xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision 7b7090b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14 
15 #include <hyp/fault.h>
16 
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21 
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23 
24 extern unsigned long hyp_nr_cpus;
25 struct host_kvm host_kvm;
26 
27 static struct hyp_pool host_s2_pool;
28 
29 const u8 pkvm_hyp_id = 1;
30 
31 static void host_lock_component(void)
32 {
33 	hyp_spin_lock(&host_kvm.lock);
34 }
35 
36 static void host_unlock_component(void)
37 {
38 	hyp_spin_unlock(&host_kvm.lock);
39 }
40 
41 static void hyp_lock_component(void)
42 {
43 	hyp_spin_lock(&pkvm_pgd_lock);
44 }
45 
46 static void hyp_unlock_component(void)
47 {
48 	hyp_spin_unlock(&pkvm_pgd_lock);
49 }
50 
51 static void *host_s2_zalloc_pages_exact(size_t size)
52 {
53 	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
54 
55 	hyp_split_page(hyp_virt_to_page(addr));
56 
57 	/*
58 	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
59 	 * so there should be no need to free any of the tail pages to make the
60 	 * allocation exact.
61 	 */
62 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
63 
64 	return addr;
65 }
66 
67 static void *host_s2_zalloc_page(void *pool)
68 {
69 	return hyp_alloc_pages(pool, 0);
70 }
71 
72 static void host_s2_get_page(void *addr)
73 {
74 	hyp_get_page(&host_s2_pool, addr);
75 }
76 
77 static void host_s2_put_page(void *addr)
78 {
79 	hyp_put_page(&host_s2_pool, addr);
80 }
81 
82 static int prepare_s2_pool(void *pgt_pool_base)
83 {
84 	unsigned long nr_pages, pfn;
85 	int ret;
86 
87 	pfn = hyp_virt_to_pfn(pgt_pool_base);
88 	nr_pages = host_s2_pgtable_pages();
89 	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
90 	if (ret)
91 		return ret;
92 
93 	host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
94 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
95 		.zalloc_page = host_s2_zalloc_page,
96 		.phys_to_virt = hyp_phys_to_virt,
97 		.virt_to_phys = hyp_virt_to_phys,
98 		.page_count = hyp_page_count,
99 		.get_page = host_s2_get_page,
100 		.put_page = host_s2_put_page,
101 	};
102 
103 	return 0;
104 }
105 
106 static void prepare_host_vtcr(void)
107 {
108 	u32 parange, phys_shift;
109 
110 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
111 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
112 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
113 
114 	host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
115 					  id_aa64mmfr1_el1_sys_val, phys_shift);
116 }
117 
118 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
119 
120 int kvm_host_prepare_stage2(void *pgt_pool_base)
121 {
122 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
123 	int ret;
124 
125 	prepare_host_vtcr();
126 	hyp_spin_lock_init(&host_kvm.lock);
127 	mmu->arch = &host_kvm.arch;
128 
129 	ret = prepare_s2_pool(pgt_pool_base);
130 	if (ret)
131 		return ret;
132 
133 	ret = __kvm_pgtable_stage2_init(&host_kvm.pgt, mmu,
134 					&host_kvm.mm_ops, KVM_HOST_S2_FLAGS,
135 					host_stage2_force_pte_cb);
136 	if (ret)
137 		return ret;
138 
139 	mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
140 	mmu->pgt = &host_kvm.pgt;
141 	atomic64_set(&mmu->vmid.id, 0);
142 
143 	return 0;
144 }
145 
146 int __pkvm_prot_finalize(void)
147 {
148 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
149 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
150 
151 	if (params->hcr_el2 & HCR_VM)
152 		return -EPERM;
153 
154 	params->vttbr = kvm_get_vttbr(mmu);
155 	params->vtcr = host_kvm.arch.vtcr;
156 	params->hcr_el2 |= HCR_VM;
157 	kvm_flush_dcache_to_poc(params, sizeof(*params));
158 
159 	write_sysreg(params->hcr_el2, hcr_el2);
160 	__load_stage2(&host_kvm.arch.mmu, &host_kvm.arch);
161 
162 	/*
163 	 * Make sure to have an ISB before the TLB maintenance below but only
164 	 * when __load_stage2() doesn't include one already.
