xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14 
15 #include <hyp/fault.h>
16 
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21 
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23 
24 struct host_mmu host_mmu;
25 
26 static struct hyp_pool host_s2_pool;
27 
28 static DEFINE_PER_CPU(struct pkvm_hyp_vm *, __current_vm);
29 #define current_vm (*this_cpu_ptr(&__current_vm))
30 
31 static void guest_lock_component(struct pkvm_hyp_vm *vm)
32 {
33 	hyp_spin_lock(&vm->lock);
34 	current_vm = vm;
35 }
36 
37 static void guest_unlock_component(struct pkvm_hyp_vm *vm)
38 {
39 	current_vm = NULL;
40 	hyp_spin_unlock(&vm->lock);
41 }
42 
43 static void host_lock_component(void)
44 {
45 	hyp_spin_lock(&host_mmu.lock);
46 }
47 
48 static void host_unlock_component(void)
49 {
50 	hyp_spin_unlock(&host_mmu.lock);
51 }
52 
53 static void hyp_lock_component(void)
54 {
55 	hyp_spin_lock(&pkvm_pgd_lock);
56 }
57 
58 static void hyp_unlock_component(void)
59 {
60 	hyp_spin_unlock(&pkvm_pgd_lock);
61 }
62 
63 static void *host_s2_zalloc_pages_exact(size_t size)
64 {
65 	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
66 
67 	hyp_split_page(hyp_virt_to_page(addr));
68 
69 	/*
70 	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
71 	 * so there should be no need to free any of the tail pages to make the
72 	 * allocation exact.
73 	 */
74 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
75 
76 	return addr;
77 }
78 
79 static void *host_s2_zalloc_page(void *pool)
80 {
81 	return hyp_alloc_pages(pool, 0);
82 }
83 
84 static void host_s2_get_page(void *addr)
85 {
86 	hyp_get_page(&host_s2_pool, addr);
87 }
88 
89 static void host_s2_put_page(void *addr)
90 {
91 	hyp_put_page(&host_s2_pool, addr);
92 }
93 
94 static void host_s2_free_unlinked_table(void *addr, u32 level)
95 {
96 	kvm_pgtable_stage2_free_unlinked(&host_mmu.mm_ops, addr, level);
97 }
98 
99 static int prepare_s2_pool(void *pgt_pool_base)
100 {
101 	unsigned long nr_pages, pfn;
102 	int ret;
103 
104 	pfn = hyp_virt_to_pfn(pgt_pool_base);
105 	nr_pages = host_s2_pgtable_pages();
106 	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
107 	if (ret)
108 		return ret;
109 
110 	host_mmu.mm_ops = (struct kvm_pgtable_mm_ops) {
111 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
112 		.zalloc_page = host_s2_zalloc_page,
113 		.free_unlinked_table = host_s2_free_unlinked_table,
114 		.phys_to_virt = hyp_phys_to_virt,
115 		.virt_to_phys = hyp_virt_to_phys,
116 		.page_count = hyp_page_count,
117 		.get_page = host_s2_get_page,
118 		.put_page = host_s2_put_page,
119 	};
120 
121 	return 0;
122 }
123 
124 static void prepare_host_vtcr(void)
125 {
126 	u32 parange, phys_shift;
127 
128 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
129 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
130 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
131 
132 	host_mmu.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
133 					  id_aa64mmfr1_el1_sys_val, phys_shift);
134 }
135 
136 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
137 
138 int kvm_host_prepare_stage2(void *pgt_pool_base)
139 {
140 	struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
141 	int ret;
142 
143 	prepare_host_vtcr();
144 	hyp_spin_lock_init(&host_mmu.lock);
145 	mmu->arch = &host_mmu.arch;
146 
147 	ret = prepare_s2_pool(pgt_pool_base);
148 	if (ret)
149 		return ret;
150 
151 	ret = __kvm_pgtable_stage2_init(&host_mmu.pgt, mmu,
152 					&host_mmu.mm_ops, KVM_HOST_S2_FLAGS,
153 					host_stage2_force_pte_cb);
154 	if (ret)
155 		return ret;
156 
157 	mmu->pgd_phys = __hyp_pa(host_mmu.pgt.pgd);
158 	mmu->pgt = &host_mmu.pgt;
159 	atomic64_set(&mmu->vmid.id, 0);
160 
161 	return 0;
162 }
163 
164 static bool guest_stage2_force_pte_cb(u64 addr, u64 end,
165 				      enum kvm_pgtable_prot prot)
166 {
167 	return true;
168 }
169 
170 static void *guest_s2_zalloc_pages_exact(size_t size)
