xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision 4a0a1436)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/kvm_pkvm.h>
13 #include <asm/stage2_pgtable.h>
14 
15 #include <hyp/fault.h>
16 
17 #include <nvhe/gfp.h>
18 #include <nvhe/memory.h>
19 #include <nvhe/mem_protect.h>
20 #include <nvhe/mm.h>
21 
22 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
23 
24 extern unsigned long hyp_nr_cpus;
25 struct host_kvm host_kvm;
26 
27 static struct hyp_pool host_s2_pool;
28 
29 const u8 pkvm_hyp_id = 1;
30 
31 static void host_lock_component(void)
32 {
33 	hyp_spin_lock(&host_kvm.lock);
34 }
35 
36 static void host_unlock_component(void)
37 {
38 	hyp_spin_unlock(&host_kvm.lock);
39 }
40 
41 static void hyp_lock_component(void)
42 {
43 	hyp_spin_lock(&pkvm_pgd_lock);
44 }
45 
46 static void hyp_unlock_component(void)
47 {
48 	hyp_spin_unlock(&pkvm_pgd_lock);
49 }
50 
51 static void *host_s2_zalloc_pages_exact(size_t size)
52 {
53 	void *addr = hyp_alloc_pages(&host_s2_pool, get_order(size));
54 
55 	hyp_split_page(hyp_virt_to_page(addr));
56 
57 	/*
58 	 * The size of concatenated PGDs is always a power of two of PAGE_SIZE,
59 	 * so there should be no need to free any of the tail pages to make the
60 	 * allocation exact.
61 	 */
62 	WARN_ON(size != (PAGE_SIZE << get_order(size)));
63 
64 	return addr;
65 }
66 
67 static void *host_s2_zalloc_page(void *pool)
68 {
69 	return hyp_alloc_pages(pool, 0);
70 }
71 
72 static void host_s2_get_page(void *addr)
73 {
74 	hyp_get_page(&host_s2_pool, addr);
75 }
76 
77 static void host_s2_put_page(void *addr)
78 {
79 	hyp_put_page(&host_s2_pool, addr);
80 }
81 
82 static int prepare_s2_pool(void *pgt_pool_base)
83 {
84 	unsigned long nr_pages, pfn;
85 	int ret;
86 
87 	pfn = hyp_virt_to_pfn(pgt_pool_base);
88 	nr_pages = host_s2_pgtable_pages();
89 	ret = hyp_pool_init(&host_s2_pool, pfn, nr_pages, 0);
90 	if (ret)
91 		return ret;
92 
93 	host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
94 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
95 		.zalloc_page = host_s2_zalloc_page,
96 		.phys_to_virt = hyp_phys_to_virt,
97 		.virt_to_phys = hyp_virt_to_phys,
98 		.page_count = hyp_page_count,
99 		.get_page = host_s2_get_page,
100 		.put_page = host_s2_put_page,
101 	};
102 
103 	return 0;
104 }
105 
106 static void prepare_host_vtcr(void)
107 {
108 	u32 parange, phys_shift;
109 
110 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
111 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
112 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
113 
114 	host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
115 					  id_aa64mmfr1_el1_sys_val, phys_shift);
116 }
117 
118 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot);
119 
120 int kvm_host_prepare_stage2(void *pgt_pool_base)
121 {
122 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
123 	int ret;
124 
125 	prepare_host_vtcr();
126 	hyp_spin_lock_init(&host_kvm.lock);
127 	mmu->arch = &host_kvm.arch;
128 
129 	ret = prepare_s2_pool(pgt_pool_base);
130 	if (ret)
131 		return ret;
132 
133 	ret = __kvm_pgtable_stage2_init(&host_kvm.pgt, mmu,
134 					&host_kvm.mm_ops, KVM_HOST_S2_FLAGS,
135 					host_stage2_force_pte_cb);
136 	if (ret)
137 		return ret;
138 
139 	mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
140 	mmu->pgt = &host_kvm.pgt;
141 	WRITE_ONCE(mmu->vmid.vmid_gen, 0);
142 	WRITE_ONCE(mmu->vmid.vmid, 0);
143 
144 	return 0;
145 }
146 
147 int __pkvm_prot_finalize(void)
148 {
149 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
150 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
151 
152 	if (params->hcr_el2 & HCR_VM)
153 		return -EPERM;
154 
155 	params->vttbr = kvm_get_vttbr(mmu);
156 	params->vtcr = host_kvm.arch.vtcr;
157 	params->hcr_el2 |= HCR_VM;
158 	kvm_flush_dcache_to_poc(params, sizeof(*params));
159 
160 	write_sysreg(params->hcr_el2, hcr_el2);
161 	__load_stage2(&host_kvm.arch.mmu, &host_kvm.arch);
162 
163 	/*
164 	 * Make sure to have an ISB before the TLB maintenance below but only
165 	 * when __load_stage2() doesn't include one already.
