xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision 679b4bc2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14 
15 #include <hyp/fault.h>
16 
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21 
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23 
24 extern unsigned long hyp_nr_cpus;
25 struct host_kvm host_kvm;
26 
27 static struct hyp_pool host_s2_pool;
28 
29 const u8 pkvm_hyp_id = 1;
30 
31 static void host_lock_component(void)
32 {
33 	hyp_spin_lock(&host_kvm.lock);
34 }
35 
36 static void host_unlock_component(void)
37 {
38 	hyp_spin_unlock(&host_kvm.lock);
39 }
40 
41 static void hyp_lock_component(void)
42 {
43 	hyp_spin_lock(&pkvm_pgd_lock);
44 }
45 
46 static void hyp_unlock_component(void)
47 {
48 	hyp_spin_unlock(&pkvm_pgd_lock);
49 }
50 
51 static void *host_s2_zalloc_pages_exact(size_t size)
52 {
53 	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
54 
55 	hyp_split_page(hyp_virt_to_page(addr));
56 
57 	/*
58 	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
59 	 * so there should be no need to free any of the tail pages to make the
60 	 * allocation exact.
61 	 */
62 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
63 
64 	return addr;
65 }
66 
67 static void *host_s2_zalloc_page(void *pool)
68 {
69 	return hyp_alloc_pages(pool, 0);
70 }
71 
72 static void host_s2_get_page(void *addr)
73 {
74 	hyp_get_page(&host_s2_pool, addr);
75 }
76 
77 static void host_s2_put_page(void *addr)
78 {
79 	hyp_put_page(&host_s2_pool, addr);
80 }
81 
82 static int prepare_s2_pool(void *pgt_pool_base)
83 {
84 	unsigned long nr_pages, pfn;
85 	int ret;
86 
87 	pfn = hyp_virt_to_pfn(pgt_pool_base);
88 	nr_pages = host_s2_pgtable_pages();
89 	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
90 	if (ret)
91 		return ret;
92 
93 	host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
94 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
95 		.zalloc_page = host_s2_zalloc_page,
96 		.phys_to_virt = hyp_phys_to_virt,
97 		.virt_to_phys = hyp_virt_to_phys,
98 		.page_count = hyp_page_count,
99 		.get_page = host_s2_get_page,
100 		.put_page = host_s2_put_page,
101 	};
102 
103 	return 0;
104 }
105 
106 static void prepare_host_vtcr(void)
107 {
108 	u32 parange, phys_shift;
109 
110 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
111 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
112 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
113 
114 	host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
115 					  id_aa64mmfr1_el1_sys_val, phys_shift);
116 }
117 
118 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
119 
120 int kvm_host_prepare_stage2(void *pgt_pool_base)
121 {
122 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
123 	int ret;
124 
125 	prepare_host_vtcr();
126 	hyp_spin_lock_init(&host_kvm.lock);
127 	mmu->arch = &host_kvm.arch;
128 
129 	ret = prepare_s2_pool(pgt_pool_base);
130 	if (ret)
131 		return ret;
132 
133 	ret = __kvm_pgtable_stage2_init(&host_kvm.pgt, mmu,
134 					&host_kvm.mm_ops, KVM_HOST_S2_FLAGS,
135 					host_stage2_force_pte_cb);
136 	if (ret)
137 		return ret;
138 
139 	mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
140 	mmu->pgt = &host_kvm.pgt;
141 	atomic64_set(&mmu->vmid.id, 0);
142 
143 	return 0;
144 }
145 
146 int __pkvm_prot_finalize(void)
147 {
148 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
149 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
150 
151 	if (params->hcr_el2 & HCR_VM)
152 		return -EPERM;
153 
154 	params->vttbr = kvm_get_vttbr(mmu);
155 	params->vtcr = host_kvm.arch.vtcr;
156 	params->hcr_el2 |= HCR_VM;
157 	kvm_flush_dcache_to_poc(params, sizeof(*params));
158 
159 	write_sysreg(params->hcr_el2, hcr_el2);
160 	__load_stage2(&host_kvm.arch.mmu, &host_kvm.arch);
161 
162 	/*
163 	 * Make sure to have an ISB before the TLB maintenance below but only
164 	 * when __load_stage2() doesn't include one already.