171 {
172 	void *addr = hyp_alloc_pages(&current_vm->pool, get_order(size));
173 
174 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
175 	hyp_split_page(hyp_virt_to_page(addr));
176 
177 	return addr;
178 }
179 
180 static void guest_s2_free_pages_exact(void *addr, unsigned long size)
181 {
182 	u8 order = get_order(size);
183 	unsigned int i;
184 
185 	for (i = 0; i < (1 << order); i++)
186 		hyp_put_page(&current_vm->pool, addr + (i * PAGE_SIZE));
187 }
188 
189 static void *guest_s2_zalloc_page(void *mc)
190 {
191 	struct hyp_page *p;
192 	void *addr;
193 
194 	addr = hyp_alloc_pages(&current_vm->pool, 0);
195 	if (addr)
196 		return addr;
197 
198 	addr = pop_hyp_memcache(mc, hyp_phys_to_virt);
199 	if (!addr)
200 		return addr;
201 
202 	memset(addr, 0, PAGE_SIZE);
203 	p = hyp_virt_to_page(addr);
204 	memset(p, 0, sizeof(*p));
205 	p->refcount = 1;
206 
207 	return addr;
208 }
209 
210 static void guest_s2_get_page(void *addr)
211 {
212 	hyp_get_page(&current_vm->pool, addr);
213 }
214 
215 static void guest_s2_put_page(void *addr)
216 {
217 	hyp_put_page(&current_vm->pool, addr);
218 }
219 
220 static void clean_dcache_guest_page(void *va, size_t size)
221 {
222 	__clean_dcache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
223 	hyp_fixmap_unmap();
224 }
225 
226 static void invalidate_icache_guest_page(void *va, size_t size)
227 {
228 	__invalidate_icache_guest_page(hyp_fixmap_map(__hyp_pa(va)), size);
229 	hyp_fixmap_unmap();
230 }
231 
232 int kvm_guest_prepare_stage2(struct pkvm_hyp_vm *vm, void *pgd)
233 {
234 	struct kvm_s2_mmu *mmu = &vm->kvm.arch.mmu;
235 	unsigned long nr_pages;
236 	int ret;
237 
238 	nr_pages = kvm_pgtable_stage2_pgd_size(vm->kvm.arch.vtcr) >> PAGE_SHIFT;
239 	ret = hyp_pool_init(&vm->pool, hyp_virt_to_pfn(pgd), nr_pages, 0);
240 	if (ret)
241 		return ret;
242 
243 	hyp_spin_lock_init(&vm->lock);
244 	vm->mm_ops = (struct kvm_pgtable_mm_ops) {
245 		.zalloc_pages_exact	= guest_s2_zalloc_pages_exact,
246 		.free_pages_exact	= guest_s2_free_pages_exact,
247 		.zalloc_page		= guest_s2_zalloc_page,
248 		.phys_to_virt		= hyp_phys_to_virt,
249 		.virt_to_phys		= hyp_virt_to_phys,
250 		.page_count		= hyp_page_count,
251 		.get_page		= guest_s2_get_page,
252 		.put_page		= guest_s2_put_page,
253 		.dcache_clean_inval_poc	= clean_dcache_guest_page,
254 		.icache_inval_pou	= invalidate_icache_guest_page,
255 	};
256 
257 	guest_lock_component(vm);
258 	ret = __kvm_pgtable_stage2_init(mmu->pgt, mmu, &vm->mm_ops, 0,
259 					guest_stage2_force_pte_cb);
260 	guest_unlock_component(vm);
261 	if (ret)
262 		return ret;
263 
264 	vm->kvm.arch.mmu.pgd_phys = __hyp_pa(vm->pgt.pgd);
265 
266 	return 0;
267 }
268 
269 void reclaim_guest_pages(struct pkvm_hyp_vm *vm, struct kvm_hyp_memcache *mc)
270 {
271 	void *addr;
272 
273 	/* Dump all pgtable pages in the hyp_pool */
274 	guest_lock_component(vm);
275 	kvm_pgtable_stage2_destroy(&vm->pgt);
276 	vm->kvm.arch.mmu.pgd_phys = 0ULL;
277 	guest_unlock_component(vm);
278 
279 	/* Drain the hyp_pool into the memcache */
280 	addr = hyp_alloc_pages(&vm->pool, 0);
281 	while (addr) {
282 		memset(hyp_virt_to_page(addr), 0, sizeof(struct hyp_page));
283 		push_hyp_memcache(mc, addr, hyp_virt_to_phys);
284 		WARN_ON(__pkvm_hyp_donate_host(hyp_virt_to_pfn(addr), 1));
285 		addr = hyp_alloc_pages(&vm->pool, 0);
286 	}
287 }
288 
289 int __pkvm_prot_finalize(void)
290 {
291 	struct kvm_s2_mmu *mmu = &host_mmu.arch.mmu;
292 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
293 
294 	if (params->hcr_el2 & HCR_VM)
295 		return -EPERM;
296 
297 	params->vttbr = kvm_get_vttbr(mmu);
298 	params->vtcr = host_mmu.arch.vtcr;
299 	params->hcr_el2 |= HCR_VM;
300 
301 	/*
302 	 * The CMO below not only cleans the updated params to the
303 	 * PoC, but also provides the DSB that ensures ongoing
304 	 * page-table walks that have started before we trapped to EL2
305 	 * have completed.
