xref: /openbmc/linux/arch/arm64/kvm/hyp/include/hyp/switch.h (revision 4b7444ff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9 
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12 
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18 
19 #include <kvm/arm_psci.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/fpsimd.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/processor.h>
32 
33 struct kvm_exception_table_entry {
34 	int insn, fixup;
35 };
36 
37 extern struct kvm_exception_table_entry __start___kvm_ex_table;
38 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
39 
40 /* Check whether the FP regs are owned by the guest */
41 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
42 {
43 	return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
44 }
45 
46 /* Save the 32-bit only FPSIMD system register state */
47 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
48 {
49 	if (!vcpu_el1_is_32bit(vcpu))
50 		return;
51 
52 	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
53 }
54 
55 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
56 {
57 	/*
58 	 * We are about to set CPTR_EL2.TFP to trap all floating point
59 	 * register accesses to EL2, however, the ARM ARM clearly states that
60 	 * traps are only taken to EL2 if the operation would not otherwise
61 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
62 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
63 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
64 	 * it will cause an exception.
65 	 */
66 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
67 		write_sysreg(1 << 30, fpexc32_el2);
68 		isb();
69 	}
70 }
71 
72 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
73 {
74 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
75 	write_sysreg(1 << 15, hstr_el2);
76 
77 	/*
78 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
79 	 * PMSELR_EL0 to make sure it never contains the cycle
80 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
81 	 * EL1 instead of being trapped to EL2.
82 	 */
83 	if (kvm_arm_support_pmu_v3()) {
84 		write_sysreg(0, pmselr_el0);
85 		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
86 	}
87 
88 	vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
89 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
90 }
91 
92 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
93 {
94 	write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
95 
96 	write_sysreg(0, hstr_el2);
97 	if (kvm_arm_support_pmu_v3())
98 		write_sysreg(0, pmuserenr_el0);
99 }
100 
101 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
102 {
103 	u64 hcr = vcpu->arch.hcr_el2;
104 
105 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
106 		hcr |= HCR_TVM;
107 
108 	write_sysreg(hcr, hcr_el2);
109 
110 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
111 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
112 }
113 
114 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
115 {
116 	/*
117 	 * If we pended a virtual abort, preserve it until it gets
118 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
119 	 * the crucial bit is "On taking a vSError interrupt,
120 	 * HCR_EL2.VSE is cleared to 0."
121 	 */
122 	if (vcpu->arch.hcr_el2 & HCR_VSE) {
123 		vcpu->arch.hcr_el2 &= ~HCR_VSE;
124 		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
125 	}
126 }
127 
128 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
129 {
130 	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
131 }
132 
133 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
134 {
135 	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
136 	__sve_restore_state(vcpu_sve_pffr(vcpu),
137 			    &vcpu->arch.ctxt.fp_regs.fpsr);
138 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
139 }
140 
141 /*
142  * We trap the first access to the FP/SIMD to save the host context and
143  * restore the guest context lazily.
144  * If FP/SIMD is not implemented, handle the trap and inject an undefined
145  * instruction exception to the guest. Similarly for trapped SVE accesses.
146  */
147 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
148 {
149 	bool sve_guest;
150 	u8 esr_ec;
151 	u64 reg;
152 
153 	if (!system_supports_fpsimd())
154 		return false;
155 
156 	sve_guest = vcpu_has_sve(vcpu);
157 	esr_ec = kvm_vcpu_trap_get_class(vcpu);
158 
159 	/* Don't handle SVE traps for non-SVE vcpus here: */
160 	if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD)
161 		return false;
162 
163 	/* Valid trap.  Switch the context: */
164 
165 	/* First disable enough traps to allow us to update the registers */
166 	if (has_vhe()) {
167 		reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
168 		if (sve_guest)
169 			reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
170 
171 		sysreg_clear_set(cpacr_el1, 0, reg);
172 	} else {
173 		reg = CPTR_EL2_TFP;
174 		if (sve_guest)
175 			reg |= CPTR_EL2_TZ;
176 
177 		sysreg_clear_set(cptr_el2, reg, 0);
178 	}
179 	isb();
180 
181 	/* Write out the host state if it's in the registers */
182 	if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
183 		__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
184 
185 	/* Restore the guest state */
186 	if (sve_guest)
187 		__hyp_sve_restore_guest(vcpu);
188 	else
189 		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
190 
191 	/* Skip restoring fpexc32 for AArch64 guests */
192 	if (!(read_sysreg(hcr_el2) & HCR_RW))
193 		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
194 
195 	vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
196 
197 	return true;
198 }
199 
200 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
201 {
202 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
203 	int rt = kvm_vcpu_sys_get_rt(vcpu);
204 	u64 val = vcpu_get_reg(vcpu, rt);
205 
206 	/*
207 	 * The normal sysreg handling code expects to see the traps,
208 	 * let's not do anything here.