165 	 */
166 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
167 
168 	/* Invalidate stale HCR bits that may be cached in TLBs */
169 	__tlbi(vmalls12e1);
170 	dsb(nsh);
171 	isb();
172 
173 	return 0;
174 }
175 
176 static int host_stage2_unmap_dev_all(void)
177 {
178 	struct kvm_pgtable *pgt = &host_kvm.pgt;
179 	struct memblock_region *reg;
180 	u64 addr = 0;
181 	int i, ret;
182 
183 	/* Unmap all non-memory regions to recycle the pages */
184 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
185 		reg = &hyp_memory[i];
186 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
187 		if (ret)
188 			return ret;
189 	}
190 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
191 }
192 
193 struct kvm_mem_range {
194 	u64 start;
195 	u64 end;
196 };
197 
198 static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
199 {
200 	int cur, left = 0, right = hyp_memblock_nr;
201 	struct memblock_region *reg;
202 	phys_addr_t end;
203 
204 	range->start = 0;
205 	range->end = ULONG_MAX;
206 
207 	/* The list of memblock regions is sorted, binary search it */
208 	while (left < right) {
209 		cur = (left + right) >> 1;
210 		reg = &hyp_memory[cur];
211 		end = reg->base + reg->size;
212 		if (addr < reg->base) {
213 			right = cur;
214 			range->end = reg->base;
215 		} else if (addr >= end) {
216 			left = cur + 1;
217 			range->start = end;
218 		} else {
219 			range->start = reg->base;
220 			range->end = end;
221 			return true;
222 		}
223 	}
224 
225 	return false;
226 }
227 
228 bool addr_is_memory(phys_addr_t phys)
229 {
230 	struct kvm_mem_range range;
231 
232 	return find_mem_range(phys, &range);
233 }
234 
235 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
236 {
237 	return range->start <= addr && addr < range->end;
238 }
239 
240 static bool range_is_memory(u64 start, u64 end)
241 {
242 	struct kvm_mem_range r;
243 
244 	if (!find_mem_range(start, &r))
245 		return false;
246 
247 	return is_in_mem_range(end - 1, &r);
248 }
249 
250 static inline int __host_stage2_idmap(u64 start, u64 end,
251 				      enum kvm_pgtable_prot prot)
252 {
253 	return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
254 				      prot, &host_s2_pool);
255 }
256 
257 /*
258  * The pool has been provided with enough pages to cover all of memory with
259  * page granularity, but it is difficult to know how much of the MMIO range
260  * we will need to cover upfront, so we may need to 'recycle' the pages if we
261  * run out.
262  */
263 #define host_stage2_try(fn, ...)					\
264 	({								\
265 		int __ret;						\
266 		hyp_assert_lock_held(&host_kvm.lock);			\
267 		__ret = fn(__VA_ARGS__);				\
268 		if (__ret == -ENOMEM) {					\
269 			__ret = host_stage2_unmap_dev_all();		\
270 			if (!__ret)					\
271 				__ret = fn(__VA_ARGS__);		\
272 		}							\
273 		__ret;							\
274 	 })
275 
276 static inline bool range_included(struct kvm_mem_range *child,
277 				  struct kvm_mem_range *parent)
278 {
279 	return parent->start <= child->start && child->end <= parent->end;
280 }
281 
282 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
283 {
284 	struct kvm_mem_range cur;
285 	kvm_pte_t pte;
286 	u32 level;
287 	int ret;
288 
289 	hyp_assert_lock_held(&host_kvm.lock);
290 	ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, &level);
291 	if (ret)
292 		return ret;
293 
294 	if (kvm_pte_valid(pte))
295 		return -EAGAIN;
296 
297 	if (pte)
298 		return -EPERM;
299 
300 	do {
301 		u64 granule = kvm_granule_size(level);
302 		cur.start = ALIGN_DOWN(addr, granule);
303 		cur.end = cur.start + granule;
304 		level++;
305 	} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
306 			!(kvm_level_supports_block_mapping(level) &&
307 			  range_included(&cur, range)));
308 
309 	*range = cur;
310 
311 	return 0;
312 }
313 
314 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
315 			     enum kvm_pgtable_prot prot)
316 {
317 	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
318 }
319 
320 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
321 {
322 	return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_kvm.pgt,
323 			       addr, size, &host_s2_pool, owner_id);
324 }
325 
326 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
327 {
328 	/*
329 	 * Block mappings must be used with care in the host stage-2 as a
330 	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
331 	 * an existing block will delete the block under the assumption that
332 	 * mappings in the rest of the block range can always be rebuilt lazily.
