1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #ifndef __ARM64_KVM_HYP_SWITCH_H__ 8 #define __ARM64_KVM_HYP_SWITCH_H__ 9 10 #include <hyp/adjust_pc.h> 11 #include <hyp/fault.h> 12 13 #include <linux/arm-smccc.h> 14 #include <linux/kvm_host.h> 15 #include <linux/types.h> 16 #include <linux/jump_label.h> 17 #include <uapi/linux/psci.h> 18 19 #include <kvm/arm_psci.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/extable.h> 24 #include <asm/kprobes.h> 25 #include <asm/kvm_asm.h> 26 #include <asm/kvm_emulate.h> 27 #include <asm/kvm_hyp.h> 28 #include <asm/kvm_mmu.h> 29 #include <asm/fpsimd.h> 30 #include <asm/debug-monitors.h> 31 #include <asm/processor.h> 32 33 struct kvm_exception_table_entry { 34 int insn, fixup; 35 }; 36 37 extern struct kvm_exception_table_entry __start___kvm_ex_table; 38 extern struct kvm_exception_table_entry __stop___kvm_ex_table; 39 40 /* Check whether the FP regs were dirtied while in the host-side run loop: */ 41 static inline bool update_fp_enabled(struct kvm_vcpu *vcpu) 42 { 43 /* 44 * When the system doesn't support FP/SIMD, we cannot rely on 45 * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an 46 * abort on the very first access to FP and thus we should never 47 * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always 48 * trap the accesses. 49 */ 50 if (!system_supports_fpsimd() || 51 vcpu->arch.flags & KVM_ARM64_FP_FOREIGN_FPSTATE) 52 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED | 53 KVM_ARM64_FP_HOST); 54 55 return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED); 56 } 57 58 /* Save the 32-bit only FPSIMD system register state */ 59 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) 60 { 61 if (!vcpu_el1_is_32bit(vcpu)) 62 return; 63 64 __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2); 65 } 66 67 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) 68 { 69 /* 70 * We are about to set CPTR_EL2.TFP to trap all floating point 71 * register accesses to EL2, however, the ARM ARM clearly states that 72 * traps are only taken to EL2 if the operation would not otherwise 73 * trap to EL1. Therefore, always make sure that for 32-bit guests, 74 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. 75 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to 76 * it will cause an exception. 77 */ 78 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { 79 write_sysreg(1 << 30, fpexc32_el2); 80 isb(); 81 } 82 } 83 84 static inline void __activate_traps_common(struct kvm_vcpu *vcpu) 85 { 86 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ 87 write_sysreg(1 << 15, hstr_el2); 88 89 /* 90 * Make sure we trap PMU access from EL0 to EL2. Also sanitize 91 * PMSELR_EL0 to make sure it never contains the cycle 92 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at 93 * EL1 instead of being trapped to EL2. 94 */ 95 if (kvm_arm_support_pmu_v3()) { 96 write_sysreg(0, pmselr_el0); 97 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); 98 } 99 100 vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2); 101 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); 102 } 103 104 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu) 105 { 106 write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2); 107 108 write_sysreg(0, hstr_el2); 109 if (kvm_arm_support_pmu_v3()) 110 write_sysreg(0, pmuserenr_el0); 111 } 112 113 static inline void ___activate_traps(struct kvm_vcpu *vcpu) 114 { 115 u64 hcr = vcpu->arch.hcr_el2; 116 117 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) 118 hcr |= HCR_TVM; 119 120 write_sysreg(hcr, hcr_el2); 121 122 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) 123 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); 124 } 125 126 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu) 127 { 128 /* 129 * If we pended a virtual abort, preserve it until it gets 130 * cleared. See D1.14.3 (Virtual Interrupts) for details, but 131 * the crucial bit is "On taking a vSError interrupt, 132 * HCR_EL2.VSE is cleared to 0." 133 */ 134 if (vcpu->arch.hcr_el2 & HCR_VSE) { 135 vcpu->arch.hcr_el2 &= ~HCR_VSE; 136 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; 137 } 138 } 139 140 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu) 141 { 142 return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault); 143 } 144 145 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu) 146 { 147 sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); 148 __sve_restore_state(vcpu_sve_pffr(vcpu), 149 &vcpu->arch.ctxt.fp_regs.fpsr); 150 write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR); 151 } 152 153 /* 154 * We trap the first access to the FP/SIMD to save the host context and 155 * restore the guest context lazily. 