1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #ifndef __ARM64_KVM_HYP_SWITCH_H__ 8 #define __ARM64_KVM_HYP_SWITCH_H__ 9 10 #include <hyp/adjust_pc.h> 11 #include <hyp/fault.h> 12 13 #include <linux/arm-smccc.h> 14 #include <linux/kvm_host.h> 15 #include <linux/types.h> 16 #include <linux/jump_label.h> 17 #include <uapi/linux/psci.h> 18 19 #include <kvm/arm_psci.h> 20 21 #include <asm/barrier.h> 22 #include <asm/cpufeature.h> 23 #include <asm/extable.h> 24 #include <asm/kprobes.h> 25 #include <asm/kvm_asm.h> 26 #include <asm/kvm_emulate.h> 27 #include <asm/kvm_hyp.h> 28 #include <asm/kvm_mmu.h> 29 #include <asm/kvm_nested.h> 30 #include <asm/fpsimd.h> 31 #include <asm/debug-monitors.h> 32 #include <asm/processor.h> 33 34 struct kvm_exception_table_entry { 35 int insn, fixup; 36 }; 37 38 extern struct kvm_exception_table_entry __start___kvm_ex_table; 39 extern struct kvm_exception_table_entry __stop___kvm_ex_table; 40 41 /* Check whether the FP regs are owned by the guest */ 42 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu) 43 { 44 return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED; 45 } 46 47 /* Save the 32-bit only FPSIMD system register state */ 48 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu) 49 { 50 if (!vcpu_el1_is_32bit(vcpu)) 51 return; 52 53 __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2); 54 } 55 56 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu) 57 { 58 /* 59 * We are about to set CPTR_EL2.TFP to trap all floating point 60 * register accesses to EL2, however, the ARM ARM clearly states that 61 * traps are only taken to EL2 if the operation would not otherwise 62 * trap to EL1. Therefore, always make sure that for 32-bit guests, 63 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit. 64 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to 65 * it will cause an exception. 66 */ 67 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) { 68 write_sysreg(1 << 30, fpexc32_el2); 69 isb(); 70 } 71 } 72 73 #define compute_clr_set(vcpu, reg, clr, set) \ 74 do { \ 75 u64 hfg; \ 76 hfg = __vcpu_sys_reg(vcpu, reg) & ~__ ## reg ## _RES0; \ 77 set |= hfg & __ ## reg ## _MASK; \ 78 clr |= ~hfg & __ ## reg ## _nMASK; \ 79 } while(0) 80 81 82 static inline void __activate_traps_hfgxtr(struct kvm_vcpu *vcpu) 83 { 84 struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; 85 u64 r_clr = 0, w_clr = 0, r_set = 0, w_set = 0, tmp; 86 u64 r_val, w_val; 87 88 if (!cpus_have_final_cap(ARM64_HAS_FGT)) 89 return; 90 91 ctxt_sys_reg(hctxt, HFGRTR_EL2) = read_sysreg_s(SYS_HFGRTR_EL2); 92 ctxt_sys_reg(hctxt, HFGWTR_EL2) = read_sysreg_s(SYS_HFGWTR_EL2); 93 94 if (cpus_have_final_cap(ARM64_SME)) { 95 tmp = HFGxTR_EL2_nSMPRI_EL1_MASK | HFGxTR_EL2_nTPIDR2_EL0_MASK; 96 97 r_clr |= tmp; 98 w_clr |= tmp; 99 } 100 101 /* 102 * Trap guest writes to TCR_EL1 to prevent it from enabling HA or HD. 103 */ 104 if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) 105 w_set |= HFGxTR_EL2_TCR_EL1_MASK; 106 107 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { 108 compute_clr_set(vcpu, HFGRTR_EL2, r_clr, r_set); 109 compute_clr_set(vcpu, HFGWTR_EL2, w_clr, w_set); 110 } 111 112 /* The default is not to trap anything but ACCDATA_EL1 */ 113 r_val = __HFGRTR_EL2_nMASK & ~HFGxTR_EL2_nACCDATA_EL1; 114 r_val |= r_set; 115 r_val &= ~r_clr; 116 117 w_val = __HFGWTR_EL2_nMASK & ~HFGxTR_EL2_nACCDATA_EL1; 118 w_val |= w_set; 119 w_val &= ~w_clr; 120 121 