr, tx);
985 		break;
986 	case PKVM_ID_HYP:
987 		ret = hyp_request_donation(&completer_addr, tx);
988 		break;
989 	default:
990 		ret = -EINVAL;
991 	}
992 
993 	if (ret)
994 		return ret;
995 
996 	switch (tx->completer.id) {
997 	case PKVM_ID_HOST:
998 		ret = host_ack_donation(completer_addr, tx);
999 		break;
1000 	case PKVM_ID_HYP:
1001 		ret = hyp_ack_donation(completer_addr, tx);
1002 		break;
1003 	default:
1004 		ret = -EINVAL;
1005 	}
1006 
1007 	return ret;
1008 }
1009 
1010 static int __do_donate(struct pkvm_mem_donation *donation)
1011 {
1012 	const struct pkvm_mem_transition *tx = &donation->tx;
1013 	u64 completer_addr;
1014 	int ret;
1015 
1016 	switch (tx->initiator.id) {
1017 	case PKVM_ID_HOST:
1018 		ret = host_initiate_donation(&completer_addr, tx);
1019 		break;
1020 	case PKVM_ID_HYP:
1021 		ret = hyp_initiate_donation(&completer_addr, tx);
1022 		break;
1023 	default:
1024 		ret = -EINVAL;
1025 	}
1026 
1027 	if (ret)
1028 		return ret;
1029 
1030 	switch (tx->completer.id) {
1031 	case PKVM_ID_HOST:
1032 		ret = host_complete_donation(completer_addr, tx);
1033 		break;
1034 	case PKVM_ID_HYP:
1035 		ret = hyp_complete_donation(completer_addr, tx);
1036 		break;
1037 	default:
1038 		ret = -EINVAL;
1039 	}
1040 
1041 	return ret;
1042 }
1043 
1044 /*
1045  * do_donate():
1046  *
1047  * The page owner transfers ownership to another component, losing access
1048  * as a consequence.
1049  *
1050  * Initiator: OWNED	=> NOPAGE
1051  * Completer: NOPAGE	=> OWNED
1052  */
1053 static int do_donate(struct pkvm_mem_donation *donation)
1054 {
1055 	int ret;
1056 
1057 	ret = check_donation(donation);
1058 	if (ret)
1059 		return ret;
1060 
1061 	return WARN_ON(__do_donate(donation));
1062 }
1063 
1064 int __pkvm_host_share_hyp(u64 pfn)
1065 {
1066 	int ret;
1067 	u64 host_addr = hyp_pfn_to_phys(pfn);
1068 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1069 	struct pkvm_mem_share share = {
1070 		.tx	= {
1071 			.nr_pages	= 1,
1072 			.initiator	= {
1073 				.id	= PKVM_ID_HOST,
1074 				.addr	= host_addr,
1075 				.host	= {
1076 					.completer_addr = hyp_addr,
1077 				},
1078 			},
1079 			.completer	= {
1080 				.id	= PKVM_ID_HYP,
1081 			},
1082 		},
1083 		.completer_prot	= PAGE_HYP,
1084 	};
1085 
1086 	host_lock_component();
1087 	hyp_lock_component();
1088 
1089 	ret = do_share(&share);
1090 
1091 	hyp_unlock_component();
1092 	host_unlock_component();
1093 
1094 	return ret;
1095 }
1096 
1097 int __pkvm_host_unshare_hyp(u64 pfn)
1098 {
1099 	int ret;
1100 	u64 host_addr = hyp_pfn_to_phys(pfn);
1101 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1102 	struct pkvm_mem_share share = {
1103 		.tx	= {
1104 			.nr_pages	= 1,
1105 			.initiator	= {
1106 				.id	= PKVM_ID_HOST,
1107 				.addr	= host_addr,
1108 				.host	= {
1109 					.completer_addr = hyp_addr,
1110 				},
1111 			},
1112 			.completer	= {
1113 				.id	= PKVM_ID_HYP,
1114 			},
1115 		},
1116 		.completer_prot	= PAGE_HYP,
1117 	};
1118 
1119 	host_lock_component();
1120 	hyp_lock_component();
1121 
1122 	ret = do_unshare(&share);
1123 
1124 	hyp_unlock_component();
1125 	host_unlock_component();
1126 
1127 	return ret;
1128 }
1129 
1130 int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
1131 {
1132 	int ret;
1133 	u64 host_addr = hyp_pfn_to_phys(pfn);
1134 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1135 	struct pkvm_mem_donation donation = {
1136 		.tx	= {
1137 			.nr_pages	= nr_pages,
1138 			.initiator	= {
1139 				.id	= PKVM_ID_HOST,
1140 				.addr	= host_addr,
1141 				.host	= {
1142 					.completer_addr = hyp_addr,
1143 				},
1144 			},
1145 			.completer	= {
1146 				.id	= PKVM_ID_HYP,
1147 			},
1148 		},
1149 	};
1150 
1151 	host_lock_component();
1152 	hyp_lock_component();
1153 
1154 	ret = do_donate(&donation);
1155 
1156 	hyp_unlock_component();
1157 	host_unlock_component();
1158 
1159 	return ret;
1160 }
1161 
1162 int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
1163 {
1164 	int ret;
1165 	u64 host_addr = hyp_pfn_to_phys(pfn);
1166 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1167 	struct pkvm_mem_donation donation = {
1168 		.tx	= {
1169 			.nr_pages	= nr_pages,
1170 			.initiator	= {
1171 				.id	= PKVM_ID_HYP,
1172 				.addr	= hyp_addr,
1173 				.hyp	= {
1174 					.completer_addr = host_addr,
1175 				},
1176 			},
1177 			.completer	= {
1178 				.id	= PKVM_ID_HOST,
1179 			},
1180 		},
1181 	};
1182 
1183 	host_lock_component();
1184 	hyp_lock_component();
1185 
1186 	ret = do_donate(&donation);
1187 
1188 	hyp_unlock_component();
1189 	host_unlock_component();
1190 
1191 	return ret;
1192 }
1193 
1194 int hyp_pin_shared_mem(void *from, void *to)
1195 {
1196 	u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
1197 	u64 end = PAGE_ALIGN((u64)to);
1198 	u64 size = end - start;
1199 	int ret;
1200 
1201 	host_lock_component();
1202 	hyp_lock_component();
1203 
1204 	ret = __host_check_page_state_range(__hyp_pa(start), size,
1205 					    PKVM_PAGE_SHARED_OWNED);
1206 	if (ret)
1207 		goto unlock;
1208 
1209 	ret = __hyp_check_page_state_range(start, size,
1210 					   PKVM_PAGE_SHARED_BORROWED);
1211 	if (ret)
1212 		goto unlock;
1213 
1214 	for (cur = start; cur < end; cur += PAGE_SIZE)
1215 		hyp_page_ref_inc(hyp_virt_to_page(cur));
1216 
1217 unlock:
1218 	hyp_unlock_component();
1219 	host_unlock_component();
1220 
1221 	return ret;
1222 }
1223 
1224 void hyp_unpin_shared_mem(void *from, void *to)
1225 {
1226 	u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
1227 	u64 end = PAGE_ALIGN((u64)to);
1228 
1229 	host_lock_component();
1230 	hyp_lock_component();
1231 
1232 	for (cur = start; cur < end; cur += PAGE_SIZE)
1233 		hyp_page_ref_dec(hyp_virt_to_page(cur));
1234 
1235 	hyp_unlock_component();
1236 	host_unlock_component();
1237 }
1238