156 * If FP/SIMD is not implemented, handle the trap and inject an undefined 157 * instruction exception to the guest. Similarly for trapped SVE accesses. 158 */ 159 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code) 160 { 161 bool sve_guest; 162 u8 esr_ec; 163 u64 reg; 164 165 if (!system_supports_fpsimd()) 166 return false; 167 168 sve_guest = vcpu_has_sve(vcpu); 169 esr_ec = kvm_vcpu_trap_get_class(vcpu); 170 171 /* Don't handle SVE traps for non-SVE vcpus here: */ 172 if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD) 173 return false; 174 175 /* Valid trap. Switch the context: */ 176 if (has_vhe()) { 177 reg = CPACR_EL1_FPEN; 178 if (sve_guest) 179 reg |= CPACR_EL1_ZEN; 180 181 sysreg_clear_set(cpacr_el1, 0, reg); 182 } else { 183 reg = CPTR_EL2_TFP; 184 if (sve_guest) 185 reg |= CPTR_EL2_TZ; 186 187 sysreg_clear_set(cptr_el2, reg, 0); 188 } 189 isb(); 190 191 if (vcpu->arch.flags & KVM_ARM64_FP_HOST) { 192 __fpsimd_save_state(vcpu->arch.host_fpsimd_state); 193 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST; 194 } 195 196 if (sve_guest) 197 __hyp_sve_restore_guest(vcpu); 198 else 199 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs); 200 201 /* Skip restoring fpexc32 for AArch64 guests */ 202 if (!(read_sysreg(hcr_el2) & HCR_RW)) 203 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2); 204 205 vcpu->arch.flags |= KVM_ARM64_FP_ENABLED; 206 207 return true; 208 } 209 210 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu) 211 { 212 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 213 int rt = kvm_vcpu_sys_get_rt(vcpu); 214 u64 val = vcpu_get_reg(vcpu, rt); 215 216 /* 217 * The normal sysreg handling code expects to see the traps, 218 * let's not do anything here. 219 */ 220 if (vcpu->arch.hcr_el2 & HCR_TVM) 221 return false; 222 223 switch (sysreg) { 224 case SYS_SCTLR_EL1: 225 write_sysreg_el1(val, SYS_SCTLR); 226 break; 227 case SYS_TTBR0_EL1: 228 write_sysreg_el1(val, SYS_TTBR0); 229 break; 230 case SYS_TTBR1_EL1: 231 write_sysreg_el1(val, SYS_TTBR1); 232 break; 233 case SYS_TCR_EL1: 234 write_sysreg_el1(val, SYS_TCR); 235 break; 236 case SYS_ESR_EL1: 237 write_sysreg_el1(val, SYS_ESR); 238 break; 239 case SYS_FAR_EL1: 240 write_sysreg_el1(val, SYS_FAR); 241 break; 242 case SYS_AFSR0_EL1: 243 write_sysreg_el1(val, SYS_AFSR0); 244 break; 245 case SYS_AFSR1_EL1: 246 write_sysreg_el1(val, SYS_AFSR1); 247 break; 248 case SYS_MAIR_EL1: 249 write_sysreg_el1(val, SYS_MAIR); 250 break; 251 case SYS_AMAIR_EL1: 252 write_sysreg_el1(val, SYS_AMAIR); 253 break; 254 case SYS_CONTEXTIDR_EL1: 255 write_sysreg_el1(val, SYS_CONTEXTIDR); 256 break; 257 default: 258 return false; 259 } 260 261 __kvm_skip_instr(vcpu); 262 return true; 263 } 264 265 static inline bool esr_is_ptrauth_trap(u32 esr) 266 { 267 switch (esr_sys64_to_sysreg(esr)) { 268 case SYS_APIAKEYLO_EL1: 269 case SYS_APIAKEYHI_EL1: 270 case SYS_APIBKEYLO_EL1: 271 case SYS_APIBKEYHI_EL1: 272 case SYS_APDAKEYLO_EL1: 273 case SYS_APDAKEYHI_EL1: 274 case SYS_APDBKEYLO_EL1: 275 case SYS_APDBKEYHI_EL1: 276 case SYS_APGAKEYLO_EL1: 277 case SYS_APGAKEYHI_EL1: 278 return true; 279 } 280 281 return false; 282 } 283 284 #define __ptrauth_save_key(ctxt, key) \ 285 do { \ 286 u64 __val; \ 287 __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \ 288 ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \ 289 __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \ 290 ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \ 291 } while(0) 292 293 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 294 295 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code) 296 { 297 struct kvm_cpu_context *ctxt; 298 u64 val; 299 300 if (!vcpu_has_ptrauth(vcpu)) 301 return false; 302 303 ctxt = this_cpu_ptr(&kvm_hyp_ctxt); 304 __ptrauth_save_key(ctxt, APIA); 305 __ptrauth_save_key(ctxt, APIB); 306 __ptrauth_save_key(ctxt, APDA); 307 __ptrauth_save_key(ctxt, APDB); 308 __ptrauth_save_key(ctxt, APGA); 309 310 vcpu_ptrauth_enable(vcpu); 311 312 val = read_sysreg(hcr_el2); 313 val |= (HCR_API | HCR_APK); 314 write_sysreg(val, hcr_el2); 315 316 return true; 317 } 318 319 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) 320 { 321 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && 322 handle_tx2_tvm(vcpu)) 323 return true; 324 325 if (static_branch_unlikely(&vgic_v3_cpuif_trap) && 326 __vgic_v3_perform_cpuif_access(vcpu) == 1) 327 return true; 328 329 if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu))) 330 return kvm_hyp_handle_ptrauth(vcpu, exit_code); 331 332 return false; 333 } 334 335 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code) 336 { 337 if (static_branch_unlikely(&vgic_v3_cpuif_trap) && 338 __vgic_v3_perform_cpuif_access(vcpu) == 1) 339 return true; 340 341 return false; 342 } 343 344 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 345 { 346 if (!