write_sysreg_s(r_val, SYS_HFGRTR_EL2); 122 write_sysreg_s(w_val, SYS_HFGWTR_EL2); 123 124 if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu)) 125 return; 126 127 ctxt_sys_reg(hctxt, HFGITR_EL2) = read_sysreg_s(SYS_HFGITR_EL2); 128 129 r_set = r_clr = 0; 130 compute_clr_set(vcpu, HFGITR_EL2, r_clr, r_set); 131 r_val = __HFGITR_EL2_nMASK; 132 r_val |= r_set; 133 r_val &= ~r_clr; 134 135 write_sysreg_s(r_val, SYS_HFGITR_EL2); 136 137 ctxt_sys_reg(hctxt, HDFGRTR_EL2) = read_sysreg_s(SYS_HDFGRTR_EL2); 138 ctxt_sys_reg(hctxt, HDFGWTR_EL2) = read_sysreg_s(SYS_HDFGWTR_EL2); 139 140 r_clr = r_set = w_clr = w_set = 0; 141 142 compute_clr_set(vcpu, HDFGRTR_EL2, r_clr, r_set); 143 compute_clr_set(vcpu, HDFGWTR_EL2, w_clr, w_set); 144 145 r_val = __HDFGRTR_EL2_nMASK; 146 r_val |= r_set; 147 r_val &= ~r_clr; 148 149 w_val = __HDFGWTR_EL2_nMASK; 150 w_val |= w_set; 151 w_val &= ~w_clr; 152 153 write_sysreg_s(r_val, SYS_HDFGRTR_EL2); 154 write_sysreg_s(w_val, SYS_HDFGWTR_EL2); 155 } 156 157 static inline void __deactivate_traps_hfgxtr(struct kvm_vcpu *vcpu) 158 { 159 struct kvm_cpu_context *hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; 160 161 if (!cpus_have_final_cap(ARM64_HAS_FGT)) 162 return; 163 164 write_sysreg_s(ctxt_sys_reg(hctxt, HFGRTR_EL2), SYS_HFGRTR_EL2); 165 write_sysreg_s(ctxt_sys_reg(hctxt, HFGWTR_EL2), SYS_HFGWTR_EL2); 166 167 if (!vcpu_has_nv(vcpu) || is_hyp_ctxt(vcpu)) 168 return; 169 170 write_sysreg_s(ctxt_sys_reg(hctxt, HFGITR_EL2), SYS_HFGITR_EL2); 171 write_sysreg_s(ctxt_sys_reg(hctxt, HDFGRTR_EL2), SYS_HDFGRTR_EL2); 172 write_sysreg_s(ctxt_sys_reg(hctxt, HDFGWTR_EL2), SYS_HDFGWTR_EL2); 173 } 174 175 static inline void __activate_traps_common(struct kvm_vcpu *vcpu) 176 { 177 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */ 178 write_sysreg(1 << 15, hstr_el2); 179 180 /* 181 * Make sure we trap PMU access from EL0 to EL2. Also sanitize 182 * PMSELR_EL0 to make sure it never contains the cycle 183 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at 184 * EL1 instead of being trapped to EL2. 185 */ 186 if (kvm_arm_support_pmu_v3()) { 187 struct kvm_cpu_context *hctxt; 188 189 write_sysreg(0, pmselr_el0); 190 191 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; 192 ctxt_sys_reg(hctxt, PMUSERENR_EL0) = read_sysreg(pmuserenr_el0); 193 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0); 194 vcpu_set_flag(vcpu, PMUSERENR_ON_CPU); 195 } 196 197 vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2); 198 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2); 199 200 if (cpus_have_final_cap(ARM64_HAS_HCX)) { 201 u64 hcrx = HCRX_GUEST_FLAGS; 202 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { 203 u64 clr = 0, set = 0; 204 205 compute_clr_set(vcpu, HCRX_EL2, clr, set); 206 207 hcrx |= set; 208 hcrx &= ~clr; 209 } 210 211 write_sysreg_s(hcrx, SYS_HCRX_EL2); 212 } 213 214 __activate_traps_hfgxtr(vcpu); 215 } 216 217 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu) 218 { 219 write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2); 220 221 write_sysreg(0, hstr_el2); 222 if (kvm_arm_support_pmu_v3()) { 223 struct kvm_cpu_context *hctxt; 224 225 hctxt = &this_cpu_ptr(&kvm_host_data)->host_ctxt; 226 write_sysreg(ctxt_sys_reg(hctxt, PMUSERENR_EL0), pmuserenr_el0); 227 vcpu_clear_flag(vcpu, PMUSERENR_ON_CPU); 228 } 229 230 if (cpus_have_final_cap(ARM64_HAS_HCX)) 231 write_sysreg_s(HCRX_HOST_FLAGS, SYS_HCRX_EL2); 232 233 __deactivate_traps_hfgxtr(vcpu); 234 } 235 