xref: /openbmc/linux/arch/arm64/kvm/hyp/include/hyp/switch.h (revision 35e6bcd1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9 
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12 
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18 
19 #include <kvm/arm_psci.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/fpsimd.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/processor.h>
33 
34 struct kvm_exception_table_entry {
35 	int insn, fixup;
36 };
37 
38 extern struct kvm_exception_table_entry __start___kvm_ex_table;
39 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
40 
41 /* Check whether the FP regs are owned by the guest */
42 static inline bool guest_owns_fp_regs(struct kvm_vcpu *vcpu)
43 {
44 	return vcpu->arch.fp_state == FP_STATE_GUEST_OWNED;
45 }
46 
47 /* Save the 32-bit only FPSIMD system register state */
48 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
49 {
50 	if (!vcpu_el1_is_32bit(vcpu))
51 		return;
52 
53 	__vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
54 }
55 
56 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
57 {
58 	/*
59 	 * We are about to set CPTR_EL2.TFP to trap all floating point
60 	 * register accesses to EL2, however, the ARM ARM clearly states that
61 	 * traps are only taken to EL2 if the operation would not otherwise
62 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
63 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
64 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
65 	 * it will cause an exception.
66 	 */
67 	if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
68 		write_sysreg(1 << 30, fpexc32_el2);
69 		isb();
70 	}
71 }
72 
73 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
74 {
75 	/* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
76 	write_sysreg(1 << 15, hstr_el2);
77 
78 	/*
79 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
80 	 * PMSELR_EL0 to make sure it never contains the cycle
81 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
82 	 * EL1 instead of being trapped to EL2.
83 	 */
84 	if (kvm_arm_support_pmu_v3()) {
85 		write_sysreg(0, pmselr_el0);
86 		write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
87 	}
88 
89 	vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
90 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
91 
92 	if (cpus_have_final_cap(ARM64_SME)) {
93 		sysreg_clear_set_s(SYS_HFGRTR_EL2,
94 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
95 				   HFGxTR_EL2_nTPIDR2_EL0_MASK,
96 				   0);
97 		sysreg_clear_set_s(SYS_HFGWTR_EL2,
98 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
99 				   HFGxTR_EL2_nTPIDR2_EL0_MASK,
100 				   0);
101 	}
102 }
103 
104 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
105 {
106 	write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
107 
108 	write_sysreg(0, hstr_el2);
109 	if (kvm_arm_support_pmu_v3())
110 		write_sysreg(0, pmuserenr_el0);
111 
112 	if (cpus_have_final_cap(ARM64_SME)) {
113 		sysreg_clear_set_s(SYS_HFGRTR_EL2, 0,
114 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
115 				   HFGxTR_EL2_nTPIDR2_EL0_MASK);
116 		sysreg_clear_set_s(SYS_HFGWTR_EL2, 0,
117 				   HFGxTR_EL2_nSMPRI_EL1_MASK |
118 				   HFGxTR_EL2_nTPIDR2_EL0_MASK);
119 	}
120 }
121 
122 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
123 {
124 	u64 hcr = vcpu->arch.hcr_el2;
125 
126 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
127 		hcr |= HCR_TVM;
128 
129 	write_sysreg(hcr, hcr_el2);
130 
131 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
132 		write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
133 }
134 
135 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
136 {
137 	/*
138 	 * If we pended a virtual abort, preserve it until it gets
139 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
140 	 * the crucial bit is "On taking a vSError interrupt,
141 	 * HCR_EL2.VSE is cleared to 0."
142 	 */
143 	if (vcpu->arch.hcr_el2 & HCR_VSE) {
144 		vcpu->arch.hcr_el2 &= ~HCR_VSE;
145 		vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
146 	}
147 }
148 
149 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
150 {
151 	return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
152 }
153 
154 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
155 {
156 	sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
157 	__sve_restore_state(vcpu_sve_pffr(vcpu),
158 			    &vcpu->arch.ctxt.fp_regs.fpsr);
159 	write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
160 }
161 
162 /*
163  * We trap the first access to the FP/SIMD to save the host context and
164  * restore the guest context lazily.
165  * If FP/SIMD is not implemented, handle the trap and inject an undefined
166  * instruction exception to the guest. Similarly for trapped SVE accesses.