306 	 */
307 	kvm_flush_dcache_to_poc(params, sizeof(*params));
308 
309 	write_sysreg(params->hcr_el2, hcr_el2);
310 	__load_stage2(&host_mmu.arch.mmu, &host_mmu.arch);
311 
312 	/*
313 	 * Make sure to have an ISB before the TLB maintenance below but only
314 	 * when __load_stage2() doesn't include one already.
315 	 */
316 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
317 
318 	/* Invalidate stale HCR bits that may be cached in TLBs */
319 	__tlbi(vmalls12e1);
320 	dsb(nsh);
321 	isb();
322 
323 	return 0;
324 }
325 
326 static int host_stage2_unmap_dev_all(void)
327 {
328 	struct kvm_pgtable *pgt = &host_mmu.pgt;
329 	struct memblock_region *reg;
330 	u64 addr = 0;
331 	int i, ret;
332 
333 	/* Unmap all non-memory regions to recycle the pages */
334 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
335 		reg = &hyp_memory[i];
336 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
337 		if (ret)
338 			return ret;
339 	}
340 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
341 }
342 
343 struct kvm_mem_range {
344 	u64 start;
345 	u64 end;
346 };
347 
348 static struct memblock_region *find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
349 {
350 	int cur, left = 0, right = hyp_memblock_nr;
351 	struct memblock_region *reg;
352 	phys_addr_t end;
353 
354 	range->start = 0;
355 	range->end = ULONG_MAX;
356 
357 	/* The list of memblock regions is sorted, binary search it */
358 	while (left < right) {
359 		cur = (left + right) >> 1;
360 		reg = &hyp_memory[cur];
361 		end = reg->base + reg->size;
362 		if (addr < reg->base) {
363 			right = cur;
364 			range->end = reg->base;
365 		} else if (addr >= end) {
366 			left = cur + 1;
367 			range->start = end;
368 		} else {
369 			range->start = reg->base;
370 			range->end = end;
371 			return reg;
372 		}
373 	}
374 
375 	return NULL;
376 }
377 
378 bool addr_is_memory(phys_addr_t phys)
379 {
380 	struct kvm_mem_range range;
381 
382 	return !!find_mem_range(phys, &range);
383 }
384 
385 static bool addr_is_allowed_memory(phys_addr_t phys)
386 {
387 	struct memblock_region *reg;
388 	struct kvm_mem_range range;
389 
390 	reg = find_mem_range(phys, &range);
391 
392 	return reg && !(reg->flags & MEMBLOCK_NOMAP);
393 }
394 
395 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
396 {
397 	return range->start <= addr && addr < range->end;
398 }
399 
400 static bool range_is_memory(u64 start, u64 end)
401 {
402 	struct kvm_mem_range r;
403 
404 	if (!find_mem_range(start, &r))
405 		return false;
406 
407 	return is_in_mem_range(end - 1, &r);
408 }
409 
410 static inline int __host_stage2_idmap(u64 start, u64 end,
411 				      enum kvm_pgtable_prot prot)
412 {
413 	return kvm_pgtable_stage2_map(&host_mmu.pgt, start, end - start, start,
414 				      prot, &host_s2_pool, 0);
415 }
416 
417 /*
418  * The pool has been provided with enough pages to cover all of memory with
419  * page granularity, but it is difficult to know how much of the MMIO range
420  * we will need to cover upfront, so we may need to 'recycle' the pages if we
421  * run out.
422  */
423 #define host_stage2_try(fn, ...)					\
424 	({								\
425 		int __ret;						\
426 		hyp_assert_lock_held(&host_mmu.lock);			\
427 		__ret = fn(__VA_ARGS__);				\
428 		if (__ret == -ENOMEM) {					\
429 			__ret = host_stage2_unmap_dev_all();		\
430 			if (!__ret)					\
431 				__ret = fn(__VA_ARGS__);		\
432 		}							\
433 		__ret;							\
434 	 })
435 
436 static inline bool range_included(struct kvm_mem_range *child,
437 				  struct kvm_mem_range *parent)
438 {
439 	return parent->start <= child->start && child->end <= parent->end;
440 }
441 
442 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
443 {
444 	struct kvm_mem_range cur;
445 	kvm_pte_t pte;
446 	u32 level;
447 	int ret;
448 
449 	hyp_assert_lock_held(&host_mmu.lock);
450 	ret = kvm_pgtable_get_leaf(&host_mmu.pgt, addr, &pte, &level);
451 	if (ret)
452 		return ret;
453 
454 	if (kvm_pte_valid(pte))
455 		return -EAGAIN;
456 
457 	if (pte)
458 		return -EPERM;
459 
460 	do {
461 		u64 granule = kvm_granule_size(level);
462 		cur.start = ALIGN_DOWN(addr, granule);
463 		cur.end = cur.start + granule;
464 		level++;
465 	} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
466 			!(kvm_level_supports_block_mapping(level) &&
467 			  range_included(&cur, range)));
468 
469 	*range = cur;
470 
471 	return 0;
472 }
473 
474 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
475 			     enum kvm_pgtable_prot prot)
476 {
477 	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
478 }
479 
480 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
481 {
482 	return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_mmu.pgt,
483 			       addr, size, &host_s2_pool, owner_id);
484 }
485 
486 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
487 {
488 	/*
489 	 * Block mappings must be used with care in the host stage-2 as a
490 	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
491 	 * an existing block will delete the block under the assumption that
492 	 * mappings in the rest of the block range can always be rebuilt lazily.