236 static inline void ___activate_traps(struct kvm_vcpu *vcpu) 237 { 238 u64 hcr = vcpu->arch.hcr_el2; 239 240 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM)) 241 hcr |= HCR_TVM; 242 243 write_sysreg(hcr, hcr_el2); 244 245 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE)) 246 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2); 247 } 248 249 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu) 250 { 251 /* 252 * If we pended a virtual abort, preserve it until it gets 253 * cleared. See D1.14.3 (Virtual Interrupts) for details, but 254 * the crucial bit is "On taking a vSError interrupt, 255 * HCR_EL2.VSE is cleared to 0." 256 */ 257 if (vcpu->arch.hcr_el2 & HCR_VSE) { 258 vcpu->arch.hcr_el2 &= ~HCR_VSE; 259 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE; 260 } 261 } 262 263 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu) 264 { 265 return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault); 266 } 267 268 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu) 269 { 270 sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2); 271 __sve_restore_state(vcpu_sve_pffr(vcpu), 272 &vcpu->arch.ctxt.fp_regs.fpsr); 273 write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR); 274 } 275 276 /* 277 * We trap the first access to the FP/SIMD to save the host context and 278 * restore the guest context lazily. 279 * If FP/SIMD is not implemented, handle the trap and inject an undefined 280 * instruction exception to the guest. Similarly for trapped SVE accesses. 281 */ 282 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code) 283 { 284 bool sve_guest; 285 u8 esr_ec; 286 u64 reg; 287 288 if (!system_supports_fpsimd()) 289 return false; 290 291 sve_guest = vcpu_has_sve(vcpu); 292 esr_ec = kvm_vcpu_trap_get_class(vcpu); 293 294 /* Only handle traps the vCPU can support here: */ 295 switch (esr_ec) { 296 case ESR_ELx_EC_FP_ASIMD: 297 break; 298 case ESR_ELx_EC_SVE: 299 if (!sve_guest) 300 return false; 301 break; 302 default: 303 return false; 304 } 305 306 /* Valid trap. Switch the context: */ 307 308 /* First disable enough traps to allow us to update the registers */ 309 if (has_vhe() || has_hvhe()) { 310 reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN; 311 if (sve_guest) 312 reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN; 313 314 sysreg_clear_set(cpacr_el1, 0, reg); 315 } else { 316 reg = CPTR_EL2_TFP; 317 if (sve_guest) 318 reg |= CPTR_EL2_TZ; 319 320 sysreg_clear_set(cptr_el2, reg, 0); 321 } 322 isb(); 323 324 /* Write out the host state if it's in the registers */ 325 if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED) 326 __fpsimd_save_state(vcpu->arch.host_fpsimd_state); 327 328 /* Restore the guest state */ 329 if (sve_guest) 330 __hyp_sve_restore_guest(vcpu); 331 else 332 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs); 333 334 /* Skip restoring fpexc32 for AArch64 guests */ 335 if (!(read_sysreg(hcr_el2) & HCR_RW)) 336 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2); 337 338 vcpu->arch.fp_state = FP_STATE_GUEST_OWNED; 339 340 return true; 341 } 342 343 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu) 344 { 345 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 346 int rt = kvm_vcpu_sys_get_rt(vcpu); 347 u64 val = vcpu_get_reg(vcpu, rt); 348 349 /* 350 * The normal sysreg handling code expects to see the traps, 351 * let's not do anything here. 352 */ 353 if (vcpu->arch.hcr_el2 & HCR_TVM) 354 return