167  */
168 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
169 {
170 	bool sve_guest;
171 	u8 esr_ec;
172 	u64 reg;
173 
174 	if (!system_supports_fpsimd())
175 		return false;
176 
177 	sve_guest = vcpu_has_sve(vcpu);
178 	esr_ec = kvm_vcpu_trap_get_class(vcpu);
179 
180 	/* Don't handle SVE traps for non-SVE vcpus here: */
181 	if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD)
182 		return false;
183 
184 	/* Valid trap.  Switch the context: */
185 
186 	/* First disable enough traps to allow us to update the registers */
187 	if (has_vhe()) {
188 		reg = CPACR_EL1_FPEN_EL0EN | CPACR_EL1_FPEN_EL1EN;
189 		if (sve_guest)
190 			reg |= CPACR_EL1_ZEN_EL0EN | CPACR_EL1_ZEN_EL1EN;
191 
192 		sysreg_clear_set(cpacr_el1, 0, reg);
193 	} else {
194 		reg = CPTR_EL2_TFP;
195 		if (sve_guest)
196 			reg |= CPTR_EL2_TZ;
197 
198 		sysreg_clear_set(cptr_el2, reg, 0);
199 	}
200 	isb();
201 
202 	/* Write out the host state if it's in the registers */
203 	if (vcpu->arch.fp_state == FP_STATE_HOST_OWNED)
204 		__fpsimd_save_state(vcpu->arch.host_fpsimd_state);
205 
206 	/* Restore the guest state */
207 	if (sve_guest)
208 		__hyp_sve_restore_guest(vcpu);
209 	else
210 		__fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
211 
212 	/* Skip restoring fpexc32 for AArch64 guests */
213 	if (!(read_sysreg(hcr_el2) & HCR_RW))
214 		write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
215 
216 	vcpu->arch.fp_state = FP_STATE_GUEST_OWNED;
217 
218 	return true;
219 }
220 
221 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
222 {
223 	u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
224 	int rt = kvm_vcpu_sys_get_rt(vcpu);
225 	u64 val = vcpu_get_reg(vcpu, rt);
226 
227 	/*
228 	 * The normal sysreg handling code expects to see the traps,
229 	 * let's not do anything here.
230 	 */
231 	if (vcpu->arch.hcr_el2 & HCR_TVM)
232 		return false;
233 
234 	switch (sysreg) {
235 	case SYS_SCTLR_EL1:
236 		write_sysreg_el1(val, SYS_SCTLR);
237 		break;
238 	case SYS_TTBR0_EL1:
239 		write_sysreg_el1(val, SYS_TTBR0);
240 		break;
241 	case SYS_TTBR1_EL1:
242 		write_sysreg_el1(val, SYS_TTBR1);
243 		break;
244 	case SYS_TCR_EL1:
245 		write_sysreg_el1(val, SYS_TCR);
246 		break;
247 	case SYS_ESR_EL1:
248 		write_sysreg_el1(val, SYS_ESR);
249 		break;
250 	case SYS_FAR_EL1:
251 		write_sysreg_el1(val, SYS_FAR);
252 		break;
253 	case SYS_AFSR0_EL1:
254 		write_sysreg_el1(val, SYS_AFSR0);
255 		break;
256 	case SYS_AFSR1_EL1:
257 		write_sysreg_el1(val, SYS_AFSR1);
258 		break;
259 	case SYS_MAIR_EL1:
260 		write_sysreg_el1(val, SYS_MAIR);
261 		break;
262 	case SYS_AMAIR_EL1:
263 		write_sysreg_el1(val, SYS_AMAIR);
264 		break;
265 	case SYS_CONTEXTIDR_EL1:
266 		write_sysreg_el1(val, SYS_CONTEXTIDR);
267 		break;
268 	default:
269 		return false;
270 	}
271 
272 	__kvm_skip_instr(vcpu);
273 	return true;
274 }
275 
276 static inline bool esr_is_ptrauth_trap(u64 esr)
277 {
278 	switch (esr_sys64_to_sysreg(esr)) {
279 	case SYS_APIAKEYLO_EL1:
280 	case SYS_APIAKEYHI_EL1:
281 	case SYS_APIBKEYLO_EL1:
282 	case SYS_APIBKEYHI_EL1:
283 	case SYS_APDAKEYLO_EL1:
284 	case SYS_APDAKEYHI_EL1:
285 	case SYS_APDBKEYLO_EL1:
286 	case SYS_APDBKEYHI_EL1:
287 	case SYS_APGAKEYLO_EL1:
288 	case SYS_APGAKEYHI_EL1:
289 		return true;
290 	}
291 
292 	return false;
293 }
294 
295 #define __ptrauth_save_key(ctxt, key)					\
296 	do {								\
297 	u64 __val;                                                      \
298 	__val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1);                \
299 	ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val;                   \
300 	__val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1);                \
301 	ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val;                   \
