1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #ifndef __ARM64_KVM_HYP_SWITCH_H__ 8 #define __ARM64_KVM_HYP_SWITCH_H__ 9 10 #include <hyp/adjust_pc.h> 11 #include <hyp/fault.h> 12 13 #include <linux/arm-smccc.h> 14 #include <linux/kvm_host.h> 15 #include <linux/types.h> 16 #include <linux/jump_label.h> 17 #include <uapi/linux/psci.h> 18 19 #include <kvm/arm_psci.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/extable.h> 24 #include <asm/kprobes.h> 25 #include <asm/kvm_asm.h> 26 #include <asm/kvm_emulate.h> 27 #include <asm/kvm_hyp.h> 28 #include <asm/kvm_mmu.h> 29 #include <asm/kvm_nested.h> 30 #include <asm/fpsimd.h> 31 #include <asm/debug-monitors.h> 32 #include <asm/processor.h> 33 34 struct kvm_exception_table_entry { 35 int insn, fixup; 36 }; 37 38 extern struct kvm_exception_table_entry __start___kvm_ex_table; 39 extern struct kvm_exception_table_entry __stop___kvm_ex_table; 40 41 /* Check whether the FP regs are owned by the guest */ 42 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu) 43 { 44 return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED; 45 } 46 47 /* Save the 32-bit only FPSIMD system register state */ 48 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) 49 { 50 if (!vcpu_el1_is_32bit(vcpu)) 51 return; 52 53 __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2); 54 } 55 56 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) 57 { 58 /* 59 * We are about to set CPTR_EL2.TFP to trap all floating point 60 * register accesses to EL2, however, the ARM ARM clearly states that 61 * traps are only taken to EL2 if the operation would not otherwise 62 * trap to EL1. Therefore, always make sure that for 32-bit guests, 63 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. 64 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to 65 * it will cause an exception. 66 */ 67 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { 68 write_sysreg(1 << 30, fpexc32_el2); 69 isb(); 70 } 71 } 72 73 static inline bool __hfgxtr_traps_required(void) 74 { 75 if (cpus_have_final_cap(ARM64_SME)) 76 return true; 77 78 if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) 79 return true; 80 81 return false; 82 } 83 84 static inline void __activate_traps_hfgxtr(void) 85 { 86 u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp; 87 88 if (cpus_have_final_cap(ARM64_SME)) { 89 tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK; 90 91 r_clr |= tmp; 92 w_clr |= tmp; 93 } 94 95 /* 96 * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD. 97 */ 98 if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) 99 w_set |= HFGxTR_EL2_TCR_EL1_MASK; 100 101 sysreg_clear_set_s(SYS_HFGRTR_EL2, r_clr, r_set); 102 sysreg_clear_set_s(SYS_HFGWTR_EL2, w_clr, w_set); 103 } 104 105 static inline void __deactivate_traps_hfgxtr(void) 106 { 107 u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp; 108 109 if (cpus_have_final_cap(ARM64_SME)) { 110 tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK; 111 112 r_set |= tmp; 113 w_set |= tmp; 114 } 115 116 if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) 117 w_clr |= HFGxTR_EL2_TCR_EL1_MASK; 118 119 sysreg_clear_set_s(SYS_HFGRTR_EL2, r_clr, r_set); 120 sysreg_clear_set_s(SYS_HFGWTR_EL2, w_clr, w_set); 121 } 122 123 static inline void __activate_traps_common(struct kvm_vcpu *vcpu) 124 { 125 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ 126 write_sysreg(1 << 15, hstr_el2); 127 128 /* 129 * Make sure we trap PMU access from EL0 to EL2. Also sanitize 130 * PMSELR_EL0 to make sure it never contains the cycle 131 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at 132 * EL1 instead of being trapped to EL2. 133 */ 134 if (kvm_arm_support_pmu_v3()) { 135 struct kvm_cpu_context *hctxt; 136 137 write_sysreg(0, pmselr_el0); 138 139 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; 140 ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0); 141 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); 142 vcpu_set_flag(vcpu, PMUSERENR_ON_CPU); 143 } 144 145 vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2); 146 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); 147 148 if (__hfgxtr_traps_required()) 149 __activate_traps_hfgxtr(); 150 } 151 152 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu) 153 { 154 write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2); 155 156 write_sysreg(0, hstr_el2); 157 if (kvm_arm_support_pmu_v3()) { 158 struct kvm_cpu_context *hctxt; 159 160 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; 161 write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0); 162 vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU); 163 } 164 165 if (__hfgxtr_traps_required()) 166 __deactivate_traps_hfgxtr(); 167 } 168 169 static inline void ___activate_traps(struct kvm_vcpu *vcpu) 170 { 171 u64 hcr = vcpu->arch.hcr_el2; 172 173 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) 174 hcr |= HCR_TVM; 175 176 write_sysreg(hcr, hcr_el2); 177 178 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) 179 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); 180 181 if (cpus_have_final_cap(ARM64_HAS_HCX)) 182 write_sysreg_s(HCRX_GUEST_FLAGS, SYS_HCRX_EL2); 183 } 184 185 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu) 186 { 187 /* 188 * If we pended a virtual abort, preserve it until it gets 189 * cleared. See D1.14.3 (Virtual Interrupts) for details, but 190 * the crucial bit is "On taking a vSError interrupt, 191 * HCR_EL2.VSE is cleared to 0." 192 */ 193 if (vcpu->arch.hcr_el2 & HCR_VSE) { 194 vcpu->arch.hcr_el2 &= ~HCR_VSE; 195 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; 196 } 197 198 if (cpus_have_final_cap(ARM64_HAS_HCX)) 199 write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2); 200 } 201 202 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu) 203 { 204 return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault); 205 } 206 207 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu) 208 { 209 sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); 210 __sve_restore_state(vcpu_sve_pffr(vcpu), 211 &vcpu->arch.ctxt.fp_regs.fpsr); 212 write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR); 213 } 214 215 /* 216 * We trap the first access to the FP/SIMD to save the host context and 217 * restore the guest context lazily. 218 * If FP/SIMD is not implemented, handle the trap and inject an undefined 219 * instruction exception to the guest. Similarly for trapped SVE accesses. 220 */ 221 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code) 222 { 223 bool sve_guest; 224 u8 esr_ec; 225 u64 reg; 226 227 if (!system_supports_fpsimd()) 228 return false; 229 230 sve_guest = vcpu_has_sve(vcpu); 231 esr_ec = kvm_vcpu_trap_get_class(vcpu); 232 233 /* Only handle traps the vCPU can support here: */ 234 switch (esr_ec) { 235 case ESR_ELx_EC_FP_ASIMD: 236 break; 237 case ESR_ELx_EC_SVE: 238 if (!sve_guest) 239 return false; 240 break; 241 default: 242 return false; 243 } 244 245 /* Valid trap. Switch the context: */ 246 247 /* First disable enough traps to allow us to update the registers */ 248 if (has_vhe() || has_hvhe()) { 249 reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN; 250 if (sve_guest) 251 reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN; 252 253 sysreg_clear_set(cpacr_el1, 0, reg); 254 } else { 255 reg = CPTR_EL2_TFP; 256 if (sve_guest) 257 reg |= CPTR_EL2_TZ; 258 259 sysreg_clear_set(cptr_el2, reg, 0); 260 } 261 isb(); 262 263 /* Write out the host state if it's in the registers */ 264 if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED) 265 __fpsimd_save_state(vcpu->arch.host_fpsimd_state); 266 267 /* Restore the guest state */ 268 if (sve_guest) 269 __hyp_sve_restore_guest(vcpu); 270 else 271 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs); 272 273 /* Skip restoring fpexc32 for AArch64 guests */ 274 if (!(read_sysreg(hcr_el2) & HCR_RW)) 275 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2); 276 277 vcpu->arch.fp_state = FP_STATE_GUEST_OWNED; 278 279 return true; 280 } 281 282 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu) 283 { 284 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 285 int rt = kvm_vcpu_sys_get_rt(vcpu); 286 u64 val = vcpu_get_reg(vcpu, rt); 287 288 /* 289 * The normal sysreg handling code expects to see the traps, 290 * let's not do anything here. 291 */ 292 if (vcpu->arch.hcr_el2 & HCR_TVM) 293 return false; 294 295 switch (sysreg) { 296 case SYS_SCTLR_EL1: 297 write_sysreg_el1(val, SYS_SCTLR); 298 break; 299 case SYS_TTBR0_EL1: 300 write_sysreg_el1(val, SYS_TTBR0); 301 break; 302 case SYS_TTBR1_EL1: 303 write_sysreg_el1(val, SYS_TTBR1); 304 break; 305 case SYS_TCR_EL1: 306 write_sysreg_el1(val, SYS_TCR); 307 break; 308 case SYS_ESR_EL1: 309 write_sysreg_el1(val, SYS_ESR); 310 break; 311 case SYS_FAR_EL1: 312 write_sysreg_el1(val, SYS_FAR); 313 break; 314 case SYS_AFSR0_EL1: 315 write_sysreg_el1(val, SYS_AFSR0); 316 break; 317 case SYS_AFSR1_EL1: 318 write_sysreg_el1(val, SYS_AFSR1); 319 break; 320 case SYS_MAIR_EL1: 321 write_sysreg_el1(val, SYS_MAIR); 322 break; 323 case SYS_AMAIR_EL1: 324 write_sysreg_el1(val, SYS_AMAIR); 325 break; 326 case SYS_CONTEXTIDR_EL1: 327 write_sysreg_el1(val, SYS_CONTEXTIDR); 328 break; 329 default: 330 return false; 331 } 332 333 __kvm_skip_instr(vcpu); 334 return true; 335 } 336 337 