1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #ifndef __ARM64_KVM_HYP_SWITCH_H__ 8 #define __ARM64_KVM_HYP_SWITCH_H__ 9 10 #include <hyp/adjust_pc.h> 11 #include <hyp/fault.h> 12 13 #include <linux/arm-smccc.h> 14 #include <linux/kvm_host.h> 15 #include <linux/types.h> 16 #include <linux/jump_label.h> 17 #include <uapi/linux/psci.h> 18 19 #include <kvm/arm_psci.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/extable.h> 24 #include <asm/kprobes.h> 25 #include <asm/kvm_asm.h> 26 #include <asm/kvm_emulate.h> 27 #include <asm/kvm_hyp.h> 28 #include <asm/kvm_mmu.h> 29 #include <asm/kvm_nested.h> 30 #include <asm/fpsimd.h> 31 #include <asm/debug-monitors.h> 32 #include <asm/processor.h> 33 34 struct kvm_exception_table_entry { 35 int insn, fixup; 36 }; 37 38 extern struct kvm_exception_table_entry __start___kvm_ex_table; 39 extern struct kvm_exception_table_entry __stop___kvm_ex_table; 40 41 /* Check whether the FP regs are owned by the guest */ 42 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu) 43 { 44 return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED; 45 } 46 47 /* Save the 32-bit only FPSIMD system register state */ 48 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) 49 { 50 if (!vcpu_el1_is_32bit(vcpu)) 51 return; 52 53 __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2); 54 } 55 56 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) 57 { 58 /* 59 * We are about to set CPTR_EL2.TFP to trap all floating point 60 * register accesses to EL2, however, the ARM ARM clearly states that 61 * traps are only taken to EL2 if the operation would not otherwise 62 * trap to EL1. Therefore, always make sure that for 32-bit guests, 63 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. 64 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to 65 * it will cause an exception. 66 */ 67 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { 68 write_sysreg(1 << 30, fpexc32_el2); 69 isb(); 70 } 71 } 72 73 static inline void __activate_traps_common(struct kvm_vcpu *vcpu) 74 { 75 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ 76 write_sysreg(1 << 15, hstr_el2); 77 78 /* 79 * Make sure we trap PMU access from EL0 to EL2. Also sanitize 80 * PMSELR_EL0 to make sure it never contains the cycle 81 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at 82 * EL1 instead of being trapped to EL2. 83 */ 84 if (kvm_arm_support_pmu_v3()) { 85 write_sysreg(0, pmselr_el0); 86 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); 87 } 88 89 vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2); 90 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); 91 92 if (cpus_have_final_cap(ARM64_SME)) { 93 sysreg_clear_set_s(SYS_HFGRTR_EL2, 94 HFGxTR_EL2_nSMPRI_EL1_MASK | 95 HFGxTR_EL2_nTPIDR2_EL0_MASK, 96 0); 97 sysreg_clear_set_s(SYS_HFGWTR_EL2, 98 HFGxTR_EL2_nSMPRI_EL1_MASK | 99 HFGxTR_EL2_nTPIDR2_EL0_MASK, 100 0); 101 } 102 } 103 104 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu) 105 { 106 write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2); 107 108 write_sysreg(0, hstr_el2); 109 if (kvm_arm_support_pmu_v3()) 110 write_sysreg(0, pmuserenr_el0); 111 112 if (cpus_have_final_cap(ARM64_SME)) { 113 sysreg_clear_set_s(SYS_HFGRTR_EL2, 0, 114 HFGxTR_EL2_nSMPRI_EL1_MASK | 115 HFGxTR_EL2_nTPIDR2_EL0_MASK); 116 sysreg_clear_set_s(SYS_HFGWTR_EL2, 0, 117 HFGxTR_EL2_nSMPRI_EL1_MASK | 118 HFGxTR_EL2_nTPIDR2_EL0_MASK); 119 } 120 } 121 122 static inline void ___activate_traps(struct kvm_vcpu *vcpu) 123 { 124 u64 hcr = vcpu->arch.hcr_el2; 125 126 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) 127 hcr |= HCR_TVM; 128 129 write_sysreg(hcr, hcr_el2); 130 131 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) 132 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); 133 } 134 135 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu) 136 { 137 /* 138 * If we pended a virtual abort, preserve it until it gets 139 * cleared. See D1.14.3 (Virtual Interrupts) for details, but 140 * the crucial bit is "On taking a vSError interrupt, 141 * HCR_EL2.VSE is cleared to 0." 