493 	 * That assumption is correct for the host stage-2 with RWX mappings
494 	 * targeting memory or RW mappings targeting MMIO ranges (see
495 	 * host_stage2_idmap() below which implements some of the host memory
496 	 * abort logic). However, this is not safe for any other mappings where
497 	 * the host stage-2 page-table is in fact the only place where this
498 	 * state is stored. In all those cases, it is safer to use page-level
499 	 * mappings, hence avoiding to lose the state because of side-effects in
500 	 * kvm_pgtable_stage2_map().
501 	 */
502 	if (range_is_memory(addr, end))
503 		return prot != PKVM_HOST_MEM_PROT;
504 	else
505 		return prot != PKVM_HOST_MMIO_PROT;
506 }
507 
508 static int host_stage2_idmap(u64 addr)
509 {
510 	struct kvm_mem_range range;
511 	bool is_memory = !!find_mem_range(addr, &range);
512 	enum kvm_pgtable_prot prot;
513 	int ret;
514 
515 	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
516 
517 	host_lock_component();
518 	ret = host_stage2_adjust_range(addr, &range);
519 	if (ret)
520 		goto unlock;
521 
522 	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
523 unlock:
524 	host_unlock_component();
525 
526 	return ret;
527 }
528 
529 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
530 {
531 	struct kvm_vcpu_fault_info fault;
532 	u64 esr, addr;
533 	int ret = 0;
534 
535 	esr = read_sysreg_el2(SYS_ESR);
536 	BUG_ON(!__get_fault_info(esr, &fault));
537 
538 	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
539 	ret = host_stage2_idmap(addr);
540 	BUG_ON(ret && ret != -EAGAIN);
541 }
542 
543 struct pkvm_mem_transition {
544 	u64				nr_pages;
545 
546 	struct {
547 		enum pkvm_component_id	id;
548 		/* Address in the initiator's address space */
549 		u64			addr;
550 
551 		union {
552 			struct {
553 				/* Address in the completer's address space */
554 				u64	completer_addr;
555 			} host;
556 			struct {
557 				u64	completer_addr;
558 			} hyp;
559 		};
560 	} initiator;
561 
562 	struct {
563 		enum pkvm_component_id	id;
564 	} completer;
565 };
566 
567 struct pkvm_mem_share {
568 	const struct pkvm_mem_transition	tx;
569 	const enum kvm_pgtable_prot		completer_prot;
570 };
571 
572 struct pkvm_mem_donation {
573 	const struct pkvm_mem_transition	tx;
574 };
575 
576 struct check_walk_data {
577 	enum pkvm_page_state	desired;
578 	enum pkvm_page_state	(*get_page_state)(kvm_pte_t pte, u64 addr);
579 };
580 
581 static int __check_page_state_visitor(const struct kvm_pgtable_visit_ctx *ctx,
582 				      enum kvm_pgtable_walk_flags visit)
583 {
584 	struct check_walk_data *d = ctx->arg;
585 
586 	return d->get_page_state(ctx->old, ctx->addr) == d->desired ? 0 : -EPERM;
587 }
588 
589 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
590 				  struct check_walk_data *data)
591 {
592 	struct kvm_pgtable_walker walker = {
593 		.cb	= __check_page_state_visitor,
594 		.arg	= data,
595 		.flags	= KVM_PGTABLE_WALK_LEAF,
596 	};
597 
598 	return kvm_pgtable_walk(pgt, addr, size, &walker);
599 }
600 
601 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte, u64 addr)
602 {
603 	if (!addr_is_allowed_memory(addr))
604 		return PKVM_NOPAGE;
605 
606 	if (!kvm_pte_valid(pte) && pte)
607 		return PKVM_NOPAGE;
608 
609 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
610 }
611 
612 static int __host_check_page_state_range(u64 addr, u64 size,
613 					 enum pkvm_page_state state)
614 {
615 	struct check_walk_data d = {
616 		.desired	= state,
617 		.get_page_state	= host_get_page_state,
618 	};
619 
620 	hyp_assert_lock_held(&host_mmu.lock);
621 	return check_page_state_range(&host_mmu.pgt, addr, size, &d);
622 }
623 
624 static int __host_set_page_state_range(u64 addr, u64 size,
625 				       enum pkvm_page_state state)
626 {
627 	enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
628 
629 	return host_stage2_idmap_locked(addr, size, prot);
630 }
631 
632 static int host_request_owned_transition(u64 *completer_addr,
633 					 const struct pkvm_mem_transition *tx)
634 {
635 	u64 size = tx->nr_pages * PAGE_SIZE;
636 	u64 addr = tx->initiator.addr;
637 
638 	*completer_addr = tx->initiator.host.completer_addr;
639 	return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
640 }
641 
642 static int host_request_unshare(u64 *completer_addr,
643 				const struct pkvm_mem_transition *tx)
644 {
645 	u64 size = tx->nr_pages * PAGE_SIZE;