165 	 */
166 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
167 
168 	/* Invalidate stale HCR bits that may be cached in TLBs */
169 	__tlbi(vmalls12e1);
170 	dsb(nsh);
171 	isb();
172 
173 	return 0;
174 }
175 
176 static int host_stage2_unmap_dev_all(void)
177 {
178 	struct kvm_pgtable *pgt = &host_kvm.pgt;
179 	struct memblock_region *reg;
180 	u64 addr = 0;
181 	int i, ret;
182 
183 	/* Unmap all non-memory regions to recycle the pages */
184 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
185 		reg = &hyp_memory[i];
186 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
187 		if (ret)
188 			return ret;
189 	}
190 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
191 }
192 
193 struct kvm_mem_range {
194 	u64 start;
195 	u64 end;
196 };
197 
198 static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
199 {
200 	int cur, left = 0, right = hyp_memblock_nr;
201 	struct memblock_region *reg;
202 	phys_addr_t end;
203 
204 	range->start = 0;
205 	range->end = ULONG_MAX;
206 
207 	/* The list of memblock regions is sorted, binary search it */
208 	while (left < right) {
209 		cur = (left + right) >> 1;
210 		reg = &hyp_memory[cur];
211 		end = reg->base + reg->size;
212 		if (addr < reg->base) {
213 			right = cur;
214 			range->end = reg->base;
215 		} else if (addr >= end) {
216 			left = cur + 1;
217 			range->start = end;
218 		} else {
219 			range->start = reg->base;
220 			range->end = end;
221 			return true;
222 		}
223 	}
224 
225 	return false;
226 }
227 
228 bool addr_is_memory(phys_addr_t phys)
229 {
230 	struct kvm_mem_range range;
231 
232 	return find_mem_range(phys, &range);
233 }
234 
235 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
236 {
237 	return range->start <= addr && addr < range->end;
238 }
239 
240 static bool range_is_memory(u64 start, u64 end)
241 {
242 	struct kvm_mem_range r;
243 
244 	if (!find_mem_range(start, &r))
245 		return false;
246 
247 	return is_in_mem_range(end - 1, &r);
248 }
249 
250 static inline int __host_stage2_idmap(u64 start, u64 end,
251 				      enum kvm_pgtable_prot prot)
252 {
253 	return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
254 				      prot, &host_s2_pool);
255 }
256 
257 /*
258  * The pool has been provided with enough pages to cover all of memory with
259  * page granularity, but it is difficult to know how much of the MMIO range
260  * we will need to cover upfront, so we may need to 'recycle' the pages if we
261  * run out.
262  */
263 #define host_stage2_try(fn, ...)					\
264 	({								\
265 		int __ret;						\
266 		hyp_assert_lock_held(&host_kvm.lock);			\
267 		__ret = fn(__VA_ARGS__);				\
268 		if (__ret == -ENOMEM) {					\
269 			__ret = host_stage2_unmap_dev_all();		\
270 			if (!__ret)					\
271 				__ret = fn(__VA_ARGS__);		\
272 		}							\
273 		__ret;							\
274 	 })
275 
276 static inline bool range_included(struct kvm_mem_range *child,
277 				  struct kvm_mem_range *parent)
278 {
279 	return parent->start <= child->start && child->end <= parent->end;
280 }
281 
282 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
283 {
284 	struct kvm_mem_range cur;
285 	kvm_pte_t pte;
286 	u32 level;
287 	int ret;
288 
289 	hyp_assert_lock_held(&host_kvm.lock);
290 	ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, &level);
291 	if (ret)
292 		return ret;
293 
294 	if (kvm_pte_valid(pte))
295 		return -EAGAIN;
296 
297 	if (pte)
298 		return -EPERM;
299 
300 	do {
301 		u64 granule = kvm_granule_size(level);
302 		cur.start = ALIGN_DOWN(addr, granule);
303 		cur.end = cur.start + granule;
304 		level++;
305 	} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
306 			!(kvm_level_supports_block_mapping(level) &&
307 			  range_included(&cur, range)));
308 
309 	*range = cur;
310 
311 	return 0;
312 }
313 
314 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
315 			     enum kvm_pgtable_prot prot)
316 {
317 	hyp_assert_lock_held(&host_kvm.lock);
318 
319 	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
320 }
321 
322 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
323 {
324 	hyp_assert_lock_held(&host_kvm.lock);
325 
326 	return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_kvm.pgt,
327 			       addr, size, &host_s2_pool, owner_id);
328 }
329 
330 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
331 {
332 	/*
333 	 * Block mappings must be used with care in the host stage-2 as a
334 	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
335 	 * an existing block will delete the block under the assumption that
336 	 * mappings in the rest of the block range can always be rebuilt lazily.
