xref: /openbmc/linux/arch/arm64/kvm/hyp/include/hyp/switch.h (revision 4c11bcb119bfabcbb58a8b8b3147aa9c3ec3dbe4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9 
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12 
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18 
19 #include <kvm/arm_psci.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
33 
34 struct kvm_exception_table_entry {
35 	int insn, fixup;
36 };
37 
38 extern struct kvm_exception_table_entry __start___kvm_ex_table;
39 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
40 
41 /* Check whether the FP regs are owned by the guest */
42 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
43 {
44 	return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
45 }
46 
47 /* Save the 32-bit only FPSIMD system register state */
48 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
49 {
50 	if (!vcpu_el1_is_32bit(vcpu))
51 		return;
52 
53 	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
54 }
55 
56 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
57 {
58 	/*
59 	 * We are about to set CPTR_EL2.TFP to trap all floating point
60 	 * register accesses to EL2, however, the ARM ARM clearly states that
61 	 * traps are only taken to EL2 if the operation would not otherwise
62 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
63 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
64 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
65 	 * it will cause an exception.
66 	 */
67 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
68 		write_sysreg(1 << 30, fpexc32_el2);
69 		isb();
70 	}
71 }
72 
73 #define compute_clr_set(vcpu, reg, clr, set)				\
74 	do {								\
75 		u64 hfg;						\
76 		hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0;	\
77 		set |= hfg & __ ## reg ## _MASK; 			\
78 		clr |= ~hfg & __ ## reg ## _nMASK; 			\
79 	} while(0)
80 
81 
82 static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu)
83 {
84 	struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
85 	u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp;
86 	u64 r_val, w_val;
87 
88 	if (!cpus_have_final_cap(ARM64_HAS_FGT))
89 		return;
90 
91 	ctxt_sys_reg(hctxt, HFGRTR_EL2) = read_sysreg_s(SYS_HFGRTR_EL2);
92 	ctxt_sys_reg(hctxt, HFGWTR_EL2) = read_sysreg_s(SYS_HFGWTR_EL2);
93 
94 	if (cpus_have_final_cap(ARM64_SME)) {
95 		tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK;
96 
97 		r_clr |= tmp;
98 		w_clr |= tmp;
99 	}
100 
101 	/*
102 	 * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD.
103 	 */
104 	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38))
105 		w_set |= HFGxTR_EL2_TCR_EL1_MASK;
106 
107 	if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
108 		compute_clr_set(vcpu, HFGRTR_EL2, r_clr, r_set);
109 		compute_clr_set(vcpu, HFGWTR_EL2, w_clr, w_set);
110 	}
111 
112 	/* The default is not to trap anything but ACCDATA_EL1 */
113 	r_val = __HFGRTR_EL2_nMASK & ~HFGxTR_EL2_nACCDATA_EL1;
114 	r_val |= r_set;
115 	r_val &= ~r_clr;
116 
117 	w_val = __HFGWTR_EL2_nMASK & ~HFGxTR_EL2_nACCDATA_EL1;
118 	w_val |= w_set;
119 	w_val &= ~w_clr;
120 
121 	write_sysreg_s(r_val, SYS_HFGRTR_EL2);
122 	write_sysreg_s(w_val, SYS_HFGWTR_EL2);
123 
124 	if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
125 		return;
126 
127 	ctxt_sys_reg(hctxt, HFGITR_EL2) = read_sysreg_s(SYS_HFGITR_EL2);
128 
129 	r_set = r_clr = 0;
130 	compute_clr_set(vcpu, HFGITR_EL2, r_clr, r_set);
131 	r_val = __HFGITR_EL2_nMASK;
132 	r_val |= r_set;
133 	r_val &= ~r_clr;
134 
135 	write_sysreg_s(r_val, SYS_HFGITR_EL2);
136 
137 	ctxt_sys_reg(hctxt, HDFGRTR_EL2) = read_sysreg_s(SYS_HDFGRTR_EL2);
138 	ctxt_sys_reg(hctxt, HDFGWTR_EL2) = read_sysreg_s(SYS_HDFGWTR_EL2);
139 
140 	r_clr = r_set = w_clr = w_set = 0;
141 
142 	compute_clr_set(vcpu, HDFGRTR_EL2, r_clr, r_set);
143 	compute_clr_set(vcpu, HDFGWTR_EL2, w_clr, w_set);
144 
145 	r_val = __HDFGRTR_EL2_nMASK;
146 	r_val |= r_set;
147 	r_val &= ~r_clr;
148 
149 	w_val = __HDFGWTR_EL2_nMASK;
150 	w_val |= w_set;
151 	w_val &= ~w_clr;
152 
153 	write_sysreg_s(r_val, SYS_HDFGRTR_EL2);