166 	 */
167 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
168 
169 	/* Invalidate stale HCR bits that may be cached in TLBs */
170 	__tlbi(vmalls12e1);
171 	dsb(nsh);
172 	isb();
173 
174 	return 0;
175 }
176 
177 static int host_stage2_unmap_dev_all(void)
178 {
179 	struct kvm_pgtable *pgt = &host_kvm.pgt;
180 	struct memblock_region *reg;
181 	u64 addr = 0;
182 	int i, ret;
183 
184 	/* Unmap all non-memory regions to recycle the pages */
185 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
186 		reg = &hyp_memory[i];
187 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
188 		if (ret)
189 			return ret;
190 	}
191 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
192 }
193 
194 struct kvm_mem_range {
195 	u64 start;
196 	u64 end;
197 };
198 
199 static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
200 {
201 	int cur, left = 0, right = hyp_memblock_nr;
202 	struct memblock_region *reg;
203 	phys_addr_t end;
204 
205 	range->start = 0;
206 	range->end = ULONG_MAX;
207 
208 	/* The list of memblock regions is sorted, binary search it */
209 	while (left < right) {
210 		cur = (left + right) >> 1;
211 		reg = &hyp_memory[cur];
212 		end = reg->base + reg->size;
213 		if (addr < reg->base) {
214 			right = cur;
215 			range->end = reg->base;
216 		} else if (addr >= end) {
217 			left = cur + 1;
218 			range->start = end;
219 		} else {
220 			range->start = reg->base;
221 			range->end = end;
222 			return true;
223 		}
224 	}
225 
226 	return false;
227 }
228 
229 bool addr_is_memory(phys_addr_t phys)
230 {
231 	struct kvm_mem_range range;
232 
233 	return find_mem_range(phys, &range);
234 }
235 
236 static bool is_in_mem_range(u64 addr, struct kvm_mem_range *range)
237 {
238 	return range->start <= addr && addr < range->end;
239 }
240 
241 static bool range_is_memory(u64 start, u64 end)
242 {
243 	struct kvm_mem_range r;
244 
245 	if (!find_mem_range(start, &r))
246 		return false;
247 
248 	return is_in_mem_range(end - 1, &r);
249 }
250 
251 static inline int __host_stage2_idmap(u64 start, u64 end,
252 				      enum kvm_pgtable_prot prot)
253 {
254 	return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
255 				      prot, &host_s2_pool);
256 }
257 
258 /*
259  * The pool has been provided with enough pages to cover all of memory with
260  * page granularity, but it is difficult to know how much of the MMIO range
261  * we will need to cover upfront, so we may need to 'recycle' the pages if we
262  * run out.