142 */ 143 if (vcpu->arch.hcr_el2 & HCR_VSE) { 144 vcpu->arch.hcr_el2 &= ~HCR_VSE; 145 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; 146 } 147 } 148 149 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu) 150 { 151 return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault); 152 } 153 154 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu) 155 { 156 sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); 157 __sve_restore_state(vcpu_sve_pffr(vcpu), 158 &vcpu->arch.ctxt.fp_regs.fpsr); 159 write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR); 160 } 161 162 /* 163 * We trap the first access to the FP/SIMD to save the host context and 164 * restore the guest context lazily. 165 * If FP/SIMD is not implemented, handle the trap and inject an undefined 166 * instruction exception to the guest. Similarly for trapped SVE accesses. 167 */ 168 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code) 169 { 170 bool sve_guest; 171 u8 esr_ec; 172 u64 reg; 173 174 if (!system_supports_fpsimd()) 175 return false; 176 177 sve_guest = vcpu_has_sve(vcpu); 178 esr_ec = kvm_vcpu_trap_get_class(vcpu); 179 180 /* Only handle traps the vCPU can support here: */ 181 switch (esr_ec) { 182 case ESR_ELx_EC_FP_ASIMD: 183 break; 184 case ESR_ELx_EC_SVE: 185 if (!sve_guest) 186 return false; 187 break; 188 default: 189 return false; 190 } 191 192 /* Valid trap. Switch the context: */ 193 194 /* First disable enough traps to allow us to update the registers */ 195 if (has_vhe()) { 196 reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN; 197 if (sve_guest) 198 reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN; 199 200 sysreg_clear_set(cpacr_el1, 0, reg); 201 } else { 202 reg = CPTR_EL2_TFP; 203 if (sve_guest) 204 reg |= CPTR_EL2_TZ; 205 206 sysreg_clear_set(cptr_el2, reg, 0); 207 } 208 isb(); 209 210 /* Write out the host state if it's in the registers */ 211 if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED) 212 __fpsimd_save_state(vcpu->arch.host_fpsimd_state); 213 214 /* Restore the guest state */ 215 if (sve_guest) 216 __hyp_sve_restore_guest(vcpu); 217 else 218 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs); 219 220 /* Skip restoring fpexc32 for AArch64 guests */ 221 if (!(read_sysreg(hcr_el2) & HCR_RW)) 222 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2); 223 224 vcpu->arch.fp_state = FP_STATE_GUEST_OWNED; 225 226 return true; 227 } 228 229 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu) 230 { 231 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 232 int rt = kvm_vcpu_sys_get_rt(vcpu); 233 u64 val = vcpu_get_reg(vcpu, rt); 234 235 /* 236 * The normal sysreg handling code expects to see the traps, 237 * let's not do anything here. 238 */ 239 if (vcpu->arch.hcr_el2 & HCR_TVM) 240 return false; 241 242 switch (sysreg) { 243 case SYS_SCTLR_EL1: 244 write_sysreg_el1(val, SYS_SCTLR); 245 break; 246 case SYS_TTBR0_EL1: 247 write_sysreg_el1(val, SYS_TTBR0); 248 break; 249 case SYS_TTBR1_EL1: 250 write_sysreg_el1(val, SYS_TTBR1); 251 break; 252 case SYS_TCR_EL1: 253 write_sysreg_el1(val, SYS_TCR); 254 break; 255 case SYS_ESR_EL1: 256 write_sysreg_el1(val, SYS_ESR); 257 break; 258 case SYS_FAR_EL1: 259 write_sysreg_el1(val, SYS_FAR); 260 break; 261 case SYS_AFSR0_EL1: 262 write_sysreg_el1(val, SYS_AFSR0); 263 break; 264 case SYS_AFSR1_EL1: 265 write_sysreg_el1(val, SYS_AFSR1); 266 break; 267 case SYS_MAIR_EL1: 268 write_sysreg_el1(val, SYS_MAIR); 269 break; 270 case SYS_AMAIR_EL1: 271 write_sysreg_el1(val, SYS_AMAIR); 272 break; 273 case SYS_CONTEXTIDR_EL1: 274 write_sysreg_el1(val, SYS_CONTEXTIDR); 275 break; 276 default: 277 return false; 278 } 279 280 __kvm_skip_instr(vcpu); 281 return true; 282 } 283 284 static inline bool esr_is_ptrauth_trap(u64 esr) 285 { 286 switch (esr_sys64_to_sysreg(esr)) { 287 case SYS_APIAKEYLO_EL1: 288 case SYS_APIAKEYHI_EL1: 289 case SYS_APIBKEYLO_EL1: 290 case SYS_APIBKEYHI_EL1: 291 case SYS_APDAKEYLO_EL1: 292 case SYS_APDAKEYHI_EL1: 293 case SYS_APDBKEYLO_EL1: 294 case SYS_APDBKEYHI_EL1: 295 case