1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #ifndef __ARM64_KVM_HYP_SWITCH_H__ 8 #define __ARM64_KVM_HYP_SWITCH_H__ 9 10 #include <hyp/adjust_pc.h> 11 #include <hyp/fault.h> 12 13 #include <linux/arm-smccc.h> 14 #include <linux/kvm_host.h> 15 #include <linux/types.h> 16 #include <linux/jump_label.h> 17 #include <uapi/linux/psci.h> 18 19 #include <kvm/arm_psci.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/extable.h> 24 #include <asm/kprobes.h> 25 #include <asm/kvm_asm.h> 26 #include <asm/kvm_emulate.h> 27 #include <asm/kvm_hyp.h> 28 #include <asm/kvm_mmu.h> 29 #include <asm/fpsimd.h> 30 #include <asm/debug-monitors.h> 31 #include <asm/processor.h> 32 #include <asm/thread_info.h> 33 34 struct kvm_exception_table_entry { 35 int insn, fixup; 36 }; 37 38 extern struct kvm_exception_table_entry __start___kvm_ex_table; 39 extern struct kvm_exception_table_entry __stop___kvm_ex_table; 40 41 /* Check whether the FP regs were dirtied while in the host-side run loop: */ 42 static inline bool update_fp_enabled(struct kvm_vcpu *vcpu) 43 { 44 /* 45 * When the system doesn't support FP/SIMD, we cannot rely on 46 * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an 47 * abort on the very first access to FP and thus we should never 48 * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always 49 * trap the accesses. 50 */ 51 if (!system_supports_fpsimd() || 52 vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE) 53 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED | 54 KVM_ARM64_FP_HOST); 55 56 return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED); 57 } 58 59 /* Save the 32-bit only FPSIMD system register state */ 60 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) 61 { 62 if (!vcpu_el1_is_32bit(vcpu)) 63 return; 64 65 __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2); 66 } 67 68 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) 69 { 70 /* 71 * We are about to set CPTR_EL2.TFP to trap all floating point 72 * register accesses to EL2, however, the ARM ARM clearly states that 73 * traps are only taken to EL2 if the operation would not otherwise 74 * trap to EL1. Therefore, always make sure that for 32-bit guests, 75 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. 76 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to 77 * it will cause an exception. 78 */ 79 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { 80 write_sysreg(1 << 30, fpexc32_el2); 81 isb(); 82 } 83 } 84 85 static inline void __activate_traps_common(struct kvm_vcpu *vcpu) 86 { 87 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ 88 write_sysreg(1 << 15, hstr_el2); 89 90 /* 91 * Make sure we trap PMU access from EL0 to EL2. Also sanitize 92 * PMSELR_EL0 to make sure it never contains the cycle 93 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at 94 * EL1 instead of being trapped to EL2. 95 */ 96 if (kvm_arm_support_pmu_v3()) { 97 write_sysreg(0, pmselr_el0); 98 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); 99 } 100 101 vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2); 102 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); 103 } 104 105 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu) 106 { 107 write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2); 108 109 write_sysreg(0, hstr_el2); 110 if (kvm_arm_support_pmu_v3()) 111 write_sysreg(0, pmuserenr_el0); 112 } 113 114 static inline void ___activate_traps(struct kvm_vcpu *vcpu) 115 { 116 u64 hcr = vcpu->arch.hcr_el2; 117 118 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) 119 hcr |= HCR_TVM; 120 121 write_sysreg(hcr, hcr_el2); 122 123 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) 124 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); 125 } 126 127 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu) 128 { 129 /* 130 * If we pended a virtual abort, preserve it until it gets 131 * cleared. See D1.14.3 (Virtual Interrupts) for details, but 132 * the crucial bit is "On taking a vSError interrupt, 133 * HCR_EL2.VSE is cleared to 0." 134 */ 135 if (vcpu->arch.hcr_el2 & HCR_VSE) { 136 vcpu->arch.hcr_el2 &= ~HCR_VSE; 137 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; 138 } 139 } 140 141 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu) 142 { 143 return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault); 144 } 145 146 static inline void __hyp_sve_save_host(struct kvm_vcpu *vcpu) 147 { 148 struct thread_struct *thread; 149 150 thread = container_of(vcpu->arch.host_fpsimd_state, struct thread_struct, 151 uw.fpsimd_state); 152 153 __sve_save_state(sve_pffr(thread), &vcpu->arch.host_fpsimd_state->fpsr); 154 } 155 156 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu) 157 { 158 sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); 159 __sve_restore_state(vcpu_sve_pffr(vcpu), 160 &vcpu->arch.ctxt.fp_regs.fpsr); 161 write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR); 162 } 163 164 /* 165 * We trap the first access to the FP/SIMD to save the host context and 166 * restore the guest context lazily. 