static inline bool esr_is_ptrauth_trap(u64 esr) 338 { 339 switch (esr_sys64_to_sysreg(esr)) { 340 case SYS_APIAKEYLO_EL1: 341 case SYS_APIAKEYHI_EL1: 342 case SYS_APIBKEYLO_EL1: 343 case SYS_APIBKEYHI_EL1: 344 case SYS_APDAKEYLO_EL1: 345 case SYS_APDAKEYHI_EL1: 346 case SYS_APDBKEYLO_EL1: 347 case SYS_APDBKEYHI_EL1: 348 case SYS_APGAKEYLO_EL1: 349 case SYS_APGAKEYHI_EL1: 350 return true; 351 } 352 353 return false; 354 } 355 356 #define __ptrauth_save_key(ctxt, key) \ 357 do { \ 358 u64 __val; \ 359 __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \ 360 ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \ 361 __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \ 362 ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \ 363 } while(0) 364 365 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 366 367 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code) 368 { 369 struct kvm_cpu_context *ctxt; 370 u64 val; 371 372 if (!vcpu_has_ptrauth(vcpu)) 373 return false; 374 375 ctxt = this_cpu_ptr(&kvm_hyp_ctxt); 376 __ptrauth_save_key(ctxt, APIA); 377 __ptrauth_save_key(ctxt, APIB); 378 __ptrauth_save_key(ctxt, APDA); 379 __ptrauth_save_key(ctxt, APDB); 380 __ptrauth_save_key(ctxt, APGA); 381 382 vcpu_ptrauth_enable(vcpu); 383 384 val = read_sysreg(hcr_el2); 385 val |= (HCR_API | HCR_APK); 386 write_sysreg(val, hcr_el2); 387 388 return true; 389 } 390 391 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu) 392 { 393 struct arch_timer_context *ctxt; 394 u32 sysreg; 395 u64 val; 396 397 /* 398 * We only get here for 64bit guests, 32bit guests will hit 399 * the long and winding road all the way to the standard 400 * handling. Yes, it sucks to be irrelevant. 401 */ 402 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 403 404 switch (sysreg) { 405 case SYS_CNTPCT_EL0: 406 case SYS_CNTPCTSS_EL0: 407 if (vcpu_has_nv(vcpu)) { 408 if (is_hyp_ctxt(vcpu)) { 409 ctxt = vcpu_hptimer(vcpu); 410 break; 411 } 412 413 /* Check for guest hypervisor trapping */ 414 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); 415 if (!vcpu_el2_e2h_is_set(vcpu)) 416 val = (val & CNTHCTL_EL1PCTEN) << 10; 417 418 if (!(val & (CNTHCTL_EL1PCTEN << 10))) 419 return false; 420 } 421 422 ctxt = vcpu_ptimer(vcpu); 423 break; 424 default: 425 return false; 426 } 427 428 val = arch_timer_read_cntpct_el0(); 429 430 if (ctxt->offset.vm_offset) 431 val -= *kern_hyp_va(ctxt->offset.vm_offset); 432 if (ctxt->offset.vcpu_offset) 433 val -= *kern_hyp_va(ctxt->offset.vcpu_offset); 434 435 vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val); 436 __kvm_skip_instr(vcpu); 437 return true; 438 } 439 440 static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu) 441 { 442 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 443 int rt = kvm_vcpu_sys_get_rt(vcpu); 444 u64 val = vcpu_get_reg(vcpu, rt); 445 446 if (sysreg != SYS_TCR_EL1) 447 return false; 448 449 /* 450 * Affected parts do not advertise support for hardware Access Flag / 451 * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying 452 * control bits are still functional. The architecture requires these be 453 * RES0 on systems that do not implement FEAT_HAFDBS. 454 * 455 * Uphold the requirements of the architecture by masking guest writes 456 * to TCR_EL1.{HA,HD} here. 457 */ 458 val &= ~(TCR_HD | TCR_HA); 459 write_sysreg_el1(val, SYS_TCR); 460 return true; 461 } 462 463 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) 464 { 465 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && 466 handle_tx2_tvm(vcpu)) 467 return true; 468 469 if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) && 470 handle_ampere1_tcr(vcpu)) 471 return true; 472 473 if (static_branch_unlikely(&vgic_v3_cpuif_trap) && 474 __vgic_v3_perform_cpuif_access(vcpu) == 1) 475 return true; 476 477 if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu))) 478 return kvm_hyp_handle_ptrauth(vcpu, exit_code); 479 480 if (kvm_hyp_handle_cntpct(vcpu)) 481 return true; 482 483 return false; 484 } 485 486 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code) 487 { 488 if (static_branch_unlikely(&vgic_v3_cpuif_trap) && 489 __vgic_v3_perform_cpuif_access(vcpu) == 1) 490 return true; 491 492 return false; 493 } 494 495 static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code) 496 { 497 if (!