646 	u64 addr = tx->initiator.addr;
647 
648 	*completer_addr = tx->initiator.host.completer_addr;
649 	return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
650 }
651 
652 static int host_initiate_share(u64 *completer_addr,
653 			       const struct pkvm_mem_transition *tx)
654 {
655 	u64 size = tx->nr_pages * PAGE_SIZE;
656 	u64 addr = tx->initiator.addr;
657 
658 	*completer_addr = tx->initiator.host.completer_addr;
659 	return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
660 }
661 
662 static int host_initiate_unshare(u64 *completer_addr,
663 				 const struct pkvm_mem_transition *tx)
664 {
665 	u64 size = tx->nr_pages * PAGE_SIZE;
666 	u64 addr = tx->initiator.addr;
667 
668 	*completer_addr = tx->initiator.host.completer_addr;
669 	return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
670 }
671 
672 static int host_initiate_donation(u64 *completer_addr,
673 				  const struct pkvm_mem_transition *tx)
674 {
675 	u8 owner_id = tx->completer.id;
676 	u64 size = tx->nr_pages * PAGE_SIZE;
677 
678 	*completer_addr = tx->initiator.host.completer_addr;
679 	return host_stage2_set_owner_locked(tx->initiator.addr, size, owner_id);
680 }
681 
682 static bool __host_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
683 {
684 	return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
685 		 tx->initiator.id != PKVM_ID_HYP);
686 }
687 
688 static int __host_ack_transition(u64 addr, const struct pkvm_mem_transition *tx,
689 				 enum pkvm_page_state state)
690 {
691 	u64 size = tx->nr_pages * PAGE_SIZE;
692 
693 	if (__host_ack_skip_pgtable_check(tx))
694 		return 0;
695 
696 	return __host_check_page_state_range(addr, size, state);
697 }
698 
699 static int host_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
700 {
701 	return __host_ack_transition(addr, tx, PKVM_NOPAGE);
702 }
703 
704 static int host_complete_donation(u64 addr, const struct pkvm_mem_transition *tx)
705 {
706 	u64 size = tx->nr_pages * PAGE_SIZE;
707 	u8 host_id = tx->completer.id;
708 
709 	return host_stage2_set_owner_locked(addr, size, host_id);
710 }
711 
712 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte, u64 addr)
713 {
714 	if (!kvm_pte_valid(pte))
715 		return PKVM_NOPAGE;
716 
717 	return pkvm_getstate(kvm_pgtable_hyp_pte_prot(pte));
718 }
719 
720 static int __hyp_check_page_state_range(u64 addr, u64 size,
721 					enum pkvm_page_state state)
722 {
723 	struct check_walk_data d = {
724 		.desired	= state,
725 		.get_page_state	= hyp_get_page_state,
726 	};
727 
728 	hyp_assert_lock_held(&pkvm_pgd_lock);
729 	return check_page_state_range(&pkvm_pgtable, addr, size, &d);
730 }
731 
732 static int hyp_request_donation(u64 *completer_addr,
733 				const struct pkvm_mem_transition *tx)
734 {
735 	u64 size = tx->nr_pages * PAGE_SIZE;
736 	u64 addr = tx->initiator.addr;
737 
738 	*completer_addr = tx->initiator.hyp.completer_addr;
739 	return __hyp_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
740 }
741 
742 static int hyp_initiate_donation(u64 *completer_addr,
743 				 const struct pkvm_mem_transition *tx)
744 {
745 	u64 size = tx->nr_pages * PAGE_SIZE;
746 	int ret;
747 
748 	*completer_addr = tx->initiator.hyp.completer_addr;
749 	ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, tx->initiator.addr, size);
750 	return (ret != size) ? -EFAULT : 0;
751 }
752 
753 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
754 {
755 	return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
756 		 tx->initiator.id != PKVM_ID_HOST);
757 }
758 
759 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
760 			 enum kvm_pgtable_prot perms)
761 {
762 	u64 size = tx->nr_pages * PAGE_SIZE;
763 
764 	if (perms != PAGE_HYP)
765 		return -EPERM;
766 
767 	if (__hyp_ack_skip_pgtable_check(tx))
768 		return 0;
769 
770 	return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
771 }
772 
773 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
774 {
775 	u64 size = tx->nr_pages * PAGE_SIZE;
776 
777 	if (tx->initiator.id == PKVM_ID_HOST && hyp_page_count((void *)addr))
778 		return -EBUSY;
779 
780 	if (__hyp_ack_skip_pgtable_check(tx))
781 		return 0;
782 
783 	return __hyp_check_page_state_range(addr, size,
784 					    PKVM_PAGE_SHARED_BORROWED);
785 }
786 
787 static int hyp_ack_donation(u64 addr, const struct pkvm_mem_transition *tx)
788 {
789 	u64 size = tx->nr_pages * PAGE_SIZE;
790 
791 	if (__hyp_ack_skip_pgtable_check(tx))
