xref: /openbmc/linux/arch/arm64/kvm/hyp/include/hyp/switch.h (revision 966a9b49033b472dcfb453abdc34bca7df17adce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9 
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12 
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18 
19 #include <kvm/arm_psci.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/fpsimd.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/processor.h>
32 
33 struct kvm_exception_table_entry {
34 	int insn, fixup;
35 };
36 
37 extern struct kvm_exception_table_entry __start___kvm_ex_table;
38 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
39 
40 /* Check whether the FP regs are owned by the guest */
41 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
42 {
43 	return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
44 }
45 
46 /* Save the 32-bit only FPSIMD system register state */
47 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
48 {
49 	if (!vcpu_el1_is_32bit(vcpu))
50 		return;
51 
52 	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
53 }
54 
55 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
56 {
57 	/*
58 	 * We are about to set CPTR_EL2.TFP to trap all floating point
59 	 * register accesses to EL2, however, the ARM ARM clearly states that
60 	 * traps are only taken to EL2 if the operation would not otherwise
61 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
62 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
63 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
64 	 * it will cause an exception.
65 	 */
66 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
67 		write_sysreg(1 << 30, fpexc32_el2);
68 		isb();
69 	}
70 }
71 
72 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
73 {
74 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
75 	write_sysreg(1 << 15, hstr_el2);
76 
77 	/*
78 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
79 	 * PMSELR_EL0 to make sure it never contains the cycle
80 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
81 	 * EL1 instead of being trapped to EL2.
82 	 */
83 	if (kvm_arm_support_pmu_v3()) {
84 		write_sysreg(0, pmselr_el0);
85 		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
86 	}
87 
88 	vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
89 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
90 
91 	if (cpus_have_final_cap(ARM64_SME)) {
92 		sysreg_clear_set_s(SYS_HFGRTR_EL2,
93 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
94 				   HFGxTR_EL2_nTPIDR2_EL0_MASK,
95 				   0);
96 		sysreg_clear_set_s(SYS_HFGWTR_EL2,
97 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
98 				   HFGxTR_EL2_nTPIDR2_EL0_MASK,
99 				   0);
100 	}
101 }
102 
103 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
104 {
105 	write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
106 
107 	write_sysreg(0, hstr_el2);
108 	if (kvm_arm_support_pmu_v3())
109 		write_sysreg(0, pmuserenr_el0);
110 
111 	if (cpus_have_final_cap(ARM64_SME)) {
112 		sysreg_clear_set_s(SYS_HFGRTR_EL2, 0,
113 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
114 				   HFGxTR_EL2_nTPIDR2_EL0_MASK);
115 		sysreg_clear_set_s(SYS_HFGWTR_EL2, 0,
116 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
117 				   HFGxTR_EL2_nTPIDR2_EL0_MASK);
118 	}
119 }
120 
121 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
122 {
123 	u64 hcr = vcpu->arch.hcr_el2;
124 
125 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
126 		hcr |= HCR_TVM;
127 
128 	write_sysreg(hcr, hcr_el2);
129 
130 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
131 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
132 }
133 
134 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
135 {
136 	/*
137 	 * If we pended a virtual abort, preserve it until it gets
138 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
139 	 * the crucial bit is "On taking a vSError interrupt,
140 	 * HCR_EL2.VSE is cleared to 0."
141 	 */
142 	if (vcpu->arch.hcr_el2 & HCR_VSE) {
143 		vcpu->arch.hcr_el2 &= ~HCR_VSE;
144 		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
145 	}
146 }
147 
148 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
149 {
150 	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
151 }
152 
153 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
154 {
155 	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
156 	__sve_restore_state(vcpu_sve_pffr(vcpu),
157 			    &vcpu->arch.ctxt.fp_regs.fpsr);
158 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
159 }
160 
161 /*
162  * We trap the first access to the FP/SIMD to save the host context and
163  * restore the guest context lazily.
164  * If FP/SIMD is not implemented, handle the trap and inject an undefined
165  * instruction exception to the guest. Similarly for trapped SVE accesses.