__populate_fault_info(vcpu)) 347 return true; 348 349 return false; 350 } 351 352 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 353 { 354 if (!__populate_fault_info(vcpu)) 355 return true; 356 357 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { 358 bool valid; 359 360 valid = kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT && 361 kvm_vcpu_dabt_isvalid(vcpu) && 362 !kvm_vcpu_abt_issea(vcpu) && 363 !kvm_vcpu_abt_iss1tw(vcpu); 364 365 if (valid) { 366 int ret = __vgic_v2_perform_cpuif_access(vcpu); 367 368 if (ret == 1) 369 return true; 370 371 /* Promote an illegal access to an SError.*/ 372 if (ret == -1) 373 *exit_code = ARM_EXCEPTION_EL1_SERROR; 374 } 375 } 376 377 return false; 378 } 379 380 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *); 381 382 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu); 383 384 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code); 385 386 /* 387 * Allow the hypervisor to handle the exit with an exit handler if it has one. 388 * 389 * Returns true if the hypervisor handled the exit, and control should go back 390 * to the guest, or false if it hasn't. 391 */ 392 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 393 { 394 const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu); 395 exit_handler_fn fn; 396 397 fn = handlers[kvm_vcpu_trap_get_class(vcpu)]; 398 399 if (fn) 400 return fn(vcpu, exit_code); 401 402 return false; 403 } 404 405 /* 406 * Return true when we were able to fixup the guest exit and should return to 407 * the guest, false when we should restore the host state and return to the 408 * main run loop. 409 */ 410 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 411 { 412 /* 413 * Save PSTATE early so that we can evaluate the vcpu mode 414 * early on. 415 */ 416 vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR); 417 418 /* 419 * Check whether we want to repaint the state one way or 420 * another. 421 */ 422 early_exit_filter(vcpu, exit_code); 423 424 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) 425 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); 426 427 if (ARM_SERROR_PENDING(*exit_code)) { 428 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); 429 430 /* 431 * HVC already have an adjusted PC, which we need to 432 * correct in order to return to after having injected 433 * the SError. 434 * 435 * SMC, on the other hand, is *trapped*, meaning its 436 * preferred return address is the SMC itself. 437 */ 438 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64) 439 write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); 440 } 441 442 /* 443 * We're using the raw exception code in order to only process 444 * the trap if no SError is pending. We will come back to the 445 * same PC once the SError has been injected, and replay the 446 * trapping instruction. 447 */ 448 if (*exit_code != ARM_EXCEPTION_TRAP) 449 goto exit; 450 451 /* Check if there's an exit handler and allow it to handle the exit. */ 452 if (kvm_hyp_handle_exit(vcpu, exit_code)) 453 goto guest; 454 exit: 455 /* Return to the host kernel and handle the exit */ 456 return false; 457 458 guest: 459 /* Re-enter the guest */ 460 asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); 461 return true; 462 } 463 464 static inline void __kvm_unexpected_el2_exception(void) 465 { 466 extern char __guest_exit_panic[]; 467 unsigned long addr, fixup; 468 struct kvm_exception_table_entry *entry, *end; 469 unsigned long elr_el2 = read_sysreg(elr_el2); 470 471 entry = &__start___kvm_ex_table; 472 end = &__stop___kvm_ex_table; 473 474 while (entry < end) { 475 addr = (unsigned long)&entry->insn + entry->insn; 476 fixup = (unsigned long)&entry->fixup + entry->fixup; 477 478 if (addr != elr_el2) { 479 entry++; 480 continue; 481 } 482 483 write_sysreg(fixup, elr_el2); 484 return; 485 } 486 487 /* Trigger a panic after restoring the hyp context. */ 488 write_sysreg(__guest_exit_panic, elr_el2); 489 } 490 491 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */ 492