333 	 * That assumption is correct for the host stage-2 with RWX mappings
334 	 * targeting memory or RW mappings targeting MMIO ranges (see
335 	 * host_stage2_idmap() below which implements some of the host memory
336 	 * abort logic). However, this is not safe for any other mappings where
337 	 * the host stage-2 page-table is in fact the only place where this
338 	 * state is stored. In all those cases, it is safer to use page-level
339 	 * mappings, hence avoiding to lose the state because of side-effects in
340 	 * kvm_pgtable_stage2_map().
341 	 */
342 	if (range_is_memory(addr, end))
343 		return prot != PKVM_HOST_MEM_PROT;
344 	else
345 		return prot != PKVM_HOST_MMIO_PROT;
346 }
347 
348 static int host_stage2_idmap(u64 addr)
349 {
350 	struct kvm_mem_range range;
351 	bool is_memory = find_mem_range(addr, &range);
352 	enum kvm_pgtable_prot prot;
353 	int ret;
354 
355 	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
356 
357 	host_lock_component();
358 	ret = host_stage2_adjust_range(addr, &range);
359 	if (ret)
360 		goto unlock;
361 
362 	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
363 unlock:
364 	host_unlock_component();
365 
366 	return ret;
367 }
368 
369 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
370 {
371 	struct kvm_vcpu_fault_info fault;
372 	u64 esr, addr;
373 	int ret = 0;
374 
375 	esr = read_sysreg_el2(SYS_ESR);
376 	BUG_ON(!__get_fault_info(esr, &fault));
377 
378 	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
379 	ret = host_stage2_idmap(addr);
380 	BUG_ON(ret && ret != -EAGAIN);
381 }
382 
383 /* This corresponds to locking order */
384 enum pkvm_component_id {
385 	PKVM_ID_HOST,
386 	PKVM_ID_HYP,
387 };
388 
389 struct pkvm_mem_transition {
390 	u64				nr_pages;
391 
392 	struct {
393 		enum pkvm_component_id	id;
394 		/* Address in the initiator's address space */
395 		u64			addr;
396 
397 		union {
398 			struct {
399 				/* Address in the completer's address space */
400 				u64	completer_addr;
401 			} host;
402 		};
403 	} initiator;
404 
405 	struct {
406 		enum pkvm_component_id	id;
407 	} completer;
408 };
409 
410 struct pkvm_mem_share {
411 	const struct pkvm_mem_transition	tx;
412 	const enum kvm_pgtable_prot		completer_prot;
413 };
414 
415 struct check_walk_data {
416 	enum pkvm_page_state	desired;
417 	enum pkvm_page_state	(*get_page_state)(kvm_pte_t pte);
418 };
419 
420 static int __check_page_state_visitor(u64 addr, u64 end, u32 level,
421 				      kvm_pte_t *ptep,
422 				      enum kvm_pgtable_walk_flags flag,
423 				      void * const arg)
424 {
425 	struct check_walk_data *d = arg;
426 	kvm_pte_t pte = *ptep;
427 
428 	if (kvm_pte_valid(pte) && !addr_is_memory(kvm_pte_to_phys(pte)))
429 		return -EINVAL;
430 
431 	return d->get_page_state(pte) == d->desired ? 0 : -EPERM;
432 }
433 
434 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
435 				  struct check_walk_data *data)
436 {
437 	struct kvm_pgtable_walker walker = {
438 		.cb	= __check_page_state_visitor,
439 		.arg	= data,
440 		.flags	= KVM_PGTABLE_WALK_LEAF,
441 	};
442 
443 	return kvm_pgtable_walk(pgt, addr, size, &walker);
444 }
445 
446 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte)
447 {
448 	if (!kvm_pte_valid(pte) && pte)
449 		return PKVM_NOPAGE;
450 
451 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
452 }
453 
454 static int __host_check_page_state_range(u64 addr, u64 size,
455 					 enum pkvm_page_state state)
456 {
457 	struct check_walk_data d = {
458 		.desired	= state,
459 		.get_page_state	= host_get_page_state,
460 	};
461 
462 	hyp_assert_lock_held(&host_kvm.lock);
463 	return check_page_state_range(&host_kvm.pgt, addr, size, &d);
464 }
465 
466 static int __host_set_page_state_range(u64 addr, u64 size,
467 				       enum pkvm_page_state state)
468 {
469 	enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
470 
471 	return host_stage2_idmap_locked(addr, size, prot);
472 }
473 
474 static int host_request_owned_transition(u64 *completer_addr,
475 					 const struct pkvm_mem_transition *tx)
476 {
477 	u64 size = tx->nr_pages * PAGE_SIZE;
478 	u64 addr = tx->initiator.addr;
479 
480 	*completer_addr = tx->initiator.host.completer_addr;