337 	 * That assumption is correct for the host stage-2 with RWX mappings
338 	 * targeting memory or RW mappings targeting MMIO ranges (see
339 	 * host_stage2_idmap() below which implements some of the host memory
340 	 * abort logic). However, this is not safe for any other mappings where
341 	 * the host stage-2 page-table is in fact the only place where this
342 	 * state is stored. In all those cases, it is safer to use page-level
343 	 * mappings, hence avoiding to lose the state because of side-effects in
344 	 * kvm_pgtable_stage2_map().
345 	 */
346 	if (range_is_memory(addr, end))
347 		return prot != PKVM_HOST_MEM_PROT;
348 	else
349 		return prot != PKVM_HOST_MMIO_PROT;
350 }
351 
352 static int host_stage2_idmap(u64 addr)
353 {
354 	struct kvm_mem_range range;
355 	bool is_memory = find_mem_range(addr, &range);
356 	enum kvm_pgtable_prot prot;
357 	int ret;
358 
359 	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
360 
361 	host_lock_component();
362 	ret = host_stage2_adjust_range(addr, &range);
363 	if (ret)
364 		goto unlock;
365 
366 	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
367 unlock:
368 	host_unlock_component();
369 
370 	return ret;
371 }
372 
373 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
374 {
375 	struct kvm_vcpu_fault_info fault;
376 	u64 esr, addr;
377 	int ret = 0;
378 
379 	esr = read_sysreg_el2(SYS_ESR);
380 	BUG_ON(!__get_fault_info(esr, &fault));
381 
382 	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
383 	ret = host_stage2_idmap(addr);
384 	BUG_ON(ret && ret != -EAGAIN);
385 }
386 
387 /* This corresponds to locking order */
388 enum pkvm_component_id {
389 	PKVM_ID_HOST,
390 	PKVM_ID_HYP,
391 };
392 
393 struct pkvm_mem_transition {
394 	u64				nr_pages;
395 
396 	struct {
397 		enum pkvm_component_id	id;
398 		/* Address in the initiator's address space */
399 		u64			addr;
400 
401 		union {
402 			struct {
403 				/* Address in the completer's address space */
404 				u64	completer_addr;
405 			} host;
406 		};
407 	} initiator;
408 
409 	struct {
410 		enum pkvm_component_id	id;
411 	} completer;
412 };
413 
414 struct pkvm_mem_share {
415 	const struct pkvm_mem_transition	tx;
416 	const enum kvm_pgtable_prot		completer_prot;
417 };
418 
419 struct check_walk_data {
420 	enum pkvm_page_state	desired;
421 	enum pkvm_page_state	(*get_page_state)(kvm_pte_t pte);
422 };
423 
424 static int __check_page_state_visitor(u64 addr, u64 end, u32 level,
425 				      kvm_pte_t *ptep,
426 				      enum kvm_pgtable_walk_flags flag,
427 				      void * const arg)
428 {
429 	struct check_walk_data *d = arg;
430 	kvm_pte_t pte = *ptep;
431 
432 	if (kvm_pte_valid(pte) && !addr_is_memory(kvm_pte_to_phys(pte)))
433 		return -EINVAL;
434 
435 	return d->get_page_state(pte) == d->desired ? 0 : -EPERM;
436 }
437 
438 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
439 				  struct check_walk_data *data)
440 {
441 	struct kvm_pgtable_walker walker = {
442 		.cb	= __check_page_state_visitor,
443 		.arg	= data,
444 		.flags	= KVM_PGTABLE_WALK_LEAF,
445 	};
446 
447 	return kvm_pgtable_walk(pgt, addr, size, &walker);
448 }
449 
450 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte)
451 {
452 	if (!kvm_pte_valid(pte) && pte)
453 		return PKVM_NOPAGE;
454 
455 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
456 }
457 
458 static int __host_check_page_state_range(u64 addr, u64 size,
459 					 enum pkvm_page_state state)
460 {
461 	struct check_walk_data d = {
462 		.desired	= state,
463 		.get_page_state	= host_get_page_state,
464 	};
465 
466 	hyp_assert_lock_held(&host_kvm.lock);
467 	return check_page_state_range(&host_kvm.pgt, addr, size, &d);
468 }
469 
470 static int __host_set_page_state_range(u64 addr, u64 size,
471 				       enum pkvm_page_state state)
472 {
473 	enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
474 
475 	return host_stage2_idmap_locked(addr, size, prot);
476 }
477 
478 static int host_request_owned_transition(u64 *completer_addr,
479 					 const struct pkvm_mem_transition *tx)
480 {
481 	u64 size = tx->nr_pages * PAGE_SIZE;
482 	u64 addr = tx->initiator.addr;
483 
484 	*completer_addr = tx->initiator.host.completer_addr;
