xref: /openbmc/linux/arch/arm64/kvm/hyp/include/hyp/switch.h (revision 724ba675)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9 
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12 
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18 
19 #include <kvm/arm_psci.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
33 
34 struct kvm_exception_table_entry {
35 	int insn, fixup;
36 };
37 
38 extern struct kvm_exception_table_entry __start___kvm_ex_table;
39 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
40 
41 /* Check whether the FP regs are owned by the guest */
42 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
43 {
44 	return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
45 }
46 
47 /* Save the 32-bit only FPSIMD system register state */
48 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
49 {
50 	if (!vcpu_el1_is_32bit(vcpu))
51 		return;
52 
53 	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
54 }
55 
56 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
57 {
58 	/*
59 	 * We are about to set CPTR_EL2.TFP to trap all floating point
60 	 * register accesses to EL2, however, the ARM ARM clearly states that
61 	 * traps are only taken to EL2 if the operation would not otherwise
62 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
63 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
64 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
65 	 * it will cause an exception.
66 	 */
67 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
68 		write_sysreg(1 << 30, fpexc32_el2);
69 		isb();
70 	}
71 }
72 
73 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
74 {
75 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
76 	write_sysreg(1 << 15, hstr_el2);
77 
78 	/*
79 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
80 	 * PMSELR_EL0 to make sure it never contains the cycle
81 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
82 	 * EL1 instead of being trapped to EL2.
83 	 */
84 	if (kvm_arm_support_pmu_v3()) {
85 		write_sysreg(0, pmselr_el0);
86 		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
87 	}
88 
89 	vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
90 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
91 
92 	if (cpus_have_final_cap(ARM64_SME)) {
93 		sysreg_clear_set_s(SYS_HFGRTR_EL2,
94 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
95 				   HFGxTR_EL2_nTPIDR2_EL0_MASK,
96 				   0);
97 		sysreg_clear_set_s(SYS_HFGWTR_EL2,
98 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
99 				   HFGxTR_EL2_nTPIDR2_EL0_MASK,
100 				   0);
101 	}
102 }
103 
104 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
105 {
106 	write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
107 
108 	write_sysreg(0, hstr_el2);
109 	if (kvm_arm_support_pmu_v3())
110 		write_sysreg(0, pmuserenr_el0);
111 
112 	if (cpus_have_final_cap(ARM64_SME)) {
113 		sysreg_clear_set_s(SYS_HFGRTR_EL2, 0,
114 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
115 				   HFGxTR_EL2_nTPIDR2_EL0_MASK);
116 		sysreg_clear_set_s(SYS_HFGWTR_EL2, 0,
117 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
118 				   HFGxTR_EL2_nTPIDR2_EL0_MASK);
119 	}
120 }
121 
122 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
123 {
124 	u64 hcr = vcpu->arch.hcr_el2;
125 
126 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
127 		hcr |= HCR_TVM;
128 
129 	write_sysreg(hcr, hcr_el2);
130 
131 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
132 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
133 }
134 
135 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
136 {
137 	/*
138 	 * If we pended a virtual abort, preserve it until it gets
139 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
140 	 * the crucial bit is "On taking a vSError interrupt,
141 	 * HCR_EL2.VSE is cleared to 0."
142 	 */
143 	if (vcpu->arch.hcr_el2 & HCR_VSE) {
144 		vcpu->arch.hcr_el2 &= ~HCR_VSE;
145 		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
146 	}
147 }
148 
149 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
150 {
151 	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
152 }
153 
154 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
155 {
156 	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
157 	__sve_restore_state(vcpu_sve_pffr(vcpu),
158 			    &vcpu->arch.ctxt.fp_regs.fpsr);
159 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
160 }
161 
162 /*
163  * We trap the first access to the FP/SIMD to save the host context and
164  * restore the guest context lazily.
165  * If FP/SIMD is not implemented, handle the trap and inject an undefined
166  * instruction exception to the guest. Similarly for trapped SVE accesses.