154 	write_sysreg_s(w_val, SYS_HDFGWTR_EL2);
155 }
156 
157 static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu)
158 {
159 	struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
160 
161 	if (!cpus_have_final_cap(ARM64_HAS_FGT))
162 		return;
163 
164 	write_sysreg_s(ctxt_sys_reg(hctxt, HFGRTR_EL2), SYS_HFGRTR_EL2);
165 	write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2);
166 
167 	if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu))
168 		return;
169 
170 	write_sysreg_s(ctxt_sys_reg(hctxt, HFGITR_EL2), SYS_HFGITR_EL2);
171 	write_sysreg_s(ctxt_sys_reg(hctxt, HDFGRTR_EL2), SYS_HDFGRTR_EL2);
172 	write_sysreg_s(ctxt_sys_reg(hctxt, HDFGWTR_EL2), SYS_HDFGWTR_EL2);
173 }
174 
175 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
176 {
177 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
178 	write_sysreg(1 << 15, hstr_el2);
179 
180 	/*
181 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
182 	 * PMSELR_EL0 to make sure it never contains the cycle
183 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
184 	 * EL1 instead of being trapped to EL2.
185 	 */
186 	if (kvm_arm_support_pmu_v3()) {
187 		struct kvm_cpu_context *hctxt;
188 
189 		write_sysreg(0, pmselr_el0);
190 
191 		hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
192 		ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0);
193 		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
194 		vcpu_set_flag(vcpu, PMUSERENR_ON_CPU);
195 	}
196 
197 	vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
198 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
199 
200 	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
201 		u64 hcrx = HCRX_GUEST_FLAGS;
202 		if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) {
203 			u64 clr = 0, set = 0;
204 
205 			compute_clr_set(vcpu, HCRX_EL2, clr, set);
206 
207 			hcrx |= set;
208 			hcrx &= ~clr;
209 		}
210 
211 		write_sysreg_s(hcrx, SYS_HCRX_EL2);
212 	}
213 
214 	__activate_traps_hfgxtr(vcpu);
215 }
216 
217 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
218 {
219 	write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
220 
221 	write_sysreg(0, hstr_el2);
222 	if (kvm_arm_support_pmu_v3()) {
223 		struct kvm_cpu_context *hctxt;
224 
225 		hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt;
226 		write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0);
227 		vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU);
228 	}
229 
230 	if (cpus_have_final_cap(ARM64_HAS_HCX))
231 		write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2);
232 
233 	__deactivate_traps_hfgxtr(vcpu);
234 }
235 
236 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
237 {
238 	u64 hcr = vcpu->arch.hcr_el2;
239 
240 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
241 		hcr |= HCR_TVM;
242 
243 	write_sysreg(hcr, hcr_el2);
244 
245 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
246 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
247 }
248 
249 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
250 {
251 	/*
252 	 * If we pended a virtual abort, preserve it until it gets
253 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
254 	 * the crucial bit is "On taking a vSError interrupt,
255 	 * HCR_EL2.VSE is cleared to 0."
256 	 */
257 	if (vcpu->arch.hcr_el2 & HCR_VSE) {
258 		vcpu->arch.hcr_el2 &= ~HCR_VSE;
259 		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
260 	}
261 }
262 
263 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
264 {
265 	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
266 }
267 
268 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
269 {
270 	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
271 	__sve_restore_state(vcpu_sve_pffr(vcpu),
272 			    &vcpu->arch.ctxt.fp_regs.fpsr);
273 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
274 }
275 
276 /*
277  * We trap the first access to the FP/SIMD to save the host context and
278  * restore the guest context lazily.
279  * If FP/SIMD is not implemented, handle the trap and inject an undefined
280  * instruction exception to the guest. Similarly for trapped SVE accesses.
