xref: /openbmc/linux/arch/arm64/kvm/hyp/nvhe/mem_protect.c (revision 276e552e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 Google LLC
4  * Author: Quentin Perret <qperret@google.com>
5  */
6 
7 #include <linux/kvm_host.h>
8 #include <asm/kvm_emulate.h>
9 #include <asm/kvm_hyp.h>
10 #include <asm/kvm_mmu.h>
11 #include <asm/kvm_pgtable.h>
12 #include <asm/stage2_pgtable.h>
13 
14 #include <hyp/switch.h>
15 
16 #include <nvhe/gfp.h>
17 #include <nvhe/memory.h>
18 #include <nvhe/mem_protect.h>
19 #include <nvhe/mm.h>
20 
21 #define KVM_HOST_S2_FLAGS (KVM_PGTABLE_S2_NOFWB | KVM_PGTABLE_S2_IDMAP)
22 
23 extern unsigned long hyp_nr_cpus;
24 struct host_kvm host_kvm;
25 
26 struct hyp_pool host_s2_mem;
27 struct hyp_pool host_s2_dev;
28 
29 /*
30  * Copies of the host's CPU features registers holding sanitized values.
31  */
32 u64 id_aa64mmfr0_el1_sys_val;
33 u64 id_aa64mmfr1_el1_sys_val;
34 
35 static const u8 pkvm_hyp_id = 1;
36 
37 static void *host_s2_zalloc_pages_exact(size_t size)
38 {
39 	return hyp_alloc_pages(&host_s2_mem, get_order(size));
40 }
41 
42 static void *host_s2_zalloc_page(void *pool)
43 {
44 	return hyp_alloc_pages(pool, 0);
45 }
46 
47 static int prepare_s2_pools(void *mem_pgt_pool, void *dev_pgt_pool)
48 {
49 	unsigned long nr_pages, pfn;
50 	int ret;
51 
52 	pfn = hyp_virt_to_pfn(mem_pgt_pool);
53 	nr_pages = host_s2_mem_pgtable_pages();
54 	ret = hyp_pool_init(&host_s2_mem, pfn, nr_pages, 0);
55 	if (ret)
56 		return ret;
57 
58 	pfn = hyp_virt_to_pfn(dev_pgt_pool);
59 	nr_pages = host_s2_dev_pgtable_pages();
60 	ret = hyp_pool_init(&host_s2_dev, pfn, nr_pages, 0);
61 	if (ret)
62 		return ret;
63 
64 	host_kvm.mm_ops = (struct kvm_pgtable_mm_ops) {
65 		.zalloc_pages_exact = host_s2_zalloc_pages_exact,
66 		.zalloc_page = host_s2_zalloc_page,
67 		.phys_to_virt = hyp_phys_to_virt,
68 		.virt_to_phys = hyp_virt_to_phys,
69 		.page_count = hyp_page_count,
70 		.get_page = hyp_get_page,
71 		.put_page = hyp_put_page,
72 	};
73 
74 	return 0;
75 }
76 
77 static void prepare_host_vtcr(void)
78 {
79 	u32 parange, phys_shift;
80 
81 	/* The host stage 2 is id-mapped, so use parange for T0SZ */
82 	parange = kvm_get_parange(id_aa64mmfr0_el1_sys_val);
83 	phys_shift = id_aa64mmfr0_parange_to_phys_shift(parange);
84 
85 	host_kvm.arch.vtcr = kvm_get_vtcr(id_aa64mmfr0_el1_sys_val,
86 					  id_aa64mmfr1_el1_sys_val, phys_shift);
87 }
88 
89 int kvm_host_prepare_stage2(void *mem_pgt_pool, void *dev_pgt_pool)
90 {
91 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
92 	int ret;
93 
94 	prepare_host_vtcr();
95 	hyp_spin_lock_init(&host_kvm.lock);
96 
97 	ret = prepare_s2_pools(mem_pgt_pool, dev_pgt_pool);
98 	if (ret)
99 		return ret;
100 
101 	ret = kvm_pgtable_stage2_init_flags(&host_kvm.pgt, &host_kvm.arch,
102 					    &host_kvm.mm_ops, KVM_HOST_S2_FLAGS);
103 	if (ret)
104 		return ret;
105 
106 	mmu->pgd_phys = __hyp_pa(host_kvm.pgt.pgd);
107 	mmu->arch = &host_kvm.arch;
108 	mmu->pgt = &host_kvm.pgt;
109 	mmu->vmid.vmid_gen = 0;
110 	mmu->vmid.vmid = 0;
111 
112 	return 0;
113 }
114 
115 int __pkvm_prot_finalize(void)
116 {
117 	struct kvm_s2_mmu *mmu = &host_kvm.arch.mmu;
118 	struct kvm_nvhe_init_params *params = this_cpu_ptr(&kvm_init_params);
119 
120 	params->vttbr = kvm_get_vttbr(mmu);
121 	params->vtcr = host_kvm.arch.vtcr;
122 	params->hcr_el2 |= HCR_VM;
123 	kvm_flush_dcache_to_poc(params, sizeof(*params));
124 
125 	write_sysreg(params->hcr_el2, hcr_el2);
126 	__load_stage2(&host_kvm.arch.mmu, host_kvm.arch.vtcr);
127 
128 	/*
129 	 * Make sure to have an ISB before the TLB maintenance below but only
130 	 * when __load_stage2() doesn't include one already.