481 	return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
482 }
483 
484 static int host_request_unshare(u64 *completer_addr,
485 				const struct pkvm_mem_transition *tx)
486 {
487 	u64 size = tx->nr_pages * PAGE_SIZE;
488 	u64 addr = tx->initiator.addr;
489 
490 	*completer_addr = tx->initiator.host.completer_addr;
491 	return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
492 }
493 
494 static int host_initiate_share(u64 *completer_addr,
495 			       const struct pkvm_mem_transition *tx)
496 {
497 	u64 size = tx->nr_pages * PAGE_SIZE;
498 	u64 addr = tx->initiator.addr;
499 
500 	*completer_addr = tx->initiator.host.completer_addr;
501 	return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
502 }
503 
504 static int host_initiate_unshare(u64 *completer_addr,
505 				 const struct pkvm_mem_transition *tx)
506 {
507 	u64 size = tx->nr_pages * PAGE_SIZE;
508 	u64 addr = tx->initiator.addr;
509 
510 	*completer_addr = tx->initiator.host.completer_addr;
511 	return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
512 }
513 
514 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte)
515 {
516 	if (!kvm_pte_valid(pte))
517 		return PKVM_NOPAGE;
518 
519 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
520 }
521 
522 static int __hyp_check_page_state_range(u64 addr, u64 size,
523 					enum pkvm_page_state state)
524 {
525 	struct check_walk_data d = {
526 		.desired	= state,
527 		.get_page_state	= hyp_get_page_state,
528 	};
529 
530 	hyp_assert_lock_held(&pkvm_pgd_lock);
531 	return check_page_state_range(&pkvm_pgtable, addr, size, &d);
532 }
533 
534 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
535 {
536 	return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
537 		 tx->initiator.id != PKVM_ID_HOST);
538 }
539 
540 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
541 			 enum kvm_pgtable_prot perms)
542 {
543 	u64 size = tx->nr_pages * PAGE_SIZE;
544 
545 	if (perms != PAGE_HYP)
546 		return -EPERM;
547 
548 	if (__hyp_ack_skip_pgtable_check(tx))
549 		return 0;
550 
551 	return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
552 }
553 
554 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
555 {
556 	u64 size = tx->nr_pages * PAGE_SIZE;
557 
558 	if (__hyp_ack_skip_pgtable_check(tx))
559 		return 0;
560 
561 	return __hyp_check_page_state_range(addr, size,
562 					    PKVM_PAGE_SHARED_BORROWED);
563 }
564 
565 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
566 			      enum kvm_pgtable_prot perms)
567 {
568 	void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
569 	enum kvm_pgtable_prot prot;
570 
571 	prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
572 	return pkvm_create_mappings_locked(start, end, prot);
573 }
574 
575 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
576 {
577 	u64 size = tx->nr_pages * PAGE_SIZE;
578 	int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
579 
580 	return (ret != size) ? -EFAULT : 0;
581 }
582 
583 static int check_share(struct pkvm_mem_share *share)
584 {
585 	const struct pkvm_mem_transition *tx = &share->tx;
586 	u64 completer_addr;
587 	int ret;
588 
589 	switch (tx->initiator.id) {
590 	case PKVM_ID_HOST:
591 		ret = host_request_owned_transition(&completer_addr, tx);
592 		break;
593 	default:
594 		ret = -EINVAL;
595 	}
596 
597 	if (ret)
598 		return ret;
599 
600 	switch (tx->completer.id) {
601 	case PKVM_ID_HYP:
602 		ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
603 		break;
604 	default:
605 		ret = -EINVAL;
606 	}
607 
608 	return ret;
609 }
610 
611 static int __do_share(struct pkvm_mem_share *share)
612 {
613 	const struct pkvm_mem_transition *tx = &share->tx;
614 	u64 completer_addr;
615 	int ret;
616 
617 	switch (tx->initiator.id) {
618 	case PKVM_ID_HOST:
619 		ret = host_initiate_share(&completer_addr, tx);
620 		break;
621 	default:
622 		ret = -EINVAL;
623 	}
624 
625 	if (ret)
626 		return ret;
627 
628 	switch (tx->completer.id) {
629 	case PKVM_ID_HYP:
630 		ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
631 		break;
632 	default:
633 		ret = -EINVAL;
634 	}
635 
636 	return ret;
637 }
638 
639 /*
640  * do_share():
641  *
642  * The page owner grants access to another component with a given set
643  * of permissions.