263  */
264 #define host_stage2_try(fn, ...)					\
265 	({								\
266 		int __ret;						\
267 		hyp_assert_lock_held(&host_kvm.lock);			\
268 		__ret = fn(__VA_ARGS__);				\
269 		if (__ret == -ENOMEM) {					\
270 			__ret = host_stage2_unmap_dev_all();		\
271 			if (!__ret)					\
272 				__ret = fn(__VA_ARGS__);		\
273 		}							\
274 		__ret;							\
275 	 })
276 
277 static inline bool range_included(struct kvm_mem_range *child,
278 				  struct kvm_mem_range *parent)
279 {
280 	return parent->start <= child->start && child->end <= parent->end;
281 }
282 
283 static int host_stage2_adjust_range(u64 addr, struct kvm_mem_range *range)
284 {
285 	struct kvm_mem_range cur;
286 	kvm_pte_t pte;
287 	u32 level;
288 	int ret;
289 
290 	hyp_assert_lock_held(&host_kvm.lock);
291 	ret = kvm_pgtable_get_leaf(&host_kvm.pgt, addr, &pte, &level);
292 	if (ret)
293 		return ret;
294 
295 	if (kvm_pte_valid(pte))
296 		return -EAGAIN;
297 
298 	if (pte)
299 		return -EPERM;
300 
301 	do {
302 		u64 granule = kvm_granule_size(level);
303 		cur.start = ALIGN_DOWN(addr, granule);
304 		cur.end = cur.start + granule;
305 		level++;
306 	} while ((level < KVM_PGTABLE_MAX_LEVELS) &&
307 			!(kvm_level_supports_block_mapping(level) &&
308 			  range_included(&cur, range)));
309 
310 	*range = cur;
311 
312 	return 0;
313 }
314 
315 int host_stage2_idmap_locked(phys_addr_t addr, u64 size,
316 			     enum kvm_pgtable_prot prot)
317 {
318 	hyp_assert_lock_held(&host_kvm.lock);
319 
320 	return host_stage2_try(__host_stage2_idmap, addr, addr + size, prot);
321 }
322 
323 int host_stage2_set_owner_locked(phys_addr_t addr, u64 size, u8 owner_id)
324 {
325 	hyp_assert_lock_held(&host_kvm.lock);
326 
327 	return host_stage2_try(kvm_pgtable_stage2_set_owner, &host_kvm.pgt,
328 			       addr, size, &host_s2_pool, owner_id);
329 }
330 
331 static bool host_stage2_force_pte_cb(u64 addr, u64 end, enum kvm_pgtable_prot prot)
332 {
333 	/*
334 	 * Block mappings must be used with care in the host stage-2 as a
335 	 * kvm_pgtable_stage2_map() operation targeting a page in the range of
336 	 * an existing block will delete the block under the assumption that
337 	 * mappings in the rest of the block range can always be rebuilt lazily.
338 	 * That assumption is correct for the host stage-2 with RWX mappings
339 	 * targeting memory or RW mappings targeting MMIO ranges (see
340 	 * host_stage2_idmap() below which implements some of the host memory
341 	 * abort logic). However, this is not safe for any other mappings where
342 	 * the host stage-2 page-table is in fact the only place where this
343 	 * state is stored. In all those cases, it is safer to use page-level
344 	 * mappings, hence avoiding to lose the state because of side-effects in
345 	 * kvm_pgtable_stage2_map().
346 	 */
347 	if (range_is_memory(addr, end))
348 		return prot != PKVM_HOST_MEM_PROT;
349 	else
350 		return prot != PKVM_HOST_MMIO_PROT;
351 }
352 
353 static int host_stage2_idmap(u64 addr)
354 {
355 	struct kvm_mem_range range;
356 	bool is_memory = find_mem_range(addr, &range);
357 	enum kvm_pgtable_prot prot;
358 	int ret;
359 
360 	prot = is_memory ? PKVM_HOST_MEM_PROT : PKVM_HOST_MMIO_PROT;
361 
362 	host_lock_component();
363 	ret = host_stage2_adjust_range(addr, &range);
364 	if (ret)
365 		goto unlock;
366 
367 	ret = host_stage2_idmap_locked(range.start, range.end - range.start, prot);
368 unlock:
369 	host_unlock_component();
370 
371 	return ret;
372 }
373 
374 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
375 {
376 	struct kvm_vcpu_fault_info fault;
377 	u64 esr, addr;
378 	int ret = 0;
379 
380 	esr = read_sysreg_el2(SYS_ESR);