485 	return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
486 }
487 
488 static int host_request_unshare(u64 *completer_addr,
489 				const struct pkvm_mem_transition *tx)
490 {
491 	u64 size = tx->nr_pages * PAGE_SIZE;
492 	u64 addr = tx->initiator.addr;
493 
494 	*completer_addr = tx->initiator.host.completer_addr;
495 	return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
496 }
497 
498 static int host_initiate_share(u64 *completer_addr,
499 			       const struct pkvm_mem_transition *tx)
500 {
501 	u64 size = tx->nr_pages * PAGE_SIZE;
502 	u64 addr = tx->initiator.addr;
503 
504 	*completer_addr = tx->initiator.host.completer_addr;
505 	return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
506 }
507 
508 static int host_initiate_unshare(u64 *completer_addr,
509 				 const struct pkvm_mem_transition *tx)
510 {
511 	u64 size = tx->nr_pages * PAGE_SIZE;
512 	u64 addr = tx->initiator.addr;
513 
514 	*completer_addr = tx->initiator.host.completer_addr;
515 	return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
516 }
517 
518 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte)
519 {
520 	if (!kvm_pte_valid(pte))
521 		return PKVM_NOPAGE;
522 
523 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
524 }
525 
526 static int __hyp_check_page_state_range(u64 addr, u64 size,
527 					enum pkvm_page_state state)
528 {
529 	struct check_walk_data d = {
530 		.desired	= state,
531 		.get_page_state	= hyp_get_page_state,
532 	};
533 
534 	hyp_assert_lock_held(&pkvm_pgd_lock);
535 	return check_page_state_range(&pkvm_pgtable, addr, size, &d);
536 }
537 
538 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
539 {
540 	return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
541 		 tx->initiator.id != PKVM_ID_HOST);
542 }
543 
544 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
545 			 enum kvm_pgtable_prot perms)
546 {
547 	u64 size = tx->nr_pages * PAGE_SIZE;
548 
549 	if (perms != PAGE_HYP)
550 		return -EPERM;
551 
552 	if (__hyp_ack_skip_pgtable_check(tx))
553 		return 0;
554 
555 	return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
556 }
557 
558 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
559 {
560 	u64 size = tx->nr_pages * PAGE_SIZE;
561 
562 	if (__hyp_ack_skip_pgtable_check(tx))
563 		return 0;
564 
565 	return __hyp_check_page_state_range(addr, size,
566 					    PKVM_PAGE_SHARED_BORROWED);
567 }
568 
569 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
570 			      enum kvm_pgtable_prot perms)
571 {
572 	void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
573 	enum kvm_pgtable_prot prot;
574 
575 	prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
576 	return pkvm_create_mappings_locked(start, end, prot);
577 }
578 
579 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
580 {
581 	u64 size = tx->nr_pages * PAGE_SIZE;
582 	int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
583 
584 	return (ret != size) ? -EFAULT : 0;
585 }
586 
587 static int check_share(struct pkvm_mem_share *share)
588 {
589 	const struct pkvm_mem_transition *tx = &share->tx;
590 	u64 completer_addr;
591 	int ret;
592 
593 	switch (tx->initiator.id) {
594 	case PKVM_ID_HOST:
595 		ret = host_request_owned_transition(&completer_addr, tx);
596 		break;
597 	default:
598 		ret = -EINVAL;
599 	}
600 
601 	if (ret)
602 		return ret;
603 
604 	switch (tx->completer.id) {
605 	case PKVM_ID_HYP:
606 		ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
607 		break;
608 	default:
609 		ret = -EINVAL;
610 	}
611 
612 	return ret;
613 }
614 
615 static int __do_share(struct pkvm_mem_share *share)
616 {
617 	const struct pkvm_mem_transition *tx = &share->tx;
618 	u64 completer_addr;
619 	int ret;
620 
621 	switch (tx->initiator.id) {
622 	case PKVM_ID_HOST:
623 		ret = host_initiate_share(&completer_addr, tx);
624 		break;
625 	default:
626 		ret = -EINVAL;
627 	}
628 
629 	if (ret)
630 		return ret;
631 
632 	switch (tx->completer.id) {
633 	case PKVM_ID_HYP:
634 		ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
635 		break;
636 	default:
637 		ret = -EINVAL;
638 	}
639 
640 	return ret;
641 }
642 
643 /*
644  * do_share():
645  *
646  * The page owner grants access to another component with a given set
647  * of permissions.