644  *
645  * Initiator: OWNED	=> SHARED_OWNED
646  * Completer: NOPAGE	=> SHARED_BORROWED
647  */
648 static int do_share(struct pkvm_mem_share *share)
649 {
650 	int ret;
651 
652 	ret = check_share(share);
653 	if (ret)
654 		return ret;
655 
656 	return WARN_ON(__do_share(share));
657 }
658 
659 static int check_unshare(struct pkvm_mem_share *share)
660 {
661 	const struct pkvm_mem_transition *tx = &share->tx;
662 	u64 completer_addr;
663 	int ret;
664 
665 	switch (tx->initiator.id) {
666 	case PKVM_ID_HOST:
667 		ret = host_request_unshare(&completer_addr, tx);
668 		break;
669 	default:
670 		ret = -EINVAL;
671 	}
672 
673 	if (ret)
674 		return ret;
675 
676 	switch (tx->completer.id) {
677 	case PKVM_ID_HYP:
678 		ret = hyp_ack_unshare(completer_addr, tx);
679 		break;
680 	default:
681 		ret = -EINVAL;
682 	}
683 
684 	return ret;
685 }
686 
687 static int __do_unshare(struct pkvm_mem_share *share)
688 {
689 	const struct pkvm_mem_transition *tx = &share->tx;
690 	u64 completer_addr;
691 	int ret;
692 
693 	switch (tx->initiator.id) {
694 	case PKVM_ID_HOST:
695 		ret = host_initiate_unshare(&completer_addr, tx);
696 		break;
697 	default:
698 		ret = -EINVAL;
699 	}
700 
701 	if (ret)
702 		return ret;
703 
704 	switch (tx->completer.id) {
705 	case PKVM_ID_HYP:
706 		ret = hyp_complete_unshare(completer_addr, tx);
707 		break;
708 	default:
709 		ret = -EINVAL;
710 	}
711 
712 	return ret;
713 }
714 
715 /*
716  * do_unshare():
717  *
718  * The page owner revokes access from another component for a range of
719  * pages which were previously shared using do_share().
720  *
721  * Initiator: SHARED_OWNED	=> OWNED
722  * Completer: SHARED_BORROWED	=> NOPAGE
723  */
724 static int do_unshare(struct pkvm_mem_share *share)
725 {
726 	int ret;
727 
728 	ret = check_unshare(share);
729 	if (ret)
730 		return ret;
731 
732 	return WARN_ON(__do_unshare(share));
733 }
734 
735 int __pkvm_host_share_hyp(u64 pfn)
736 {
737 	int ret;
738 	u64 host_addr = hyp_pfn_to_phys(pfn);
739 	u64 hyp_addr = (u64)__hyp_va(host_addr);
740 	struct pkvm_mem_share share = {
741 		.tx	= {
742 			.nr_pages	= 1,
743 			.initiator	= {
744 				.id	= PKVM_ID_HOST,
745 				.addr	= host_addr,
746 				.host	= {
747 					.completer_addr = hyp_addr,
748 				},
749 			},
750 			.completer	= {
751 				.id	= PKVM_ID_HYP,
752 			},
753 		},
754 		.completer_prot	= PAGE_HYP,
755 	};
756 
757 	host_lock_component();
758 	hyp_lock_component();
759 
760 	ret = do_share(&share);
761 
762 	hyp_unlock_component();
763 	host_unlock_component();
764 
765 	return ret;
766 }
767 
768 int __pkvm_host_unshare_hyp(u64 pfn)
769 {
770 	int ret;
771 	u64 host_addr = hyp_pfn_to_phys(pfn);
772 	u64 hyp_addr = (u64)__hyp_va(host_addr);
773 	struct pkvm_mem_share share = {
774 		.tx	= {
775 			.nr_pages	= 1,
776 			.initiator	= {
777 				.id	= PKVM_ID_HOST,
778 				.addr	= host_addr,
779 				.host	= {
780 					.completer_addr = hyp_addr,
781 				},
782 			},
783 			.completer	= {
784 				.id	= PKVM_ID_HYP,
785 			},
786 		},
787 		.completer_prot	= PAGE_HYP,
788 	};
789 
790 	host_lock_component();
791 	hyp_lock_component();
792 
793 	ret = do_unshare(&share);
794 
795 	hyp_unlock_component();
796 	host_unlock_component();
797 
798 	return ret;
799 }
800