281  */
282 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
283 {
284 	bool sve_guest;
285 	u8 esr_ec;
286 	u64 reg;
287 
288 	if (!system_supports_fpsimd())
289 		return false;
290 
291 	sve_guest = vcpu_has_sve(vcpu);
292 	esr_ec = kvm_vcpu_trap_get_class(vcpu);
293 
294 	/* Only handle traps the vCPU can support here: */
295 	switch (esr_ec) {
296 	case ESR_ELx_EC_FP_ASIMD:
297 		break;
298 	case ESR_ELx_EC_SVE:
299 		if (!sve_guest)
300 			return false;
301 		break;
302 	default:
303 		return false;
304 	}
305 
306 	/* Valid trap.  Switch the context: */
307 
308 	/* First disable enough traps to allow us to update the registers */
309 	if (has_vhe() || has_hvhe()) {
310 		reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
311 		if (sve_guest)
312 			reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
313 
314 		sysreg_clear_set(cpacr_el1, 0, reg);
315 	} else {
316 		reg = CPTR_EL2_TFP;
317 		if (sve_guest)
318 			reg |= CPTR_EL2_TZ;
319 
320 		sysreg_clear_set(cptr_el2, reg, 0);
321 	}
322 	isb();
323 
324 	/* Write out the host state if it's in the registers */
325 	if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
326 		__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
327 
328 	/* Restore the guest state */
329 	if (sve_guest)
330 		__hyp_sve_restore_guest(vcpu);
331 	else
332 		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
333 
334 	/* Skip restoring fpexc32 for AArch64 guests */
335 	if (!(read_sysreg(hcr_el2) & HCR_RW))
336 		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
337 
338 	vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
339 
340 	return true;
341 }
342 
343 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
344 {
345 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
346 	int rt = kvm_vcpu_sys_get_rt(vcpu);
347 	u64 val = vcpu_get_reg(vcpu, rt);
348 
349 	/*
350 	 * The normal sysreg handling code expects to see the traps,
351 	 * let's not do anything here.
352 	 */
353 	if (vcpu->arch.hcr_el2 & HCR_TVM)
354 		return false;
355 
356 	switch (sysreg) {
357 	case SYS_SCTLR_EL1:
358 		write_sysreg_el1(val, SYS_SCTLR);
359 		break;
360 	case SYS_TTBR0_EL1:
361 		write_sysreg_el1(val, SYS_TTBR0);
362 		break;
363 	case SYS_TTBR1_EL1:
364 		write_sysreg_el1(val, SYS_TTBR1);
365 		break;
366 	case SYS_TCR_EL1:
367 		write_sysreg_el1(val, SYS_TCR);
368 		break;
369 	case SYS_ESR_EL1:
370 		write_sysreg_el1(val, SYS_ESR);
371 		break;
372 	case SYS_FAR_EL1:
373 		write_sysreg_el1(val, SYS_FAR);
374 		break;
375 	case SYS_AFSR0_EL1:
376 		write_sysreg_el1(val, SYS_AFSR0);
377 		break;
378 	case SYS_AFSR1_EL1:
379 		write_sysreg_el1(val, SYS_AFSR1);
380 		break;
381 	case SYS_MAIR_EL1:
382 		write_sysreg_el1(val, SYS_MAIR);
383 		break;
384 	case SYS_AMAIR_EL1:
385 		write_sysreg_el1(val, SYS_AMAIR);
386 		break;
387 	case SYS_CONTEXTIDR_EL1:
388 		write_sysreg_el1(val, SYS_CONTEXTIDR);
389 		break;
390 	default:
391 		return false;
392 	}
393 
394 	__kvm_skip_instr(vcpu);
395 	return true;
396 }
397 
398 static inline bool esr_is_ptrauth_trap(u64 esr)
399 {
400 	switch (esr_sys64_to_sysreg(esr)) {
401 	case SYS_APIAKEYLO_EL1:
402 	case SYS_APIAKEYHI_EL1:
403 	case SYS_APIBKEYLO_EL1:
404 	case SYS_APIBKEYHI_EL1:
405 	case SYS_APDAKEYLO_EL1:
406 	case SYS_APDAKEYHI_EL1:
407 	case SYS_APDBKEYLO_EL1:
408 	case SYS_APDBKEYHI_EL1:
409 	case SYS_APGAKEYLO_EL1:
410 	case SYS_APGAKEYHI_EL1:
411 		return true;
412 	}
413 
414 	return false;
415 }
416 
417 #define __ptrauth_save_key(ctxt, key)					\
418 	do {								\
419 	u64 __val;                                                      \
420 	__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
421 	ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
422 	__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
423 	ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
424 } while(0)
425 
426 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
427 
428 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
429 {
430 	struct kvm_cpu_context *ctxt;
431 	u64 val;
432 
433 	if (!vcpu_has_ptrauth(vcpu))
434 		return false;
435 
436 	ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
437 	__ptrauth_save_key(ctxt, APIA);
438 	__ptrauth_save_key(ctxt, APIB);
439 	__ptrauth_save_key(ctxt, APDA);
440 	__ptrauth_save_key(ctxt, APDB);
441 	__ptrauth_save_key(ctxt, APGA);
442 
443 	vcpu_ptrauth_enable(vcpu);
444 
445 	val = read_sysreg(hcr_el2);
446 	val |= (HCR_API | HCR_APK);