false; 355 356 switch (sysreg) { 357 case SYS_SCTLR_EL1: 358 write_sysreg_el1(val, SYS_SCTLR); 359 break; 360 case SYS_TTBR0_EL1: 361 write_sysreg_el1(val, SYS_TTBR0); 362 break; 363 case SYS_TTBR1_EL1: 364 write_sysreg_el1(val, SYS_TTBR1); 365 break; 366 case SYS_TCR_EL1: 367 write_sysreg_el1(val, SYS_TCR); 368 break; 369 case SYS_ESR_EL1: 370 write_sysreg_el1(val, SYS_ESR); 371 break; 372 case SYS_FAR_EL1: 373 write_sysreg_el1(val, SYS_FAR); 374 break; 375 case SYS_AFSR0_EL1: 376 write_sysreg_el1(val, SYS_AFSR0); 377 break; 378 case SYS_AFSR1_EL1: 379 write_sysreg_el1(val, SYS_AFSR1); 380 break; 381 case SYS_MAIR_EL1: 382 write_sysreg_el1(val, SYS_MAIR); 383 break; 384 case SYS_AMAIR_EL1: 385 write_sysreg_el1(val, SYS_AMAIR); 386 break; 387 case SYS_CONTEXTIDR_EL1: 388 write_sysreg_el1(val, SYS_CONTEXTIDR); 389 break; 390 default: 391 return false; 392 } 393 394 __kvm_skip_instr(vcpu); 395 return true; 396 } 397 398 static inline bool esr_is_ptrauth_trap(u64 esr) 399 { 400 switch (esr_sys64_to_sysreg(esr)) { 401 case SYS_APIAKEYLO_EL1: 402 case SYS_APIAKEYHI_EL1: 403 case SYS_APIBKEYLO_EL1: 404 case SYS_APIBKEYHI_EL1: 405 case SYS_APDAKEYLO_EL1: 406 case SYS_APDAKEYHI_EL1: 407 case SYS_APDBKEYLO_EL1: 408 case SYS_APDBKEYHI_EL1: 409 case SYS_APGAKEYLO_EL1: 410 case SYS_APGAKEYHI_EL1: 411 return true; 412 } 413 414 return false; 415 } 416 417 #define __ptrauth_save_key(ctxt, key) \ 418 do { \ 419 u64 __val; \ 420 __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \ 421 ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \ 422 __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \ 423 ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \ 424 } while(0) 425 426 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt); 427 428 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code) 429 { 430 struct kvm_cpu_context *ctxt; 431 u64 val; 432 433 if (!vcpu_has_ptrauth(vcpu)) 434 return false; 435 436 ctxt = this_cpu_ptr(&kvm_hyp_ctxt); 437 __ptrauth_save_key(ctxt, APIA); 438 __ptrauth_save_key(ctxt, APIB); 439 __ptrauth_save_key(ctxt, APDA); 440 __ptrauth_save_key(ctxt, APDB); 441 __ptrauth_save_key(ctxt, APGA); 442 443 vcpu_ptrauth_enable(vcpu); 444 445 val = read_sysreg(hcr_el2); 446 val |= (HCR_API | HCR_APK); 447 write_sysreg(val, hcr_el2); 448 449 return true; 450 } 451 452 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu) 453 { 454 struct arch_timer_context *ctxt; 455 u32 sysreg; 456 u64 val; 457 458 /* 459 * We only get here for 64bit guests, 32bit guests will hit 460 * the long and winding road all the way to the standard 461 * handling. Yes, it sucks to be irrelevant. 462 */ 463 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 464 465 switch (sysreg) { 466 case SYS_CNTPCT_EL0: 467 case SYS_CNTPCTSS_EL0: 468 if (vcpu_has_nv(vcpu)) { 469 if (is_hyp_ctxt(vcpu)) { 470 ctxt = vcpu_hptimer(vcpu); 471 break; 472 } 473 474 /* Check for guest hypervisor trapping */ 475 val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2); 476 if (!vcpu_el2_e2h_is_set(vcpu)) 477 val = (val & CNTHCTL_EL1PCTEN) << 10; 478 479 if (!