792 		return 0;
793 
794 	return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
795 }
796 
797 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
798 			      enum kvm_pgtable_prot perms)
799 {
800 	void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
801 	enum kvm_pgtable_prot prot;
802 
803 	prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
804 	return pkvm_create_mappings_locked(start, end, prot);
805 }
806 
807 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
808 {
809 	u64 size = tx->nr_pages * PAGE_SIZE;
810 	int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
811 
812 	return (ret != size) ? -EFAULT : 0;
813 }
814 
815 static int hyp_complete_donation(u64 addr,
816 				 const struct pkvm_mem_transition *tx)
817 {
818 	void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
819 	enum kvm_pgtable_prot prot = pkvm_mkstate(PAGE_HYP, PKVM_PAGE_OWNED);
820 
821 	return pkvm_create_mappings_locked(start, end, prot);
822 }
823 
824 static int check_share(struct pkvm_mem_share *share)
825 {
826 	const struct pkvm_mem_transition *tx = &share->tx;
827 	u64 completer_addr;
828 	int ret;
829 
830 	switch (tx->initiator.id) {
831 	case PKVM_ID_HOST:
832 		ret = host_request_owned_transition(&completer_addr, tx);
833 		break;
834 	default:
835 		ret = -EINVAL;
836 	}
837 
838 	if (ret)
839 		return ret;
840 
841 	switch (tx->completer.id) {
842 	case PKVM_ID_HYP:
843 		ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
844 		break;
845 	case PKVM_ID_FFA:
846 		/*
847 		 * We only check the host; the secure side will check the other
848 		 * end when we forward the FFA call.
849 		 */
850 		ret = 0;
851 		break;
852 	default:
853 		ret = -EINVAL;
854 	}
855 
856 	return ret;
857 }
858 
859 static int __do_share(struct pkvm_mem_share *share)
860 {
861 	const struct pkvm_mem_transition *tx = &share->tx;
862 	u64 completer_addr;
863 	int ret;
864 
865 	switch (tx->initiator.id) {
866 	case PKVM_ID_HOST:
867 		ret = host_initiate_share(&completer_addr, tx);
868 		break;
869 	default:
870 		ret = -EINVAL;
871 	}
872 
873 	if (ret)
874 		return ret;
875 
876 	switch (tx->completer.id) {
877 	case PKVM_ID_HYP:
878 		ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
879 		break;
880 	case PKVM_ID_FFA:
881 		/*
882 		 * We're not responsible for any secure page-tables, so there's
883 		 * nothing to do here.
884 		 */
885 		ret = 0;
886 		break;
887 	default:
888 		ret = -EINVAL;
889 	}
890 
891 	return ret;
892 }
893 
894 /*
895  * do_share():
896  *
897  * The page owner grants access to another component with a given set
898  * of permissions.
899  *
900  * Initiator: OWNED	=> SHARED_OWNED
901  * Completer: NOPAGE	=> SHARED_BORROWED
902  */
903 static int do_share(struct pkvm_mem_share *share)
904 {
905 	int ret;
906 
907 	ret = check_share(share);
908 	if (ret)
909 		return ret;
910 
911 	return WARN_ON(__do_share(share));
912 }
913 
914 static int check_unshare(struct pkvm_mem_share *share)
915 {
916 	const struct pkvm_mem_transition *tx = &share->tx;
917 	u64 completer_addr;
918 	int ret;
919 
920 	switch (tx->initiator.id) {
921 	case PKVM_ID_HOST:
922 		ret = host_request_unshare(&completer_addr, tx);
923 		break;
924 	default:
925 		ret = -EINVAL;
926 	}
927 
928 	if (ret)
929 		return ret;
930 
931 	switch (tx->completer.id) {
932 	case PKVM_ID_HYP:
933 		ret = hyp_ack_unshare(completer_addr, tx);
934 		break;
935 	case PKVM_ID_FFA:
936 		/* See check_share() */
937 		ret = 0;
938 		break;
939 	default:
940 		ret = -EINVAL;
941 	}
942 
943 	return ret;
944 }
945 
946 static int __do_unshare(struct pkvm_mem_share *share)
947 {
948 	const struct pkvm_mem_transition *tx = &share->tx;
949 	u64 completer_addr;
950 	int ret;
951 
952 	switch (tx->initiator.id) {
953 	case PKVM_ID_HOST:
954 		ret = host_initiate_unshare(&completer_addr, tx);
955 		break;
956 	default:
957 		ret = -EINVAL;
958 	}
959 
960 	if (ret)
961 		return ret;
962 
963 	switch (tx->completer.id) {
964 	case PKVM_ID_HYP:
965 		ret = hyp_complete_unshare(completer_addr, tx);
966 		break;
967 	case PKVM_ID_FFA:
968 		/* See __do_share() */
969 		ret = 0;
970 		break;
971 	default:
972 		ret = -EINVAL;
973 	}
974 
975 	return ret;
976 }
977 
978 /*
979  * do_unshare():
980  *
981  * The page owner revokes access from another component for a range of
982  * pages which were previously shared using do_share().