167  */
168 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
169 {
170 	bool sve_guest;
171 	u8 esr_ec;
172 	u64 reg;
173 
174 	if (!system_supports_fpsimd())
175 		return false;
176 
177 	sve_guest = vcpu_has_sve(vcpu);
178 	esr_ec = kvm_vcpu_trap_get_class(vcpu);
179 
180 	/* Only handle traps the vCPU can support here: */
181 	switch (esr_ec) {
182 	case ESR_ELx_EC_FP_ASIMD:
183 		break;
184 	case ESR_ELx_EC_SVE:
185 		if (!sve_guest)
186 			return false;
187 		break;
188 	default:
189 		return false;
190 	}
191 
192 	/* Valid trap.  Switch the context: */
193 
194 	/* First disable enough traps to allow us to update the registers */
195 	if (has_vhe()) {
196 		reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
197 		if (sve_guest)
198 			reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
199 
200 		sysreg_clear_set(cpacr_el1, 0, reg);
201 	} else {
202 		reg = CPTR_EL2_TFP;
203 		if (sve_guest)
204 			reg |= CPTR_EL2_TZ;
205 
206 		sysreg_clear_set(cptr_el2, reg, 0);
207 	}
208 	isb();
209 
210 	/* Write out the host state if it's in the registers */
211 	if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
212 		__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
213 
214 	/* Restore the guest state */
215 	if (sve_guest)
216 		__hyp_sve_restore_guest(vcpu);
217 	else
218 		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
219 
220 	/* Skip restoring fpexc32 for AArch64 guests */
221 	if (!(read_sysreg(hcr_el2) & HCR_RW))
222 		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
223 
224 	vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
225 
226 	return true;
227 }
228 
229 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
230 {
231 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
232 	int rt = kvm_vcpu_sys_get_rt(vcpu);
233 	u64 val = vcpu_get_reg(vcpu, rt);
234 
235 	/*
236 	 * The normal sysreg handling code expects to see the traps,
237 	 * let's not do anything here.
238 	 */
239 	if (vcpu->arch.hcr_el2 & HCR_TVM)
240 		return false;
241 
242 	switch (sysreg) {
243 	case SYS_SCTLR_EL1:
244 		write_sysreg_el1(val, SYS_SCTLR);
245 		break;
246 	case SYS_TTBR0_EL1:
247 		write_sysreg_el1(val, SYS_TTBR0);
248 		break;
249 	case SYS_TTBR1_EL1:
250 		write_sysreg_el1(val, SYS_TTBR1);
251 		break;
252 	case SYS_TCR_EL1:
253 		write_sysreg_el1(val, SYS_TCR);
254 		break;
255 	case SYS_ESR_EL1:
256 		write_sysreg_el1(val, SYS_ESR);
257 		break;
258 	case SYS_FAR_EL1:
259 		write_sysreg_el1(val, SYS_FAR);
260 		break;
261 	case SYS_AFSR0_EL1:
262 		write_sysreg_el1(val, SYS_AFSR0);
263 		break;
264 	case SYS_AFSR1_EL1:
265 		write_sysreg_el1(val, SYS_AFSR1);
266 		break;
267 	case SYS_MAIR_EL1:
268 		write_sysreg_el1(val, SYS_MAIR);
269 		break;
270 	case SYS_AMAIR_EL1:
271 		write_sysreg_el1(val, SYS_AMAIR);
272 		break;
273 	case SYS_CONTEXTIDR_EL1:
274 		write_sysreg_el1(val, SYS_CONTEXTIDR);
275 		break;
276 	default:
277 		return false;
278 	}
279 
280 	__kvm_skip_instr(vcpu);
281 	return true;
282 }
283 
284 static inline bool esr_is_ptrauth_trap(u64 esr)
285 {
286 	switch (esr_sys64_to_sysreg(esr)) {
287 	case SYS_APIAKEYLO_EL1:
288 	case SYS_APIAKEYHI_EL1:
289 	case SYS_APIBKEYLO_EL1:
290 	case SYS_APIBKEYHI_EL1:
291 	case SYS_APDAKEYLO_EL1:
292 	case SYS_APDAKEYHI_EL1:
293 	case SYS_APDBKEYLO_EL1:
294 	case SYS_APDBKEYHI_EL1:
295 	case SYS_APGAKEYLO_EL1:
296 	case SYS_APGAKEYHI_EL1:
297 		return true;
298 	}
299 
300 	return false;
301 }
302 
303 #define __ptrauth_save_key(ctxt, key)					\
304 	do {								\
305 	u64 __val;                                                      \
306 	__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
307 	ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
308 	__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
309 	ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
310 } while(0)
311 