(val & (CNTHCTL_EL1PCTEN << 10))) 480 return false; 481 } 482 483 ctxt = vcpu_ptimer(vcpu); 484 break; 485 default: 486 return false; 487 } 488 489 val = arch_timer_read_cntpct_el0(); 490 491 if (ctxt->offset.vm_offset) 492 val -= *kern_hyp_va(ctxt->offset.vm_offset); 493 if (ctxt->offset.vcpu_offset) 494 val -= *kern_hyp_va(ctxt->offset.vcpu_offset); 495 496 vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val); 497 __kvm_skip_instr(vcpu); 498 return true; 499 } 500 501 static bool handle_ampere1_tcr(struct kvm_vcpu *vcpu) 502 { 503 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu)); 504 int rt = kvm_vcpu_sys_get_rt(vcpu); 505 u64 val = vcpu_get_reg(vcpu, rt); 506 507 if (sysreg != SYS_TCR_EL1) 508 return false; 509 510 /* 511 * Affected parts do not advertise support for hardware Access Flag / 512 * Dirty state management in ID_AA64MMFR1_EL1.HAFDBS, but the underlying 513 * control bits are still functional. The architecture requires these be 514 * RES0 on systems that do not implement FEAT_HAFDBS. 515 * 516 * Uphold the requirements of the architecture by masking guest writes 517 * to TCR_EL1.{HA,HD} here. 518 */ 519 val &= ~(TCR_HD | TCR_HA); 520 write_sysreg_el1(val, SYS_TCR); 521 __kvm_skip_instr(vcpu); 522 return true; 523 } 524 525 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code) 526 { 527 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) && 528 handle_tx2_tvm(vcpu)) 529 return true; 530 531 if (cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38) && 532 handle_ampere1_tcr(vcpu)) 533 return true; 534 535 if (static_branch_unlikely(&vgic_v3_cpuif_trap) && 536 __vgic_v3_perform_cpuif_access(vcpu) == 1) 537 return true; 538 539 if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu))) 540 return kvm_hyp_handle_ptrauth(vcpu, exit_code); 541 542 if (kvm_hyp_handle_cntpct(vcpu)) 543 return true; 544 545 return false; 546 } 547 548 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code) 549 { 550 if (static_branch_unlikely(&vgic_v3_cpuif_trap) && 551 __vgic_v3_perform_cpuif_access(vcpu) == 1) 552 return true; 553 554 return false; 555 } 556 557 static bool kvm_hyp_handle_memory_fault(struct kvm_vcpu *vcpu, u64 *exit_code) 558 { 559 if (!__populate_fault_info(vcpu)) 560 return true; 561 562 return false; 563 } 564 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 565 __alias(kvm_hyp_handle_memory_fault); 566 static bool kvm_hyp_handle_watchpt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 567 __alias(kvm_hyp_handle_memory_fault); 568 569 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code) 570 { 571 if (kvm_hyp_handle_memory_fault(vcpu, exit_code)) 572 return true; 573 574 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) { 575 bool valid; 576 577 valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT && 578 kvm_vcpu_dabt_isvalid(vcpu) && 579 !kvm_vcpu_abt_issea(vcpu) && 580 !kvm_vcpu_abt_iss1tw(vcpu); 581 582 if (valid) { 583 int ret = __vgic_v2_perform_cpuif_access(vcpu); 584 585 if (ret == 1) 586 return true; 587 588 /* Promote an illegal access to an SError.*/ 589 if (ret == -1) 590 *exit_code = ARM_EXCEPTION_EL1_SERROR; 591 } 592 } 593 594 return false; 595 } 596 597 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *); 598 599 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu); 600 601 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code); 602 603 /* 604 * Allow the hypervisor to handle the exit with an exit handler if it has one. 605 * 606 * Returns true if the hypervisor handled the exit, and control should go back 607 * to the guest, or false if it hasn't. 608 */ 609 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 610 { 611 const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu); 612 exit_handler_fn fn; 613 614 fn = handlers[kvm_vcpu_trap_get_class(vcpu)]; 615 616 if (fn) 617 return fn(vcpu, exit_code); 618 619 return false; 620 } 621 622 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code) 623 { 624 /* 625 * Check for the conditions of Cortex-A510's #2077057. When these occur 626 * SPSR_EL2 can't be trusted, but isn't needed either as it is 627 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate. 628 * Are we single-stepping the guest, and took a PAC exception from the 629 * active-not-pending state? 