983  *
984  * Initiator: SHARED_OWNED	=> OWNED
985  * Completer: SHARED_BORROWED	=> NOPAGE
986  */
987 static int do_unshare(struct pkvm_mem_share *share)
988 {
989 	int ret;
990 
991 	ret = check_unshare(share);
992 	if (ret)
993 		return ret;
994 
995 	return WARN_ON(__do_unshare(share));
996 }
997 
998 static int check_donation(struct pkvm_mem_donation *donation)
999 {
1000 	const struct pkvm_mem_transition *tx = &donation->tx;
1001 	u64 completer_addr;
1002 	int ret;
1003 
1004 	switch (tx->initiator.id) {
1005 	case PKVM_ID_HOST:
1006 		ret = host_request_owned_transition(&completer_addr, tx);
1007 		break;
1008 	case PKVM_ID_HYP:
1009 		ret = hyp_request_donation(&completer_addr, tx);
1010 		break;
1011 	default:
1012 		ret = -EINVAL;
1013 	}
1014 
1015 	if (ret)
1016 		return ret;
1017 
1018 	switch (tx->completer.id) {
1019 	case PKVM_ID_HOST:
1020 		ret = host_ack_donation(completer_addr, tx);
1021 		break;
1022 	case PKVM_ID_HYP:
1023 		ret = hyp_ack_donation(completer_addr, tx);
1024 		break;
1025 	default:
1026 		ret = -EINVAL;
1027 	}
1028 
1029 	return ret;
1030 }
1031 
1032 static int __do_donate(struct pkvm_mem_donation *donation)
1033 {
1034 	const struct pkvm_mem_transition *tx = &donation->tx;
1035 	u64 completer_addr;
1036 	int ret;
1037 
1038 	switch (tx->initiator.id) {
1039 	case PKVM_ID_HOST:
1040 		ret = host_initiate_donation(&completer_addr, tx);
1041 		break;
1042 	case PKVM_ID_HYP:
1043 		ret = hyp_initiate_donation(&completer_addr, tx);
1044 		break;
1045 	default:
1046 		ret = -EINVAL;
1047 	}
1048 
1049 	if (ret)
1050 		return ret;
1051 
1052 	switch (tx->completer.id) {
1053 	case PKVM_ID_HOST:
1054 		ret = host_complete_donation(completer_addr, tx);
1055 		break;
1056 	case PKVM_ID_HYP:
1057 		ret = hyp_complete_donation(completer_addr, tx);
1058 		break;
1059 	default:
1060 		ret = -EINVAL;
1061 	}
1062 
1063 	return ret;
1064 }
1065 
1066 /*
1067  * do_donate():
1068  *
1069  * The page owner transfers ownership to another component, losing access
1070  * as a consequence.
1071  *
1072  * Initiator: OWNED	=> NOPAGE
1073  * Completer: NOPAGE	=> OWNED
1074  */
1075 static int do_donate(struct pkvm_mem_donation *donation)
1076 {
1077 	int ret;
1078 
1079 	ret = check_donation(donation);
1080 	if (ret)
1081 		return ret;
1082 
1083 	return WARN_ON(__do_donate(donation));
1084 }
1085 
1086 int __pkvm_host_share_hyp(u64 pfn)
1087 {
1088 	int ret;
1089 	u64 host_addr = hyp_pfn_to_phys(pfn);
1090 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1091 	struct pkvm_mem_share share = {
1092 		.tx	= {
1093 			.nr_pages	= 1,
1094 			.initiator	= {
1095 				.id	= PKVM_ID_HOST,
1096 				.addr	= host_addr,
1097 				.host	= {
1098 					.completer_addr = hyp_addr,
1099 				},
1100 			},
1101 			.completer	= {
1102 				.id	= PKVM_ID_HYP,
1103 			},
1104 		},
1105 		.completer_prot	= PAGE_HYP,
1106 	};
1107 
1108 	host_lock_component();
1109 	hyp_lock_component();
1110 
1111 	ret = do_share(&share);
1112 
1113 	hyp_unlock_component();
1114 	host_unlock_component();
1115 
1116 	return ret;
1117 }
1118 
1119 int __pkvm_host_unshare_hyp(u64 pfn)
1120 {
1121 	int ret;
1122 	u64 host_addr = hyp_pfn_to_phys(pfn);
1123 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1124 	struct pkvm_mem_share share = {
1125 		.tx	= {
1126 			.nr_pages	= 1,
1127 			.initiator	= {
1128 				.id	= PKVM_ID_HOST,
1129 				.addr	= host_addr,
1130 				.host	= {
1131 					.completer_addr = hyp_addr,
1132 				},
1133 			},
1134 			.completer	= {
1135 				.id	= PKVM_ID_HYP,
1136 			},
1137 		},
1138 		.completer_prot	= PAGE_HYP,
1139 	};
1140 
1141 	host_lock_component();
1142 	hyp_lock_component();
1143 