__populate_fault_info(vcpu)) 498 return true; 499 500 return false; 501 } 502 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 503 __alias(kvm_hyp_handle_memory_fault); 504 static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 505 __alias(kvm_hyp_handle_memory_fault); 506 507 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 508 { 509 if (kvm_hyp_handle_memory_fault(vcpu, exit_code)) 510 return true; 511 512 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { 513 bool valid; 514 515 valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT && 516 kvm_vcpu_dabt_isvalid(vcpu) && 517 !kvm_vcpu_abt_issea(vcpu) && 518 !kvm_vcpu_abt_iss1tw(vcpu); 519 520 if (valid) { 521 int ret = __vgic_v2_perform_cpuif_access(vcpu); 522 523 if (ret == 1) 524 return true; 525 526 /* Promote an illegal access to an SError.*/ 527 if (ret == -1) 528 *exit_code = ARM_EXCEPTION_EL1_SERROR; 529 } 530 } 531 532 return false; 533 } 534 535 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *); 536 537 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu); 538 539 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code); 540 541 /* 542 * Allow the hypervisor to handle the exit with an exit handler if it has one. 543 * 544 * Returns true if the hypervisor handled the exit, and control should go back 545 * to the guest, or false if it hasn't. 546 */ 547 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 548 { 549 const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu); 550 exit_handler_fn fn; 551 552 fn = handlers[kvm_vcpu_trap_get_class(vcpu)]; 553 554 if (fn) 555 return fn(vcpu, exit_code); 556 557 return false; 558 } 559 560 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code) 561 { 562 /* 563 * Check for the conditions of Cortex-A510's #2077057. When these occur 564 * SPSR_EL2 can't be trusted, but isn't needed either as it is 565 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate. 566 * Are we single-stepping the guest, and took a PAC exception from the 567 * active-not-pending state? 568 */ 569 if (cpus_have_final_cap(ARM64_WORKAROUND_2077057) && 570 vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 571 *vcpu_cpsr(vcpu) & DBG_SPSR_SS && 572 ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC) 573 write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR); 574 575 vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR); 576 } 577 578 /* 579 * Return true when we were able to fixup the guest exit and should return to 580 * the guest, false when we should restore the host state and return to the 581 * main run loop. 582 */ 583 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 584 { 585 /* 586 * Save PSTATE early so that we can evaluate the vcpu mode 587 * early on. 588 */ 589 synchronize_vcpu_pstate(vcpu, exit_code); 590 591 /* 592 * Check whether we want to repaint the state one way or 593 * another. 594 */ 595 early_exit_filter(vcpu, exit_code); 596 597 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) 598 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); 599 600 if (ARM_SERROR_PENDING(*exit_code) && 601 ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) { 602 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); 603 604 /* 605 * HVC already have an adjusted PC, which we need to 606 * correct in order to return to after having injected 607 * the SError. 608 * 609 * SMC, on the other hand, is *trapped*, meaning its 610 * preferred return address is the SMC itself. 611 */ 612 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64) 613 write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); 614 } 615 616 /* 617 * We're using the raw exception code in order to only process 618 * the trap if no SError is pending. We will come back to the 619 * same PC once the SError has been injected, and replay the 620 * trapping instruction. 621 */ 622 if (*exit_code != ARM_EXCEPTION_TRAP) 623 goto exit; 624 625 /* Check if there's an exit handler and allow it to handle the exit. */ 626 if (kvm_hyp_handle_exit(vcpu, exit_code)) 627 goto guest; 628 exit: 629 /* Return to the host kernel and handle the exit */ 630 return false; 631 632 guest: 633 /* Re-enter the guest */ 634 asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); 635 return true; 636 } 637 638 static inline void __kvm_unexpected_el2_exception(void) 639 { 640 extern char __guest_exit_panic[]; 641 unsigned long addr, fixup; 642 struct kvm_exception_table_entry *entry, *end; 643 unsigned long elr_el2 = read_sysreg(elr_el2); 644 645 entry = &__start___kvm_ex_table; 646 end = &__stop___kvm_ex_table; 647 648 while (entry < end) { 649 addr = (unsigned long)&entry->insn + entry->insn; 650 fixup = (unsigned long)&entry->fixup + entry->fixup; 651 652 if (addr != elr_el2) { 653 entry++; 654 continue; 655 } 656 657 write_sysreg(fixup, elr_el2); 658 return; 659 } 660 661 /* Trigger a panic after restoring the hyp context. */ 662 write_sysreg(__guest_exit_panic, elr_el2); 663 } 664 665 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */ 666