SYS_APGAKEYLO_EL1: 296 case SYS_APGAKEYHI_EL1: 297 return true; 298 } 299 300 return false; 301 } 302 303 #define __ptrauth_save_key(ctxt, key) \ 304 do { \ 305 u64 __val; \ 306 __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \ 307 ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \ 308 __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \ 309 ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \ 310 } while(0) 311 312 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 313 314 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code) 315 { 316 struct kvm_cpu_context *ctxt; 317 u64 val; 318 319 if (!vcpu_has_ptrauth(vcpu)) 320 return false; 321 322 ctxt = this_cpu_ptr(&kvm_hyp_ctxt); 323 __ptrauth_save_key(ctxt, APIA); 324 __ptrauth_save_key(ctxt, APIB); 325 __ptrauth_save_key(ctxt, APDA); 326 __ptrauth_save_key(ctxt, APDB); 327 __ptrauth_save_key(ctxt, APGA); 328 329 vcpu_ptrauth_enable(vcpu); 330 331 val = read_sysreg(hcr_el2); 332 val |= (HCR_API | HCR_APK); 333 write_sysreg(val, hcr_el2); 334 335 return true; 336 } 337 338 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu) 339 { 340 struct arch_timer_context *ctxt; 341 u32 sysreg; 342 u64 val; 343 344 /* 345 * We only get here for 64bit guests, 32bit guests will hit 346 * the long and winding road all the way to the standard 347 * handling. Yes, it sucks to be irrelevant. 348 */ 349 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 350 351 switch (sysreg) { 352 case SYS_CNTPCT_EL0: 353 case SYS_CNTPCTSS_EL0: 354 if (vcpu_has_nv(vcpu)) { 355 if (is_hyp_ctxt(vcpu)) { 356 ctxt = vcpu_hptimer(vcpu); 357 break; 358 } 359 360 /* Check for guest hypervisor trapping */ 361 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); 362 if (!vcpu_el2_e2h_is_set(vcpu)) 363 val = (val & CNTHCTL_EL1PCTEN) << 10; 364 365 if (!(val & (CNTHCTL_EL1PCTEN << 10))) 366 return false; 367 } 368 369 ctxt = vcpu_ptimer(vcpu); 370 break; 371 default: 372 return false; 373 } 374 375 val = arch_timer_read_cntpct_el0(); 376 377 if (ctxt->offset.vm_offset) 378 val -= *kern_hyp_va(ctxt->offset.vm_offset); 379 if (ctxt->offset.vcpu_offset) 380 val -= *kern_hyp_va(ctxt->offset.vcpu_offset); 381 382 vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val); 383 __kvm_skip_instr(vcpu); 384 return true; 385 } 386 387 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) 388 { 389 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && 390 handle_tx2_tvm(vcpu)) 391 return true; 392 393 if (static_branch_unlikely(&vgic_v3_cpuif_trap) && 394 __vgic_v3_perform_cpuif_access(vcpu) == 1) 395 return true; 396 397 if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu))) 398 return kvm_hyp_handle_ptrauth(vcpu, exit_code); 399 400 if (kvm_hyp_handle_cntpct(vcpu)) 401 return true; 402 403 return false; 404 } 405 406 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code) 407 { 408 if (static_branch_unlikely(&vgic_v3_cpuif_trap) && 409 __vgic_v3_perform_cpuif_access(vcpu) == 1) 410 return true; 411 412 return false; 413 } 414 415 static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code) 416 { 417 if (!__populate_fault_info(vcpu)) 418 return true; 419 420 return false; 421 } 422 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 423 __alias(kvm_hyp_handle_memory_fault); 424 static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 425 __alias(kvm_hyp_handle_memory_fault); 426 427 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 428 { 429 if (kvm_hyp_handle_memory_fault(vcpu, exit_code)) 430 return true; 431 432 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { 433 bool valid; 434 435 valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT && 436 kvm_vcpu_dabt_isvalid(vcpu) && 437 !kvm_vcpu_abt_issea(vcpu) && 438 !kvm_vcpu_abt_iss1tw(vcpu); 439 440 if (valid) { 441 int ret = __vgic_v2_perform_cpuif_access(vcpu); 442 443 if (ret == 1) 444 return true; 445 446 /* Promote an illegal access to an SError.