630 */ 631 if (cpus_have_final_cap(ARM64_WORKAROUND_2077057) && 632 vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 633 *vcpu_cpsr(vcpu) & DBG_SPSR_SS && 634 ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC) 635 write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR); 636 637 vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR); 638 } 639 640 /* 641 * Return true when we were able to fixup the guest exit and should return to 642 * the guest, false when we should restore the host state and return to the 643 * main run loop. 644 */ 645 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code) 646 { 647 /* 648 * Save PSTATE early so that we can evaluate the vcpu mode 649 * early on. 650 */ 651 synchronize_vcpu_pstate(vcpu, exit_code); 652 653 /* 654 * Check whether we want to repaint the state one way or 655 * another. 656 */ 657 early_exit_filter(vcpu, exit_code); 658 659 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) 660 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR); 661 662 if (ARM_SERROR_PENDING(*exit_code) && 663 ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) { 664 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); 665 666 /* 667 * HVC already have an adjusted PC, which we need to 668 * correct in order to return to after having injected 669 * the SError. 670 * 671 * SMC, on the other hand, is *trapped*, meaning its 672 * preferred return address is the SMC itself. 673 */ 674 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64) 675 write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR); 676 } 677 678 /* 679 * We're using the raw exception code in order to only process 680 * the trap if no SError is pending. We will come back to the 681 * same PC once the SError has been injected, and replay the 682 * trapping instruction. 683 */ 684 if (*exit_code != ARM_EXCEPTION_TRAP) 685 goto exit; 686 687 /* Check if there's an exit handler and allow it to handle the exit. */ 688 if (kvm_hyp_handle_exit(vcpu, exit_code)) 689 goto guest; 690 exit: 691 /* Return to the host kernel and handle the exit */ 692 return false; 693 694 guest: 695 /* Re-enter the guest */ 696 asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412)); 697 return true; 698 } 699 700 static inline void __kvm_unexpected_el2_exception(void) 701 { 702 extern char __guest_exit_panic[]; 703 unsigned long addr, fixup; 704 struct kvm_exception_table_entry *entry, *end; 705 unsigned long elr_el2 = read_sysreg(elr_el2); 706 707 entry = &__start___kvm_ex_table; 708 end = &__stop___kvm_ex_table; 709 710 while (entry < end) { 711 addr = (unsigned long)&entry->insn + entry->insn; 712 fixup = (unsigned long)&entry->fixup + entry->fixup; 713 714 if (addr != elr_el2) { 715 entry++; 716 continue; 717 } 718 719 write_sysreg(fixup, elr_el2); 720 return; 721 } 722 723 /* Trigger a panic after restoring the hyp context. */ 724 write_sysreg(__guest_exit_panic, elr_el2); 725 } 726 727 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */ 728