381 	BUG_ON(!__get_fault_info(esr, &fault));
382 
383 	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
384 	ret = host_stage2_idmap(addr);
385 	BUG_ON(ret && ret != -EAGAIN);
386 }
387 
388 /* This corresponds to locking order */
389 enum pkvm_component_id {
390 	PKVM_ID_HOST,
391 	PKVM_ID_HYP,
392 };
393 
394 struct pkvm_mem_transition {
395 	u64				nr_pages;
396 
397 	struct {
398 		enum pkvm_component_id	id;
399 		/* Address in the initiator's address space */
400 		u64			addr;
401 
402 		union {
403 			struct {
404 				/* Address in the completer's address space */
405 				u64	completer_addr;
406 			} host;
407 		};
408 	} initiator;
409 
410 	struct {
411 		enum pkvm_component_id	id;
412 	} completer;
413 };
414 
415 struct pkvm_mem_share {
416 	const struct pkvm_mem_transition	tx;
417 	const enum kvm_pgtable_prot		completer_prot;
418 };
419 
420 struct check_walk_data {
421 	enum pkvm_page_state	desired;
422 	enum pkvm_page_state	(*get_page_state)(kvm_pte_t pte);
423 };
424 
425 static int __check_page_state_visitor(u64 addr, u64 end, u32 level,
426 				      kvm_pte_t *ptep,
427 				      enum kvm_pgtable_walk_flags flag,
428 				      void * const arg)
429 {
430 	struct check_walk_data *d = arg;
431 	kvm_pte_t pte = *ptep;
432 
433 	if (kvm_pte_valid(pte) && !addr_is_memory(kvm_pte_to_phys(pte)))
434 		return -EINVAL;
435 
436 	return d->get_page_state(pte) == d->desired ? 0 : -EPERM;
437 }
438 
439 static int check_page_state_range(struct kvm_pgtable *pgt, u64 addr, u64 size,
440 				  struct check_walk_data *data)
441 {
442 	struct kvm_pgtable_walker walker = {
443 		.cb	= __check_page_state_visitor,
444 		.arg	= data,
445 		.flags	= KVM_PGTABLE_WALK_LEAF,
446 	};
447 
448 	return kvm_pgtable_walk(pgt, addr, size, &walker);
449 }
450 
451 static enum pkvm_page_state host_get_page_state(kvm_pte_t pte)
452 {
453 	if (!kvm_pte_valid(pte) && pte)
454 		return PKVM_NOPAGE;
455 
456 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
457 }
458 
459 static int __host_check_page_state_range(u64 addr, u64 size,
460 					 enum pkvm_page_state state)
461 {
462 	struct check_walk_data d = {
463 		.desired	= state,
464 		.get_page_state	= host_get_page_state,
465 	};
466 
467 	hyp_assert_lock_held(&host_kvm.lock);
468 	return check_page_state_range(&host_kvm.pgt, addr, size, &d);
469 }
470 
471 static int __host_set_page_state_range(u64 addr, u64 size,
472 				       enum pkvm_page_state state)
473 {
474 	enum kvm_pgtable_prot prot = pkvm_mkstate(PKVM_HOST_MEM_PROT, state);
475 
476 	return host_stage2_idmap_locked(addr, size, prot);
477 }
478 
479 static int host_request_owned_transition(u64 *completer_addr,
480 					 const struct pkvm_mem_transition *tx)
481 {
482 	u64 size = tx->nr_pages * PAGE_SIZE;
483 	u64 addr = tx->initiator.addr;
484 
485 	*completer_addr = tx->initiator.host.completer_addr;
486 	return __host_check_page_state_range(addr, size, PKVM_PAGE_OWNED);
487 }
488 
489 static int host_request_unshare(u64 *completer_addr,
490 				const struct pkvm_mem_transition *tx)
491 {
492 	u64 size = tx->nr_pages * PAGE_SIZE;
493 	u64 addr = tx->initiator.addr;
494 
495 	*completer_addr = tx->initiator.host.completer_addr;
496 	return __host_check_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
497 }
498 
499 static int host_initiate_share(u64 *completer_addr,
500 			       const struct pkvm_mem_transition *tx)
501 {
502 	u64 size = tx->nr_pages * PAGE_SIZE;
503 	u64 addr = tx->initiator.addr;
504 
505 	*completer_addr = tx->initiator.host.completer_addr;
506 	return __host_set_page_state_range(addr, size, PKVM_PAGE_SHARED_OWNED);
507 }
508 