*/ 447 if (ret == -1) 448 *exit_code = ARM_EXCEPTION_EL1_SERROR; 449 } 450 } 451 452 return false; 453 } 454 455 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *); 456 457 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu); 458 459 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code); 460 461 /* 462 * Allow the hypervisor to handle the exit with an exit handler if it has one. 463 * 464 * Returns true if the hypervisor handled the exit, and control should go back 465 * to the guest, or false if it hasn't. 466 */ 467 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 468 { 469 const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu); 470 exit_handler_fn fn; 471 472 fn = handlers[kvm_vcpu_trap_get_class(vcpu)]; 473 474 if (fn) 475 return fn(vcpu, exit_code); 476 477 return false; 478 } 479 480 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code) 481 { 482 /* 483 * Check for the conditions of Cortex-A510's #2077057. When these occur 484 * SPSR_EL2 can't be trusted, but isn't needed either as it is 485 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate. 486 * Are we single-stepping the guest, and took a PAC exception from the 487 * active-not-pending state? 488 */ 489 if (cpus_have_final_cap(ARM64_WORKAROUND_2077057) && 490 vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 491 *vcpu_cpsr(vcpu) & DBG_SPSR_SS && 492 ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC) 493 write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR); 494 495 vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR); 496 } 497 498 /* 499 * Return true when we were able to fixup the guest exit and should return to 500 * the guest, false when we should restore the host state and return to the 501 * main run loop. 502 */ 503 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 504 { 505 /* 506 * Save PSTATE early so that we can evaluate the vcpu mode 507 * early on. 508 */ 509 synchronize_vcpu_pstate(vcpu, exit_code); 510 511 /* 512 * Check whether we want to repaint the state one way or 513 * another. 514 */ 515 early_exit_filter(vcpu, exit_code); 516 517 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) 518 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); 519 520 if (ARM_SERROR_PENDING(*exit_code) && 521 ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) { 522 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); 523 524 /* 525 * HVC already have an adjusted PC, which we need to 526 * correct in order to return to after having injected 527 * the SError. 528 * 529 * SMC, on the other hand, is *trapped*, meaning its 530 * preferred return address is the SMC itself. 531 */ 532 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64) 533 write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); 534 } 535 536 /* 537 * We're using the raw exception code in order to only process 538 * the trap if no SError is pending. We will come back to the 539 * same PC once the SError has been injected, and replay the 540 * trapping instruction. 541 */ 542 if (*exit_code != ARM_EXCEPTION_TRAP) 543 goto exit; 544 545 /* Check if there's an exit handler and allow it to handle the exit. */ 546 if (kvm_hyp_handle_exit(vcpu, exit_code)) 547 goto guest; 548 exit: 549 /* Return to the host kernel and handle the exit */ 550 return false; 551 552 guest: 553 /* Re-enter the guest */ 554 asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); 555 return true; 556 } 557 558 static inline void __kvm_unexpected_el2_exception(void) 559 { 560 extern char __guest_exit_panic[]; 561 unsigned long addr, fixup; 562 struct kvm_exception_table_entry *entry, *end; 563 unsigned long elr_el2 = read_sysreg(elr_el2); 564 565 entry = &__start___kvm_ex_table; 566 end = &__stop___kvm_ex_table; 567 568 while (entry < end) { 569 addr = (unsigned long)&entry->insn + entry->insn; 570 fixup = (unsigned long)&entry->fixup + entry->fixup; 571 572 if (addr != elr_el2) { 573 entry++; 574 continue; 575 } 576 577 write_sysreg(fixup, elr_el2); 578 return; 579 } 580 581 /* Trigger a panic after restoring the hyp context. */ 582 write_sysreg(__guest_exit_panic, elr_el2); 583 } 584 585 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */ 586