1144 	ret = do_unshare(&share);
1145 
1146 	hyp_unlock_component();
1147 	host_unlock_component();
1148 
1149 	return ret;
1150 }
1151 
1152 int __pkvm_host_donate_hyp(u64 pfn, u64 nr_pages)
1153 {
1154 	int ret;
1155 	u64 host_addr = hyp_pfn_to_phys(pfn);
1156 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1157 	struct pkvm_mem_donation donation = {
1158 		.tx	= {
1159 			.nr_pages	= nr_pages,
1160 			.initiator	= {
1161 				.id	= PKVM_ID_HOST,
1162 				.addr	= host_addr,
1163 				.host	= {
1164 					.completer_addr = hyp_addr,
1165 				},
1166 			},
1167 			.completer	= {
1168 				.id	= PKVM_ID_HYP,
1169 			},
1170 		},
1171 	};
1172 
1173 	host_lock_component();
1174 	hyp_lock_component();
1175 
1176 	ret = do_donate(&donation);
1177 
1178 	hyp_unlock_component();
1179 	host_unlock_component();
1180 
1181 	return ret;
1182 }
1183 
1184 int __pkvm_hyp_donate_host(u64 pfn, u64 nr_pages)
1185 {
1186 	int ret;
1187 	u64 host_addr = hyp_pfn_to_phys(pfn);
1188 	u64 hyp_addr = (u64)__hyp_va(host_addr);
1189 	struct pkvm_mem_donation donation = {
1190 		.tx	= {
1191 			.nr_pages	= nr_pages,
1192 			.initiator	= {
1193 				.id	= PKVM_ID_HYP,
1194 				.addr	= hyp_addr,
1195 				.hyp	= {
1196 					.completer_addr = host_addr,
1197 				},
1198 			},
1199 			.completer	= {
1200 				.id	= PKVM_ID_HOST,
1201 			},
1202 		},
1203 	};
1204 
1205 	host_lock_component();
1206 	hyp_lock_component();
1207 
1208 	ret = do_donate(&donation);
1209 
1210 	hyp_unlock_component();
1211 	host_unlock_component();
1212 
1213 	return ret;
1214 }
1215 
1216 int hyp_pin_shared_mem(void *from, void *to)
1217 {
1218 	u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
1219 	u64 end = PAGE_ALIGN((u64)to);
1220 	u64 size = end - start;
1221 	int ret;
1222 
1223 	host_lock_component();
1224 	hyp_lock_component();
1225 
1226 	ret = __host_check_page_state_range(__hyp_pa(start), size,
1227 					    PKVM_PAGE_SHARED_OWNED);
1228 	if (ret)
1229 		goto unlock;
1230 
1231 	ret = __hyp_check_page_state_range(start, size,
1232 					   PKVM_PAGE_SHARED_BORROWED);
1233 	if (ret)
1234 		goto unlock;
1235 
1236 	for (cur = start; cur < end; cur += PAGE_SIZE)
1237 		hyp_page_ref_inc(hyp_virt_to_page(cur));
1238 
1239 unlock:
1240 	hyp_unlock_component();
1241 	host_unlock_component();
1242 
1243 	return ret;
1244 }
1245 
1246 void hyp_unpin_shared_mem(void *from, void *to)
1247 {
1248 	u64 cur, start = ALIGN_DOWN((u64)from, PAGE_SIZE);
1249 	u64 end = PAGE_ALIGN((u64)to);
1250 
1251 	host_lock_component();
1252 	hyp_lock_component();
1253 
1254 	for (cur = start; cur < end; cur += PAGE_SIZE)
1255 		hyp_page_ref_dec(hyp_virt_to_page(cur));
1256 
1257 	hyp_unlock_component();
1258 	host_unlock_component();
1259 }
1260 
1261 int __pkvm_host_share_ffa(u64 pfn, u64 nr_pages)
1262 {
1263 	int ret;
1264 	struct pkvm_mem_share share = {
1265 		.tx	= {
1266 			.nr_pages	= nr_pages,
1267 			.initiator	= {
1268 				.id	= PKVM_ID_HOST,
1269 				.addr	= hyp_pfn_to_phys(pfn),
1270 			},
1271 			.completer	= {
1272 				.id	= PKVM_ID_FFA,
1273 			},
1274 		},
1275 	};
1276 
1277 	host_lock_component();
1278 	ret = do_share(&share);
1279 	host_unlock_component();
1280 
1281 	return ret;
1282 }
1283 
1284 int __pkvm_host_unshare_ffa(u64 pfn, u64 nr_pages)
1285 {
1286 	int ret;
1287 	struct pkvm_mem_share share = {
1288 		.tx	= {
1289 			.nr_pages	= nr_pages,
1290 			.initiator	= {
1291 				.id	= PKVM_ID_HOST,
1292 				.addr	= hyp_pfn_to_phys(pfn),
1293 			},
1294 			.completer	= {
1295 				.id	= PKVM_ID_FFA,
1296 			},
1297 		},
1298 	};
1299 
1300 	host_lock_component();
1301 	ret = do_unshare(&share);
1302 	host_unlock_component();
1303 
1304 	return ret;
1305 }
1306