509 static int host_initiate_unshare(u64 *completer_addr,
510 				 const struct pkvm_mem_transition *tx)
511 {
512 	u64 size = tx->nr_pages * PAGE_SIZE;
513 	u64 addr = tx->initiator.addr;
514 
515 	*completer_addr = tx->initiator.host.completer_addr;
516 	return __host_set_page_state_range(addr, size, PKVM_PAGE_OWNED);
517 }
518 
519 static enum pkvm_page_state hyp_get_page_state(kvm_pte_t pte)
520 {
521 	if (!kvm_pte_valid(pte))
522 		return PKVM_NOPAGE;
523 
524 	return pkvm_getstate(kvm_pgtable_stage2_pte_prot(pte));
525 }
526 
527 static int __hyp_check_page_state_range(u64 addr, u64 size,
528 					enum pkvm_page_state state)
529 {
530 	struct check_walk_data d = {
531 		.desired	= state,
532 		.get_page_state	= hyp_get_page_state,
533 	};
534 
535 	hyp_assert_lock_held(&pkvm_pgd_lock);
536 	return check_page_state_range(&pkvm_pgtable, addr, size, &d);
537 }
538 
539 static bool __hyp_ack_skip_pgtable_check(const struct pkvm_mem_transition *tx)
540 {
541 	return !(IS_ENABLED(CONFIG_NVHE_EL2_DEBUG) ||
542 		 tx->initiator.id != PKVM_ID_HOST);
543 }
544 
545 static int hyp_ack_share(u64 addr, const struct pkvm_mem_transition *tx,
546 			 enum kvm_pgtable_prot perms)
547 {
548 	u64 size = tx->nr_pages * PAGE_SIZE;
549 
550 	if (perms != PAGE_HYP)
551 		return -EPERM;
552 
553 	if (__hyp_ack_skip_pgtable_check(tx))
554 		return 0;
555 
556 	return __hyp_check_page_state_range(addr, size, PKVM_NOPAGE);
557 }
558 
559 static int hyp_ack_unshare(u64 addr, const struct pkvm_mem_transition *tx)
560 {
561 	u64 size = tx->nr_pages * PAGE_SIZE;
562 
563 	if (__hyp_ack_skip_pgtable_check(tx))
564 		return 0;
565 
566 	return __hyp_check_page_state_range(addr, size,
567 					    PKVM_PAGE_SHARED_BORROWED);
568 }
569 
570 static int hyp_complete_share(u64 addr, const struct pkvm_mem_transition *tx,
571 			      enum kvm_pgtable_prot perms)
572 {
573 	void *start = (void *)addr, *end = start + (tx->nr_pages * PAGE_SIZE);
574 	enum kvm_pgtable_prot prot;
575 
576 	prot = pkvm_mkstate(perms, PKVM_PAGE_SHARED_BORROWED);
577 	return pkvm_create_mappings_locked(start, end, prot);
578 }
579 
580 static int hyp_complete_unshare(u64 addr, const struct pkvm_mem_transition *tx)
581 {
582 	u64 size = tx->nr_pages * PAGE_SIZE;
583 	int ret = kvm_pgtable_hyp_unmap(&pkvm_pgtable, addr, size);
584 
585 	return (ret != size) ? -EFAULT : 0;
586 }
587 
588 static int check_share(struct pkvm_mem_share *share)
589 {
590 	const struct pkvm_mem_transition *tx = &share->tx;
591 	u64 completer_addr;
592 	int ret;
593 
594 	switch (tx->initiator.id) {
595 	case PKVM_ID_HOST:
596 		ret = host_request_owned_transition(&completer_addr, tx);
597 		break;
598 	default:
599 		ret = -EINVAL;
600 	}
601 
602 	if (ret)
603 		return ret;
604 
605 	switch (tx->completer.id) {
606 	case PKVM_ID_HYP:
607 		ret = hyp_ack_share(completer_addr, tx, share->completer_prot);
608 		break;
609 	default:
610 		ret = -EINVAL;
611 	}
612 
613 	return ret;
614 }
615 
616 static int __do_share(struct pkvm_mem_share *share)
617 {
618 	const struct pkvm_mem_transition *tx = &share->tx;
619 	u64 completer_addr;
620 	int ret;
621 
622 	switch (tx->initiator.id) {
623 	case PKVM_ID_HOST:
624 		ret = host_initiate_share(&completer_addr, tx);
625 		break;
626 	default:
627 		ret = -EINVAL;
628 	}
629 
630 	if (ret)
631 		return ret;
632 
633 	switch (tx->completer.id) {
634 	case PKVM_ID_HYP:
635 		ret = hyp_complete_share(completer_addr, tx, share->completer_prot);
636 		break;
637 	default:
638 		ret = -EINVAL;
639 	}
640 
641 	return ret;
642 }
643 
644 /*
645  * do_share():
646  *
647  * The page owner grants access to another component with a given set
648  * of permissions.