209 	 */
210 	if (vcpu->arch.hcr_el2 & HCR_TVM)
211 		return false;
212 
213 	switch (sysreg) {
214 	case SYS_SCTLR_EL1:
215 		write_sysreg_el1(val, SYS_SCTLR);
216 		break;
217 	case SYS_TTBR0_EL1:
218 		write_sysreg_el1(val, SYS_TTBR0);
219 		break;
220 	case SYS_TTBR1_EL1:
221 		write_sysreg_el1(val, SYS_TTBR1);
222 		break;
223 	case SYS_TCR_EL1:
224 		write_sysreg_el1(val, SYS_TCR);
225 		break;
226 	case SYS_ESR_EL1:
227 		write_sysreg_el1(val, SYS_ESR);
228 		break;
229 	case SYS_FAR_EL1:
230 		write_sysreg_el1(val, SYS_FAR);
231 		break;
232 	case SYS_AFSR0_EL1:
233 		write_sysreg_el1(val, SYS_AFSR0);
234 		break;
235 	case SYS_AFSR1_EL1:
236 		write_sysreg_el1(val, SYS_AFSR1);
237 		break;
238 	case SYS_MAIR_EL1:
239 		write_sysreg_el1(val, SYS_MAIR);
240 		break;
241 	case SYS_AMAIR_EL1:
242 		write_sysreg_el1(val, SYS_AMAIR);
243 		break;
244 	case SYS_CONTEXTIDR_EL1:
245 		write_sysreg_el1(val, SYS_CONTEXTIDR);
246 		break;
247 	default:
248 		return false;
249 	}
250 
251 	__kvm_skip_instr(vcpu);
252 	return true;
253 }
254 
255 static inline bool esr_is_ptrauth_trap(u64 esr)
256 {
257 	switch (esr_sys64_to_sysreg(esr)) {
258 	case SYS_APIAKEYLO_EL1:
259 	case SYS_APIAKEYHI_EL1:
260 	case SYS_APIBKEYLO_EL1:
261 	case SYS_APIBKEYHI_EL1:
262 	case SYS_APDAKEYLO_EL1:
263 	case SYS_APDAKEYHI_EL1:
264 	case SYS_APDBKEYLO_EL1:
265 	case SYS_APDBKEYHI_EL1:
266 	case SYS_APGAKEYLO_EL1:
267 	case SYS_APGAKEYHI_EL1:
268 		return true;
269 	}
270 
271 	return false;
272 }
273 
274 #define __ptrauth_save_key(ctxt, key)					\
275 	do {								\
276 	u64 __val;                                                      \
277 	__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
278 	ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
279 	__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
280 	ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
281 } while(0)
282 
283 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
284 
285 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
286 {
287 	struct kvm_cpu_context *ctxt;
288 	u64 val;
289 
290 	if (!vcpu_has_ptrauth(vcpu))
291 		return false;
292 
293 	ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
294 	__ptrauth_save_key(ctxt, APIA);
295 	__ptrauth_save_key(ctxt, APIB);
296 	__ptrauth_save_key(ctxt, APDA);
297 	__ptrauth_save_key(ctxt, APDB);
298 	__ptrauth_save_key(ctxt, APGA);
299 
300 	vcpu_ptrauth_enable(vcpu);
301 
302 	val = read_sysreg(hcr_el2);
303 	val |= (HCR_API | HCR_APK);
304 	write_sysreg(val, hcr_el2);
305 
306 	return true;
307 }
308 
309 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
310 {
311 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
312 	    handle_tx2_tvm(vcpu))
313 		return true;
314 
315 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
316 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
317 		return true;
318 
319 	if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
320 		return kvm_hyp_handle_ptrauth(vcpu, exit_code);
321 
322 	return false;
323 }
324 
325 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
326 {
327 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
328 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
329 		return true;
330 
331 	return false;
332 }
333 
334 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
335 {
336 	if (!__populate_fault_info(vcpu))
337 		return true;
338 
339 	return false;
340 }
341 
342 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
343 {
344 	if (!__populate_fault_info(vcpu))
345 		return true;
346 
347 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
348 		bool valid;
349 
350 		valid = kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
351 			kvm_vcpu_dabt_isvalid(vcpu) &&
352 			!kvm_vcpu_abt_issea(vcpu) &&
353 			!kvm_vcpu_abt_iss1tw(vcpu);
354 
355 		if (valid) {
356 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
357 
358 			if (ret == 1)
359 				return true;
360 
361 			/* Promote an illegal access to an SError.*/
362 			if (ret == -1)
363 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
364 		}
365 	}
366 
367 	return false;
368 }
369 
370 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
371 
372 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
373 
374 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
375 
376 /*
377  * Allow the hypervisor to handle the exit with an exit handler if it has one.