447 	write_sysreg(val, hcr_el2);
448 
449 	return true;
450 }
451 
452 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
453 {
454 	struct arch_timer_context *ctxt;
455 	u32 sysreg;
456 	u64 val;
457 
458 	/*
459 	 * We only get here for 64bit guests, 32bit guests will hit
460 	 * the long and winding road all the way to the standard
461 	 * handling. Yes, it sucks to be irrelevant.
462 	 */
463 	sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
464 
465 	switch (sysreg) {
466 	case SYS_CNTPCT_EL0:
467 	case SYS_CNTPCTSS_EL0:
468 		if (vcpu_has_nv(vcpu)) {
469 			if (is_hyp_ctxt(vcpu)) {
470 				ctxt = vcpu_hptimer(vcpu);
471 				break;
472 			}
473 
474 			/* Check for guest hypervisor trapping */
475 			val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
476 			if (!vcpu_el2_e2h_is_set(vcpu))
477 				val = (val & CNTHCTL_EL1PCTEN) << 10;
478 
479 			if (!(val & (CNTHCTL_EL1PCTEN << 10)))
480 				return false;
481 		}
482 
483 		ctxt = vcpu_ptimer(vcpu);
484 		break;
485 	default:
486 		return false;
487 	}
488 
489 	val = arch_timer_read_cntpct_el0();
490 
491 	if (ctxt->offset.vm_offset)
492 		val -= *kern_hyp_va(ctxt->offset.vm_offset);
493 	if (ctxt->offset.vcpu_offset)
494 		val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
495 
496 	vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
497 	__kvm_skip_instr(vcpu);
498 	return true;
499 }
500 
501 static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu)
502 {
503 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
504 	int rt = kvm_vcpu_sys_get_rt(vcpu);
505 	u64 val = vcpu_get_reg(vcpu, rt);
506 
507 	if (sysreg != SYS_TCR_EL1)
508 		return false;
509 
510 	/*
511 	 * Affected parts do not advertise support for hardware Access Flag /
512 	 * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying
513 	 * control bits are still functional. The architecture requires these be
514 	 * RES0 on systems that do not implement FEAT_HAFDBS.
515 	 *
516 	 * Uphold the requirements of the architecture by masking guest writes
517 	 * to TCR_EL1.{HA,HD} here.
518 	 */
519 	val &= ~(TCR_HD | TCR_HA);
520 	write_sysreg_el1(val, SYS_TCR);
521 	__kvm_skip_instr(vcpu);
522 	return true;
523 }
524 
525 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
526 {
527 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
528 	    handle_tx2_tvm(vcpu))
529 		return true;
530 
531 	if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) &&
532 	    handle_ampere1_tcr(vcpu))
533 		return true;
534 
535 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
536 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
537 		return true;
538 
539 	if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
540 		return kvm_hyp_handle_ptrauth(vcpu, exit_code);
541 
542 	if (kvm_hyp_handle_cntpct(vcpu))
543 		return true;
544 
545 	return false;
546 }
547 
548 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
549 {
550 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
551 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
552 		return true;
553 
554 	return false;
555 }
556 
557 static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code)
558 {
559 	if (!__populate_fault_info(vcpu))
560 		return true;
561 
562 	return false;
563 }
564 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
565 	__alias(kvm_hyp_handle_memory_fault);
566 static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
567 	__alias(kvm_hyp_handle_memory_fault);
568 
569 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
570 {
571 	if (kvm_hyp_handle_memory_fault(vcpu, exit_code))
572 		return true;
573 
574 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
575 		bool valid;
576 
577 		valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT &&
578 			kvm_vcpu_dabt_isvalid(vcpu) &&
579 			!kvm_vcpu_abt_issea(vcpu) &&
580 			!kvm_vcpu_abt_iss1tw(vcpu);
581 
582 		if (valid) {
583 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
584 
585 			if (ret == 1)
586 				return true;
587 
588 			/* Promote an illegal access to an SError.*/
589 			if (ret == -1)
590 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
591 		}
592 	}
593 
594 	return false;
595 }
596 
597 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
598 
599 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
600 
601 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
602 
603 /*
604  * Allow the hypervisor to handle the exit with an exit handler if it has one.