167 * If FP/SIMD is not implemented, handle the trap and inject an undefined 168 * instruction exception to the guest. Similarly for trapped SVE accesses. 169 */ 170 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code) 171 { 172 bool sve_guest, sve_host; 173 u8 esr_ec; 174 u64 reg; 175 176 if (!system_supports_fpsimd()) 177 return false; 178 179 if (system_supports_sve()) { 180 sve_guest = vcpu_has_sve(vcpu); 181 sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE; 182 } else { 183 sve_guest = false; 184 sve_host = false; 185 } 186 187 esr_ec = kvm_vcpu_trap_get_class(vcpu); 188 189 /* Don't handle SVE traps for non-SVE vcpus here: */ 190 if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD) 191 return false; 192 193 /* Valid trap. Switch the context: */ 194 if (has_vhe()) { 195 reg = CPACR_EL1_FPEN; 196 if (sve_guest) 197 reg |= CPACR_EL1_ZEN; 198 199 sysreg_clear_set(cpacr_el1, 0, reg); 200 } else { 201 reg = CPTR_EL2_TFP; 202 if (sve_guest) 203 reg |= CPTR_EL2_TZ; 204 205 sysreg_clear_set(cptr_el2, reg, 0); 206 } 207 isb(); 208 209 if (vcpu->arch.flags & KVM_ARM64_FP_HOST) { 210 if (sve_host) 211 __hyp_sve_save_host(vcpu); 212 else 213 __fpsimd_save_state(vcpu->arch.host_fpsimd_state); 214 215 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST; 216 } 217 218 if (sve_guest) 219 __hyp_sve_restore_guest(vcpu); 220 else 221 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs); 222 223 /* Skip restoring fpexc32 for AArch64 guests */ 224 if (!(read_sysreg(hcr_el2) & HCR_RW)) 225 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2); 226 227 vcpu->arch.flags |= KVM_ARM64_FP_ENABLED; 228 229 return true; 230 } 231 232 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu) 233 { 234 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 235 int rt = kvm_vcpu_sys_get_rt(vcpu); 236 u64 val = vcpu_get_reg(vcpu, rt); 237 238 /* 239 * The normal sysreg handling code expects to see the traps, 240 * let's not do anything here. 241 */ 242 if (vcpu->arch.hcr_el2 & HCR_TVM) 243 return false; 244 245 switch (sysreg) { 246 case SYS_SCTLR_EL1: 247 write_sysreg_el1(val, SYS_SCTLR); 248 break; 249 case SYS_TTBR0_EL1: 250 write_sysreg_el1(val, SYS_TTBR0); 251 break; 252 case SYS_TTBR1_EL1: 253 write_sysreg_el1(val, SYS_TTBR1); 254 break; 255 case SYS_TCR_EL1: 256 write_sysreg_el1(val, SYS_TCR); 257 break; 258 case SYS_ESR_EL1: 259 write_sysreg_el1(val, SYS_ESR); 260 break; 261 case SYS_FAR_EL1: 262 write_sysreg_el1(val, SYS_FAR); 263 break; 264 case SYS_AFSR0_EL1: 265 write_sysreg_el1(val, SYS_AFSR0); 266 break; 267 case SYS_AFSR1_EL1: 268 write_sysreg_el1(val, SYS_AFSR1); 269 break; 270 case SYS_MAIR_EL1: 271 write_sysreg_el1(val, SYS_MAIR); 272 break; 273 case SYS_AMAIR_EL1: 274 write_sysreg_el1(val, SYS_AMAIR); 275 break; 276 case SYS_CONTEXTIDR_EL1: 277 write_sysreg_el1(val, SYS_CONTEXTIDR); 278 break; 279 default: 280 return false; 281 } 282 283 __kvm_skip_instr(vcpu); 284 return true; 285 } 286 287 static inline bool esr_is_ptrauth_trap(u32 esr) 288 { 289 switch (esr_sys64_to_sysreg(esr)) { 290 case SYS_APIAKEYLO_EL1: 291 case SYS_APIAKEYHI_EL1: 292 case SYS_APIBKEYLO_EL1: 293 case SYS_APIBKEYHI_EL1: 294 case SYS_APDAKEYLO_EL1: 295 case SYS_APDAKEYHI_EL1: 296 case SYS_APDBKEYLO_EL1: 297 case SYS_APDBKEYHI_EL1: 298 case SYS_APGAKEYLO_EL1: 299 case SYS_APGAKEYHI_EL1: 300 return true; 301 } 302 303 return false; 304 } 305 306 #define __ptrauth_save_key(ctxt, key) \ 307 do { \ 308 u64 __val; \ 309 __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \ 310 ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \ 311 __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \ 312 ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \ 313 } while(0) 314 315 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 316 317 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code) 318 { 319 struct kvm_cpu_context *ctxt; 320 u64 val; 321 322 if (!vcpu_has_ptrauth(vcpu)) 323 return false; 324 325 ctxt = this_cpu_ptr(&kvm_hyp_ctxt); 326 __ptrauth_save_key(ctxt, APIA); 327 __ptrauth_save_key(ctxt, APIB); 328 __ptrauth_save_key(ctxt, APDA); 329 __ptrauth_save_key(ctxt, APDB); 