166  */
167 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
168 {
169 	bool sve_guest;
170 	u8 esr_ec;
171 	u64 reg;
172 
173 	if (!system_supports_fpsimd())
174 		return false;
175 
176 	sve_guest = vcpu_has_sve(vcpu);
177 	esr_ec = kvm_vcpu_trap_get_class(vcpu);
178 
179 	/* Don't handle SVE traps for non-SVE vcpus here: */
180 	if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD)
181 		return false;
182 
183 	/* Valid trap.  Switch the context: */
184 
185 	/* First disable enough traps to allow us to update the registers */
186 	if (has_vhe()) {
187 		reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
188 		if (sve_guest)
189 			reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
190 
191 		sysreg_clear_set(cpacr_el1, 0, reg);
192 	} else {
193 		reg = CPTR_EL2_TFP;
194 		if (sve_guest)
195 			reg |= CPTR_EL2_TZ;
196 
197 		sysreg_clear_set(cptr_el2, reg, 0);
198 	}
199 	isb();
200 
201 	/* Write out the host state if it's in the registers */
202 	if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
203 		__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
204 
205 	/* Restore the guest state */
206 	if (sve_guest)
207 		__hyp_sve_restore_guest(vcpu);
208 	else
209 		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
210 
211 	/* Skip restoring fpexc32 for AArch64 guests */
212 	if (!(read_sysreg(hcr_el2) & HCR_RW))
213 		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
214 
215 	vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
216 
217 	return true;
218 }
219 
220 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
221 {
222 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
223 	int rt = kvm_vcpu_sys_get_rt(vcpu);
224 	u64 val = vcpu_get_reg(vcpu, rt);
225 
226 	/*
227 	 * The normal sysreg handling code expects to see the traps,
228 	 * let's not do anything here.
229 	 */
230 	if (vcpu->arch.hcr_el2 & HCR_TVM)
231 		return false;
232 
233 	switch (sysreg) {
234 	case SYS_SCTLR_EL1:
235 		write_sysreg_el1(val, SYS_SCTLR);
236 		break;
237 	case SYS_TTBR0_EL1:
238 		write_sysreg_el1(val, SYS_TTBR0);
239 		break;
240 	case SYS_TTBR1_EL1:
241 		write_sysreg_el1(val, SYS_TTBR1);
242 		break;
243 	case SYS_TCR_EL1:
244 		write_sysreg_el1(val, SYS_TCR);
245 		break;
246 	case SYS_ESR_EL1:
247 		write_sysreg_el1(val, SYS_ESR);
248 		break;
249 	case SYS_FAR_EL1:
250 		write_sysreg_el1(val, SYS_FAR);
251 		break;
252 	case SYS_AFSR0_EL1:
253 		write_sysreg_el1(val, SYS_AFSR0);
254 		break;
255 	case SYS_AFSR1_EL1:
256 		write_sysreg_el1(val, SYS_AFSR1);
257 		break;
258 	case SYS_MAIR_EL1:
259 		write_sysreg_el1(val, SYS_MAIR);
260 		break;
261 	case SYS_AMAIR_EL1:
262 		write_sysreg_el1(val, SYS_AMAIR);
263 		break;
264 	case SYS_CONTEXTIDR_EL1:
265 		write_sysreg_el1(val, SYS_CONTEXTIDR);
266 		break;
267 	default:
268 		return false;
269 	}
270 
271 	__kvm_skip_instr(vcpu);
272 	return true;
273 }
274 
275 static inline bool esr_is_ptrauth_trap(u64 esr)
276 {
277 	switch (esr_sys64_to_sysreg(esr)) {
278 	case SYS_APIAKEYLO_EL1:
279 	case SYS_APIAKEYHI_EL1:
280 	case SYS_APIBKEYLO_EL1:
281 	case SYS_APIBKEYHI_EL1:
282 	case SYS_APDAKEYLO_EL1:
283 	case SYS_APDAKEYHI_EL1:
284 	case SYS_APDBKEYLO_EL1:
285 	case SYS_APDBKEYHI_EL1:
286 	case SYS_APGAKEYLO_EL1:
287 	case SYS_APGAKEYHI_EL1:
288 		return true;
289 	}
290 
291 	return false;
292 }
293 
294 #define __ptrauth_save_key(ctxt, key)					\
295 	do {								\
296 	u64 __val;                                                      \
297 	__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
298 	ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
299 	__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
300 	ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
301 } while(0)
302 
303 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
304 
305 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
306 {
307 	struct kvm_cpu_context *ctxt;
308 	u64 val;
309 
310 	if (!vcpu_has_ptrauth(vcpu))
311 		return false;
312 
313 	ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
314 	__ptrauth_save_key(ctxt, APIA);
315 	__ptrauth_save_key(ctxt, APIB);
316 	__ptrauth_save_key(ctxt, APDA);
317 	__ptrauth_save_key(ctxt, APDB);
318 	__ptrauth_save_key(ctxt, APGA);
319 
320 	vcpu_ptrauth_enable(vcpu);
321 
322 	val = read_sysreg(hcr_el2);
323 	val |= (HCR_API | HCR_APK);
324 	write_sysreg(val, hcr_el2);
325 
326 	return true;
327 }
328 
329 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
330 {
331 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
332 	    handle_tx2_tvm(vcpu))
333 		return true;
334 
335 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
336 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
337 		return true;
338 
339 	if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
340 		return kvm_hyp_handle_ptrauth(vcpu, exit_code);
341 
342 	return false;
343 }
344 
345 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
346 {
347 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
348 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
349 		return true;
350 
351 	return false;
352 }
353 
354 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
355 {
356 	if (!__populate_fault_info(vcpu))
357 		return true;
358 
359 	return false;
360 }
361 
362 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
363 {
364 	if (!__populate_fault_info(vcpu))
365 		return true;
366 
367 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
368 		bool valid;
369 
370 		valid = kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
371 			kvm_vcpu_dabt_isvalid(vcpu) &&
372 			!kvm_vcpu_abt_issea(vcpu) &&
373 			!kvm_vcpu_abt_iss1tw(vcpu);
374 
375 		if (valid) {
376 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
377 
378 			if (ret == 1)
379 				return true;
380 
381 			/* Promote an illegal access to an SError.*/
382 			if (ret == -1)
383 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
384 		}
385 	}
386 
387 	return false;
388 }
389 
390 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
391 
392 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
393 
394 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
395 
396 /*
397  * Allow the hypervisor to handle the exit with an exit handler if it has one.