605  *
606  * Returns true if the hypervisor handled the exit, and control should go back
607  * to the guest, or false if it hasn't.
608  */
609 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
610 {
611 	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
612 	exit_handler_fn fn;
613 
614 	fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
615 
616 	if (fn)
617 		return fn(vcpu, exit_code);
618 
619 	return false;
620 }
621 
622 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
623 {
624 	/*
625 	 * Check for the conditions of Cortex-A510's #2077057. When these occur
626 	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
627 	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
628 	 * Are we single-stepping the guest, and took a PAC exception from the
629 	 * active-not-pending state?
630 	 */
631 	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
632 	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
633 	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
634 	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
635 		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
636 
637 	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
638 }
639 
640 /*
641  * Return true when we were able to fixup the guest exit and should return to
642  * the guest, false when we should restore the host state and return to the
643  * main run loop.
644  */
645 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
646 {
647 	/*
648 	 * Save PSTATE early so that we can evaluate the vcpu mode
649 	 * early on.
650 	 */
651 	synchronize_vcpu_pstate(vcpu, exit_code);
652 
653 	/*
654 	 * Check whether we want to repaint the state one way or
655 	 * another.
656 	 */
657 	early_exit_filter(vcpu, exit_code);
658 
659 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
660 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
661 
662 	if (ARM_SERROR_PENDING(*exit_code) &&
663 	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
664 		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
665 
666 		/*
667 		 * HVC already have an adjusted PC, which we need to
668 		 * correct in order to return to after having injected
669 		 * the SError.
670 		 *
671 		 * SMC, on the other hand, is *trapped*, meaning its
672 		 * preferred return address is the SMC itself.
673 		 */
674 		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
675 			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
676 	}
677 
678 	/*
679 	 * We're using the raw exception code in order to only process
680 	 * the trap if no SError is pending. We will come back to the
681 	 * same PC once the SError has been injected, and replay the
682 	 * trapping instruction.
683 	 */
684 	if (*exit_code != ARM_EXCEPTION_TRAP)
685 		goto exit;
686 
687 	/* Check if there's an exit handler and allow it to handle the exit. */
688 	if (kvm_hyp_handle_exit(vcpu, exit_code))
689 		goto guest;
690 exit:
691 	/* Return to the host kernel and handle the exit */
692 	return false;
693 
694 guest:
695 	/* Re-enter the guest */
696 	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
697 	return true;
698 }
699 
700 static inline void __kvm_unexpected_el2_exception(void)
701 {
702 	extern char __guest_exit_panic[];
703 	unsigned long addr, fixup;
704 	struct kvm_exception_table_entry *entry, *end;
705 	unsigned long elr_el2 = read_sysreg(elr_el2);
706 
707 	entry = &__start___kvm_ex_table;
708 	end = &__stop___kvm_ex_table;
709 
710 	while (entry < end) {
711 		addr = (unsigned long)&entry->insn + entry->insn;
712 		fixup = (unsigned long)&entry->fixup + entry->fixup;
713 
714 		if (addr != elr_el2) {
715 			entry++;
716 			continue;
717 		}
718 
719 		write_sysreg(fixup, elr_el2);
720 		return;
721 	}
722 
723 	/* Trigger a panic after restoring the hyp context. */
724 	write_sysreg(__guest_exit_panic, elr_el2);
725 }
726 
727 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
728