378  *
379  * Returns true if the hypervisor handled the exit, and control should go back
380  * to the guest, or false if it hasn't.
381  */
382 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
383 {
384 	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
385 	exit_handler_fn fn;
386 
387 	fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
388 
389 	if (fn)
390 		return fn(vcpu, exit_code);
391 
392 	return false;
393 }
394 
395 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
396 {
397 	/*
398 	 * Check for the conditions of Cortex-A510's #2077057. When these occur
399 	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
400 	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
401 	 * Are we single-stepping the guest, and took a PAC exception from the
402 	 * active-not-pending state?
403 	 */
404 	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
405 	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
406 	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
407 	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
408 		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
409 
410 	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
411 }
412 
413 /*
414  * Return true when we were able to fixup the guest exit and should return to
415  * the guest, false when we should restore the host state and return to the
416  * main run loop.
417  */
418 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
419 {
420 	/*
421 	 * Save PSTATE early so that we can evaluate the vcpu mode
422 	 * early on.
423 	 */
424 	synchronize_vcpu_pstate(vcpu, exit_code);
425 
426 	/*
427 	 * Check whether we want to repaint the state one way or
428 	 * another.
429 	 */
430 	early_exit_filter(vcpu, exit_code);
431 
432 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
433 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
434 
435 	if (ARM_SERROR_PENDING(*exit_code) &&
436 	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
437 		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
438 
439 		/*
440 		 * HVC already have an adjusted PC, which we need to
441 		 * correct in order to return to after having injected
442 		 * the SError.
443 		 *
444 		 * SMC, on the other hand, is *trapped*, meaning its
445 		 * preferred return address is the SMC itself.
446 		 */
447 		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
448 			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
449 	}
450 
451 	/*
452 	 * We're using the raw exception code in order to only process
453 	 * the trap if no SError is pending. We will come back to the
454 	 * same PC once the SError has been injected, and replay the
455 	 * trapping instruction.
456 	 */
457 	if (*exit_code != ARM_EXCEPTION_TRAP)
458 		goto exit;
459 
460 	/* Check if there's an exit handler and allow it to handle the exit. */
461 	if (kvm_hyp_handle_exit(vcpu, exit_code))
462 		goto guest;
463 exit:
464 	/* Return to the host kernel and handle the exit */
465 	return false;
466 
467 guest:
468 	/* Re-enter the guest */
469 	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
470 	return true;
471 }
472 
473 static inline void __kvm_unexpected_el2_exception(void)
474 {
475 	extern char __guest_exit_panic[];
476 	unsigned long addr, fixup;
477 	struct kvm_exception_table_entry *entry, *end;
478 	unsigned long elr_el2 = read_sysreg(elr_el2);
479 
480 	entry = &__start___kvm_ex_table;
481 	end = &__stop___kvm_ex_table;
482 
483 	while (entry < end) {
484 		addr = (unsigned long)&entry->insn + entry->insn;
485 		fixup = (unsigned long)&entry->fixup + entry->fixup;
486 
487 		if (addr != elr_el2) {
488 			entry++;
489 			continue;
490 		}
491 
492 		write_sysreg(fixup, elr_el2);
493 		return;
494 	}
495 
496 	/* Trigger a panic after restoring the hyp context. */
497 	write_sysreg(__guest_exit_panic, elr_el2);
498 }
499 
500 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
501