398  *
399  * Returns true if the hypervisor handled the exit, and control should go back
400  * to the guest, or false if it hasn't.
401  */
402 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
403 {
404 	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
405 	exit_handler_fn fn;
406 
407 	fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
408 
409 	if (fn)
410 		return fn(vcpu, exit_code);
411 
412 	return false;
413 }
414 
415 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
416 {
417 	/*
418 	 * Check for the conditions of Cortex-A510's #2077057. When these occur
419 	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
420 	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
421 	 * Are we single-stepping the guest, and took a PAC exception from the
422 	 * active-not-pending state?
423 	 */
424 	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
425 	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
426 	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
427 	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
428 		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
429 
430 	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
431 }
432 
433 /*
434  * Return true when we were able to fixup the guest exit and should return to
435  * the guest, false when we should restore the host state and return to the
436  * main run loop.
437  */
438 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
439 {
440 	/*
441 	 * Save PSTATE early so that we can evaluate the vcpu mode
442 	 * early on.
443 	 */
444 	synchronize_vcpu_pstate(vcpu, exit_code);
445 
446 	/*
447 	 * Check whether we want to repaint the state one way or
448 	 * another.
449 	 */
450 	early_exit_filter(vcpu, exit_code);
451 
452 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
453 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
454 
455 	if (ARM_SERROR_PENDING(*exit_code) &&
456 	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
457 		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
458 
459 		/*
460 		 * HVC already have an adjusted PC, which we need to
461 		 * correct in order to return to after having injected
462 		 * the SError.
463 		 *
464 		 * SMC, on the other hand, is *trapped*, meaning its
465 		 * preferred return address is the SMC itself.
466 		 */
467 		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
468 			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
469 	}
470 
471 	/*
472 	 * We're using the raw exception code in order to only process
473 	 * the trap if no SError is pending. We will come back to the
474 	 * same PC once the SError has been injected, and replay the
475 	 * trapping instruction.
476 	 */
477 	if (*exit_code != ARM_EXCEPTION_TRAP)
478 		goto exit;
479 
480 	/* Check if there's an exit handler and allow it to handle the exit. */
481 	if (kvm_hyp_handle_exit(vcpu, exit_code))
482 		goto guest;
483 exit:
484 	/* Return to the host kernel and handle the exit */
485 	return false;
486 
487 guest:
488 	/* Re-enter the guest */
489 	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
490 	return true;
491 }
492 
493 static inline void __kvm_unexpected_el2_exception(void)
494 {
495 	extern char __guest_exit_panic[];
496 	unsigned long addr, fixup;
497 	struct kvm_exception_table_entry *entry, *end;
498 	unsigned long elr_el2 = read_sysreg(elr_el2);
499 
500 	entry = &__start___kvm_ex_table;
501 	end = &__stop___kvm_ex_table;
502 
503 	while (entry < end) {
504 		addr = (unsigned long)&entry->insn + entry->insn;
505 		fixup = (unsigned long)&entry->fixup + entry->fixup;
506 
507 		if (addr != elr_el2) {
508 			entry++;
509 			continue;
510 		}
511 
512 		write_sysreg(fixup, elr_el2);
513 		return;
514 	}
515 
516 	/* Trigger a panic after restoring the hyp context. */
517 	write_sysreg(__guest_exit_panic, elr_el2);
518 }
519 
520 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
521