330 __ptrauth_save_key(ctxt, APGA); 331 332 vcpu_ptrauth_enable(vcpu); 333 334 val = read_sysreg(hcr_el2); 335 val |= (HCR_API | HCR_APK); 336 write_sysreg(val, hcr_el2); 337 338 return true; 339 } 340 341 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) 342 { 343 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && 344 handle_tx2_tvm(vcpu)) 345 return true; 346 347 if (static_branch_unlikely(&vgic_v3_cpuif_trap) && 348 __vgic_v3_perform_cpuif_access(vcpu) == 1) 349 return true; 350 351 if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu))) 352 return kvm_hyp_handle_ptrauth(vcpu, exit_code); 353 354 return false; 355 } 356 357 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code) 358 { 359 if (static_branch_unlikely(&vgic_v3_cpuif_trap) && 360 __vgic_v3_perform_cpuif_access(vcpu) == 1) 361 return true; 362 363 return false; 364 } 365 366 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 367 { 368 if (!__populate_fault_info(vcpu)) 369 return true; 370 371 return false; 372 } 373 374 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 375 { 376 if (!__populate_fault_info(vcpu)) 377 return true; 378 379 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { 380 bool valid; 381 382 valid = kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT && 383 kvm_vcpu_dabt_isvalid(vcpu) && 384 !kvm_vcpu_abt_issea(vcpu) && 385 !kvm_vcpu_abt_iss1tw(vcpu); 386 387 if (valid) { 388 int ret = __vgic_v2_perform_cpuif_access(vcpu); 389 390 if (ret == 1) 391 return true; 392 393 /* Promote an illegal access to an SError.*/ 394 if (ret == -1) 395 *exit_code = ARM_EXCEPTION_EL1_SERROR; 396 } 397 } 398 399 return false; 400 } 401 402 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *); 403 404 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu); 405 406 /* 407 * Allow the hypervisor to handle the exit with an exit handler if it has one. 408 * 409 * Returns true if the hypervisor handled the exit, and control should go back 410 * to the guest, or false if it hasn't. 411 */ 412 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 413 { 414 const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu); 415 exit_handler_fn fn; 416 417 fn = handlers[kvm_vcpu_trap_get_class(vcpu)]; 418 419 if (fn) 420 return fn(vcpu, exit_code); 421 422 return false; 423 } 424 425 /* 426 * Return true when we were able to fixup the guest exit and should return to 427 * the guest, false when we should restore the host state and return to the 428 * main run loop. 429 */ 430 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 431 { 432 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) 433 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); 434 435 if (ARM_SERROR_PENDING(*exit_code)) { 436 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); 437 438 /* 439 * HVC already have an adjusted PC, which we need to 440 * correct in order to return to after having injected 441 * the SError. 442 * 443 * SMC, on the other hand, is *trapped*, meaning its 444 * preferred return address is the SMC itself. 445 */ 446 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64) 447 write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); 448 } 449 450 /* 451 * We're using the raw exception code in order to only process 452 * the trap if no SError is pending. We will come back to the 453 * same PC once the SError has been injected, and replay the 454 * trapping instruction. 455 */ 456 if (*exit_code != ARM_EXCEPTION_TRAP) 457 goto exit; 458 459 /* Check if there's an exit handler and allow it to handle the exit. */ 460 if (kvm_hyp_handle_exit(vcpu, exit_code)) 461 goto guest; 462 exit: 463 /* Return to the host kernel and handle the exit */ 464 return false; 465 466 guest: 467 /* Re-enter the guest */ 468 asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); 469 return true; 470 } 471 472 static inline void __kvm_unexpected_el2_exception(void) 473 { 474 extern char __guest_exit_panic[]; 475 unsigned long addr, fixup; 476 struct kvm_exception_table_entry *entry, *end; 477 unsigned long elr_el2 = read_sysreg(elr_el2); 478 479 entry = &__start___kvm_ex_table; 480 end = &__stop___kvm_ex_table; 481 482 while (entry < end) { 483 addr = (unsigned long)&entry->insn + entry->insn; 484 fixup = (unsigned long)&entry->fixup + entry->fixup; 485 486 if (addr != elr_el2) { 487 entry++; 488 continue; 489 } 490 491 write_sysreg(fixup, elr_el2); 492 return; 493 } 494 495 /* Trigger a panic after restoring the hyp context. */ 496 write_sysreg(__guest_exit_panic, elr_el2); 497 } 498 499 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */ 500