312 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
313 
314 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
315 {
316 	struct kvm_cpu_context *ctxt;
317 	u64 val;
318 
319 	if (!vcpu_has_ptrauth(vcpu))
320 		return false;
321 
322 	ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
323 	__ptrauth_save_key(ctxt, APIA);
324 	__ptrauth_save_key(ctxt, APIB);
325 	__ptrauth_save_key(ctxt, APDA);
326 	__ptrauth_save_key(ctxt, APDB);
327 	__ptrauth_save_key(ctxt, APGA);
328 
329 	vcpu_ptrauth_enable(vcpu);
330 
331 	val = read_sysreg(hcr_el2);
332 	val |= (HCR_API | HCR_APK);
333 	write_sysreg(val, hcr_el2);
334 
335 	return true;
336 }
337 
338 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
339 {
340 	struct arch_timer_context *ctxt;
341 	u32 sysreg;
342 	u64 val;
343 
344 	/*
345 	 * We only get here for 64bit guests, 32bit guests will hit
346 	 * the long and winding road all the way to the standard
347 	 * handling. Yes, it sucks to be irrelevant.
348 	 */
349 	sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
350 
351 	switch (sysreg) {
352 	case SYS_CNTPCT_EL0:
353 	case SYS_CNTPCTSS_EL0:
354 		if (vcpu_has_nv(vcpu)) {
355 			if (is_hyp_ctxt(vcpu)) {
356 				ctxt = vcpu_hptimer(vcpu);
357 				break;
358 			}
359 
360 			/* Check for guest hypervisor trapping */
361 			val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
362 			if (!vcpu_el2_e2h_is_set(vcpu))
363 				val = (val & CNTHCTL_EL1PCTEN) << 10;
364 
365 			if (!(val & (CNTHCTL_EL1PCTEN << 10)))
366 				return false;
367 		}
368 
369 		ctxt = vcpu_ptimer(vcpu);
370 		break;
371 	default:
372 		return false;
373 	}
374 
375 	val = arch_timer_read_cntpct_el0();
376 
377 	if (ctxt->offset.vm_offset)
378 		val -= *kern_hyp_va(ctxt->offset.vm_offset);
379 	if (ctxt->offset.vcpu_offset)
380 		val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
381 
382 	vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
383 	__kvm_skip_instr(vcpu);
384 	return true;
385 }
386 
387 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
388 {
389 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
390 	    handle_tx2_tvm(vcpu))
391 		return true;
392 
393 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
394 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
395 		return true;
396 
397 	if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
398 		return kvm_hyp_handle_ptrauth(vcpu, exit_code);
399 
400 	if (kvm_hyp_handle_cntpct(vcpu))
401 		return true;
402 
403 	return false;
404 }
405 
406 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
407 {
408 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
409 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
410 		return true;
411 
412 	return false;
413 }
414 
415 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
416 {
417 	if (!__populate_fault_info(vcpu))
418 		return true;
419 
420 	return false;
421 }
422 
423 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
424 {
425 	if (!__populate_fault_info(vcpu))
426 		return true;
427 
428 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
429 		bool valid;
430 
431 		valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT &&
432 			kvm_vcpu_dabt_isvalid(vcpu) &&
433 			!kvm_vcpu_abt_issea(vcpu) &&
434 			!kvm_vcpu_abt_iss1tw(vcpu);
435 
436 		if (valid) {
437 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
438 
439 			if (ret == 1)
440 				return true;
441 
442 			/* Promote an illegal access to an SError.*/
443 			if (ret == -1)
444 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
445 		}
446 	}
447 
448 	return false;
449 }
450 
451 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
452 
453 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
454 
455 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
456 
457 /*
458  * Allow the hypervisor to handle the exit with an exit handler if it has one.