648  *
649  * Initiator: OWNED	=> SHARED_OWNED
650  * Completer: NOPAGE	=> SHARED_BORROWED
651  */
652 static int do_share(struct pkvm_mem_share *share)
653 {
654 	int ret;
655 
656 	ret = check_share(share);
657 	if (ret)
658 		return ret;
659 
660 	return WARN_ON(__do_share(share));
661 }
662 
663 static int check_unshare(struct pkvm_mem_share *share)
664 {
665 	const struct pkvm_mem_transition *tx = &share->tx;
666 	u64 completer_addr;
667 	int ret;
668 
669 	switch (tx->initiator.id) {
670 	case PKVM_ID_HOST:
671 		ret = host_request_unshare(&completer_addr, tx);
672 		break;
673 	default:
674 		ret = -EINVAL;
675 	}
676 
677 	if (ret)
678 		return ret;
679 
680 	switch (tx->completer.id) {
681 	case PKVM_ID_HYP:
682 		ret = hyp_ack_unshare(completer_addr, tx);
683 		break;
684 	default:
685 		ret = -EINVAL;
686 	}
687 
688 	return ret;
689 }
690 
691 static int __do_unshare(struct pkvm_mem_share *share)
692 {
693 	const struct pkvm_mem_transition *tx = &share->tx;
694 	u64 completer_addr;
695 	int ret;
696 
697 	switch (tx->initiator.id) {
698 	case PKVM_ID_HOST:
699 		ret = host_initiate_unshare(&completer_addr, tx);
700 		break;
701 	default:
702 		ret = -EINVAL;
703 	}
704 
705 	if (ret)
706 		return ret;
707 
708 	switch (tx->completer.id) {
709 	case PKVM_ID_HYP:
710 		ret = hyp_complete_unshare(completer_addr, tx);
711 		break;
712 	default:
713 		ret = -EINVAL;
714 	}
715 
716 	return ret;
717 }
718 
719 /*
720  * do_unshare():
721  *
722  * The page owner revokes access from another component for a range of
723  * pages which were previously shared using do_share().
724  *
725  * Initiator: SHARED_OWNED	=> OWNED
726  * Completer: SHARED_BORROWED	=> NOPAGE
727  */
728 static int do_unshare(struct pkvm_mem_share *share)
729 {
730 	int ret;
731 
732 	ret = check_unshare(share);
733 	if (ret)
734 		return ret;
735 
736 	return WARN_ON(__do_unshare(share));
737 }
738 
739 int __pkvm_host_share_hyp(u64 pfn)
740 {
741 	int ret;
742 	u64 host_addr = hyp_pfn_to_phys(pfn);
743 	u64 hyp_addr = (u64)__hyp_va(host_addr);
744 	struct pkvm_mem_share share = {
745 		.tx	= {
746 			.nr_pages	= 1,
747 			.initiator	= {
748 				.id	= PKVM_ID_HOST,
749 				.addr	= host_addr,
750 				.host	= {
751 					.completer_addr = hyp_addr,
752 				},
753 			},
754 			.completer	= {
755 				.id	= PKVM_ID_HYP,
756 			},
757 		},
758 		.completer_prot	= PAGE_HYP,
759 	};
760 
761 	host_lock_component();
762 	hyp_lock_component();
763 
764 	ret = do_share(&share);
765 
766 	hyp_unlock_component();
767 	host_unlock_component();
768 
769 	return ret;
770 }
771 
772 int __pkvm_host_unshare_hyp(u64 pfn)
773 {
774 	int ret;
775 	u64 host_addr = hyp_pfn_to_phys(pfn);
776 	u64 hyp_addr = (u64)__hyp_va(host_addr);
777 	struct pkvm_mem_share share = {
778 		.tx	= {
779 			.nr_pages	= 1,
780 			.initiator	= {
781 				.id	= PKVM_ID_HOST,
782 				.addr	= host_addr,
783 				.host	= {
784 					.completer_addr = hyp_addr,
785 				},
786 			},
787 			.completer	= {
788 				.id	= PKVM_ID_HYP,
789 			},
790 		},
791 		.completer_prot	= PAGE_HYP,
792 	};
793 
794 	host_lock_component();
795 	hyp_lock_component();
796 
797 	ret = do_unshare(&share);
798 
799 	hyp_unlock_component();
800 	host_unlock_component();
801 
802 	return ret;
803 }
804