649  *
650  * Initiator: OWNED	=> SHARED_OWNED
651  * Completer: NOPAGE	=> SHARED_BORROWED
652  */
653 static int do_share(struct pkvm_mem_share *share)
654 {
655 	int ret;
656 
657 	ret = check_share(share);
658 	if (ret)
659 		return ret;
660 
661 	return WARN_ON(__do_share(share));
662 }
663 
664 static int check_unshare(struct pkvm_mem_share *share)
665 {
666 	const struct pkvm_mem_transition *tx = &share->tx;
667 	u64 completer_addr;
668 	int ret;
669 
670 	switch (tx->initiator.id) {
671 	case PKVM_ID_HOST:
672 		ret = host_request_unshare(&completer_addr, tx);
673 		break;
674 	default:
675 		ret = -EINVAL;
676 	}
677 
678 	if (ret)
679 		return ret;
680 
681 	switch (tx->completer.id) {
682 	case PKVM_ID_HYP:
683 		ret = hyp_ack_unshare(completer_addr, tx);
684 		break;
685 	default:
686 		ret = -EINVAL;
687 	}
688 
689 	return ret;
690 }
691 
692 static int __do_unshare(struct pkvm_mem_share *share)
693 {
694 	const struct pkvm_mem_transition *tx = &share->tx;
695 	u64 completer_addr;
696 	int ret;
697 
698 	switch (tx->initiator.id) {
699 	case PKVM_ID_HOST:
700 		ret = host_initiate_unshare(&completer_addr, tx);
701 		break;
702 	default:
703 		ret = -EINVAL;
704 	}
705 
706 	if (ret)
707 		return ret;
708 
709 	switch (tx->completer.id) {
710 	case PKVM_ID_HYP:
711 		ret = hyp_complete_unshare(completer_addr, tx);
712 		break;
713 	default:
714 		ret = -EINVAL;
715 	}
716 
717 	return ret;
718 }
719 
720 /*
721  * do_unshare():
722  *
723  * The page owner revokes access from another component for a range of
724  * pages which were previously shared using do_share().
725  *
726  * Initiator: SHARED_OWNED	=> OWNED
727  * Completer: SHARED_BORROWED	=> NOPAGE
728  */
729 static int do_unshare(struct pkvm_mem_share *share)
730 {
731 	int ret;
732 
733 	ret = check_unshare(share);
734 	if (ret)
735 		return ret;
736 
737 	return WARN_ON(__do_unshare(share));
738 }
739 
740 int __pkvm_host_share_hyp(u64 pfn)
741 {
742 	int ret;
743 	u64 host_addr = hyp_pfn_to_phys(pfn);
744 	u64 hyp_addr = (u64)__hyp_va(host_addr);
745 	struct pkvm_mem_share share = {
746 		.tx	= {
747 			.nr_pages	= 1,
748 			.initiator	= {
749 				.id	= PKVM_ID_HOST,
750 				.addr	= host_addr,
751 				.host	= {
752 					.completer_addr = hyp_addr,
753 				},
754 			},
755 			.completer	= {
756 				.id	= PKVM_ID_HYP,
757 			},
758 		},
759 		.completer_prot	= PAGE_HYP,
760 	};
761 
762 	host_lock_component();
763 	hyp_lock_component();
764 
765 	ret = do_share(&share);
766 
767 	hyp_unlock_component();
768 	host_unlock_component();
769 
770 	return ret;
771 }
772 
773 int __pkvm_host_unshare_hyp(u64 pfn)
774 {
775 	int ret;
776 	u64 host_addr = hyp_pfn_to_phys(pfn);
777 	u64 hyp_addr = (u64)__hyp_va(host_addr);
778 	struct pkvm_mem_share share = {
779 		.tx	= {
780 			.nr_pages	= 1,
781 			.initiator	= {
782 				.id	= PKVM_ID_HOST,
783 				.addr	= host_addr,
784 				.host	= {
785 					.completer_addr = hyp_addr,
786 				},
787 			},
788 			.completer	= {
789 				.id	= PKVM_ID_HYP,
790 			},
791 		},
792 		.completer_prot	= PAGE_HYP,
793 	};
794 
795 	host_lock_component();
796 	hyp_lock_component();
797 
798 	ret = do_unshare(&share);
799 
800 	hyp_unlock_component();
801 	host_unlock_component();
802 
803 	return ret;
804 }
805