459  *
460  * Returns true if the hypervisor handled the exit, and control should go back
461  * to the guest, or false if it hasn't.
462  */
463 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
464 {
465 	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
466 	exit_handler_fn fn;
467 
468 	fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
469 
470 	if (fn)
471 		return fn(vcpu, exit_code);
472 
473 	return false;
474 }
475 
476 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
477 {
478 	/*
479 	 * Check for the conditions of Cortex-A510's #2077057. When these occur
480 	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
481 	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
482 	 * Are we single-stepping the guest, and took a PAC exception from the
483 	 * active-not-pending state?
484 	 */
485 	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
486 	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
487 	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
488 	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
489 		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
490 
491 	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
492 }
493 
494 /*
495  * Return true when we were able to fixup the guest exit and should return to
496  * the guest, false when we should restore the host state and return to the
497  * main run loop.
498  */
499 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
500 {
501 	/*
502 	 * Save PSTATE early so that we can evaluate the vcpu mode
503 	 * early on.
504 	 */
505 	synchronize_vcpu_pstate(vcpu, exit_code);
506 
507 	/*
508 	 * Check whether we want to repaint the state one way or
509 	 * another.
510 	 */
511 	early_exit_filter(vcpu, exit_code);
512 
513 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
514 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
515 
516 	if (ARM_SERROR_PENDING(*exit_code) &&
517 	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
518 		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
519 
520 		/*
521 		 * HVC already have an adjusted PC, which we need to
522 		 * correct in order to return to after having injected
523 		 * the SError.
524 		 *
525 		 * SMC, on the other hand, is *trapped*, meaning its
526 		 * preferred return address is the SMC itself.
527 		 */
528 		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
529 			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
530 	}
531 
532 	/*
533 	 * We're using the raw exception code in order to only process
534 	 * the trap if no SError is pending. We will come back to the
535 	 * same PC once the SError has been injected, and replay the
536 	 * trapping instruction.
537 	 */
538 	if (*exit_code != ARM_EXCEPTION_TRAP)
539 		goto exit;
540 
541 	/* Check if there's an exit handler and allow it to handle the exit. */
542 	if (kvm_hyp_handle_exit(vcpu, exit_code))
543 		goto guest;
544 exit:
545 	/* Return to the host kernel and handle the exit */
546 	return false;
547 
548 guest:
549 	/* Re-enter the guest */
550 	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
551 	return true;
552 }
553 
554 static inline void __kvm_unexpected_el2_exception(void)
555 {
556 	extern char __guest_exit_panic[];
557 	unsigned long addr, fixup;
558 	struct kvm_exception_table_entry *entry, *end;
559 	unsigned long elr_el2 = read_sysreg(elr_el2);
560 
561 	entry = &__start___kvm_ex_table;
562 	end = &__stop___kvm_ex_table;
563 
564 	while (entry < end) {
565 		addr = (unsigned long)&entry->insn + entry->insn;
566 		fixup = (unsigned long)&entry->fixup + entry->fixup;
567 
568 		if (addr != elr_el2) {
569 			entry++;
570 			continue;
571 		}
572 
573 		write_sysreg(fixup, elr_el2);
574 		return;
575 	}
576 
577 	/* Trigger a panic after restoring the hyp context. */
578 	write_sysreg(__guest_exit_panic, elr_el2);
579 }
580 
581 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
582