131 	 */
132 	asm(ALTERNATIVE("isb", "nop", ARM64_WORKAROUND_SPECULATIVE_AT));
133 
134 	/* Invalidate stale HCR bits that may be cached in TLBs */
135 	__tlbi(vmalls12e1);
136 	dsb(nsh);
137 	isb();
138 
139 	return 0;
140 }
141 
142 static int host_stage2_unmap_dev_all(void)
143 {
144 	struct kvm_pgtable *pgt = &host_kvm.pgt;
145 	struct memblock_region *reg;
146 	u64 addr = 0;
147 	int i, ret;
148 
149 	/* Unmap all non-memory regions to recycle the pages */
150 	for (i = 0; i < hyp_memblock_nr; i++, addr = reg->base + reg->size) {
151 		reg = &hyp_memory[i];
152 		ret = kvm_pgtable_stage2_unmap(pgt, addr, reg->base - addr);
153 		if (ret)
154 			return ret;
155 	}
156 	return kvm_pgtable_stage2_unmap(pgt, addr, BIT(pgt->ia_bits) - addr);
157 }
158 
159 static bool find_mem_range(phys_addr_t addr, struct kvm_mem_range *range)
160 {
161 	int cur, left = 0, right = hyp_memblock_nr;
162 	struct memblock_region *reg;
163 	phys_addr_t end;
164 
165 	range->start = 0;
166 	range->end = ULONG_MAX;
167 
168 	/* The list of memblock regions is sorted, binary search it */
169 	while (left < right) {
170 		cur = (left + right) >> 1;
171 		reg = &hyp_memory[cur];
172 		end = reg->base + reg->size;
173 		if (addr < reg->base) {
174 			right = cur;
175 			range->end = reg->base;
176 		} else if (addr >= end) {
177 			left = cur + 1;
178 			range->start = end;
179 		} else {
180 			range->start = reg->base;
181 			range->end = end;
182 			return true;
183 		}
184 	}
185 
186 	return false;
187 }
188 
189 static bool range_is_memory(u64 start, u64 end)
190 {
191 	struct kvm_mem_range r1, r2;
192 
193 	if (!find_mem_range(start, &r1) || !find_mem_range(end, &r2))
194 		return false;
195 	if (r1.start != r2.start)
196 		return false;
197 
198 	return true;
199 }
200 
201 static inline int __host_stage2_idmap(u64 start, u64 end,
202 				      enum kvm_pgtable_prot prot,
203 				      struct hyp_pool *pool)
204 {
205 	return kvm_pgtable_stage2_map(&host_kvm.pgt, start, end - start, start,
206 				      prot, pool);
207 }
208 
209 static int host_stage2_idmap(u64 addr)
210 {
211 	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R | KVM_PGTABLE_PROT_W;
212 	struct kvm_mem_range range;
213 	bool is_memory = find_mem_range(addr, &range);
214 	struct hyp_pool *pool = is_memory ? &host_s2_mem : &host_s2_dev;
215 	int ret;
216 
217 	if (is_memory)
218 		prot |= KVM_PGTABLE_PROT_X;
219 
220 	hyp_spin_lock(&host_kvm.lock);
221 	ret = kvm_pgtable_stage2_find_range(&host_kvm.pgt, addr, prot, &range);
222 	if (ret)
223 		goto unlock;
224 
225 	ret = __host_stage2_idmap(range.start, range.end, prot, pool);
226 	if (is_memory || ret != -ENOMEM)
227 		goto unlock;
228 
229 	/*
230 	 * host_s2_mem has been provided with enough pages to cover all of
231 	 * memory with page granularity, so we should never hit the ENOMEM case.
232 	 * However, it is difficult to know how much of the MMIO range we will
233 	 * need to cover upfront, so we may need to 'recycle' the pages if we
234 	 * run out.
235 	 */
236 	ret = host_stage2_unmap_dev_all();
237 	if (ret)
238 		goto unlock;
239 
240 	ret = __host_stage2_idmap(range.start, range.end, prot, pool);
241 
242 unlock:
243 	hyp_spin_unlock(&host_kvm.lock);
244 
245 	return ret;
246 }
247 
248 int __pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
249 {
250 	int ret;
251 
252 	/*
253 	 * host_stage2_unmap_dev_all() currently relies on MMIO mappings being
254 	 * non-persistent, so don't allow changing page ownership in MMIO range.
255 	 */
256 	if (!range_is_memory(start, end))
257 		return -EINVAL;
258 
259 	hyp_spin_lock(&host_kvm.lock);
260 	ret = kvm_pgtable_stage2_set_owner(&host_kvm.pgt, start, end - start,
261 					   &host_s2_mem, pkvm_hyp_id);
262 	hyp_spin_unlock(&host_kvm.lock);
263 
264 	return ret != -EAGAIN ? ret : 0;
265 }
266 
267 void handle_host_mem_abort(struct kvm_cpu_context *host_ctxt)
268 {
269 	struct kvm_vcpu_fault_info fault;
270 	u64 esr, addr;
271 	int ret = 0;
272 
273 	esr = read_sysreg_el2(SYS_ESR);
274 	BUG_ON(!__get_fault_info(esr, &fault));
275 
276 	addr = (fault.hpfar_el2 & HPFAR_MASK) << 8;
277 	ret = host_stage2_idmap(addr);
278 	BUG_ON(ret && ret != -EAGAIN);
279 }
280