302 } while(0)
303 
304 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
305 
306 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
307 {
308 	struct kvm_cpu_context *ctxt;
309 	u64 val;
310 
311 	if (!vcpu_has_ptrauth(vcpu))
312 		return false;
313 
314 	ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
315 	__ptrauth_save_key(ctxt, APIA);
316 	__ptrauth_save_key(ctxt, APIB);
317 	__ptrauth_save_key(ctxt, APDA);
318 	__ptrauth_save_key(ctxt, APDB);
319 	__ptrauth_save_key(ctxt, APGA);
320 
321 	vcpu_ptrauth_enable(vcpu);
322 
323 	val = read_sysreg(hcr_el2);
324 	val |= (HCR_API | HCR_APK);
325 	write_sysreg(val, hcr_el2);
326 
327 	return true;
328 }
329 
330 static bool kvm_hyp_handle_cntpct(struct kvm_vcpu *vcpu)
331 {
332 	struct arch_timer_context *ctxt;
333 	u32 sysreg;
334 	u64 val;
335 
336 	/*
337 	 * We only get here for 64bit guests, 32bit guests will hit
338 	 * the long and winding road all the way to the standard
339 	 * handling. Yes, it sucks to be irrelevant.
340 	 */
341 	sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
342 
343 	switch (sysreg) {
344 	case SYS_CNTPCT_EL0:
345 	case SYS_CNTPCTSS_EL0:
346 		if (vcpu_has_nv(vcpu)) {
347 			if (is_hyp_ctxt(vcpu)) {
348 				ctxt = vcpu_hptimer(vcpu);
349 				break;
350 			}
351 
352 			/* Check for guest hypervisor trapping */
353 			val = __vcpu_sys_reg(vcpu, CNTHCTL_EL2);
354 			if (!vcpu_el2_e2h_is_set(vcpu))
355 				val = (val & CNTHCTL_EL1PCTEN) << 10;
356 
357 			if (!(val & (CNTHCTL_EL1PCTEN << 10)))
358 				return false;
359 		}
360 
361 		ctxt = vcpu_ptimer(vcpu);
362 		break;
363 	default:
364 		return false;
365 	}
366 
367 	val = arch_timer_read_cntpct_el0();
368 
369 	if (ctxt->offset.vm_offset)
370 		val -= *kern_hyp_va(ctxt->offset.vm_offset);
371 	if (ctxt->offset.vcpu_offset)
372 		val -= *kern_hyp_va(ctxt->offset.vcpu_offset);
373 
374 	vcpu_set_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu), val);
375 	__kvm_skip_instr(vcpu);
376 	return true;
377 }
378 
379 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
380 {
381 	if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
382 	    handle_tx2_tvm(vcpu))
383 		return true;
384 
385 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
386 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
387 		return true;
388 
389 	if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
390 		return kvm_hyp_handle_ptrauth(vcpu, exit_code);
391 
392 	if (kvm_hyp_handle_cntpct(vcpu))
393 		return true;
394 
395 	return false;
396 }
397 
398 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
399 {
400 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
401 	    __vgic_v3_perform_cpuif_access(vcpu) == 1)
402 		return true;
403 
404 	return false;
405 }
406 
407 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
408 {
409 	if (!__populate_fault_info(vcpu))
410 		return true;
411 
412 	return false;
413 }
414 
415 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
416 {
417 	if (!__populate_fault_info(vcpu))
418 		return true;
419 
420 	if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
421 		bool valid;
422 
423 		valid = kvm_vcpu_trap_get_fault_type(vcpu) == ESR_ELx_FSC_FAULT &&
424 			kvm_vcpu_dabt_isvalid(vcpu) &&
425 			!kvm_vcpu_abt_issea(vcpu) &&
426 			!kvm_vcpu_abt_iss1tw(vcpu);
427 
428 		if (valid) {
429 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
430 
431 			if (ret == 1)
432 				return true;
433 
434 			/* Promote an illegal access to an SError.*/
435 			if (ret == -1)
436 				*exit_code = ARM_EXCEPTION_EL1_SERROR;
437 		}
438 	}
439 
440 	return false;
441 }
442 
443 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
444 
445 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
446 
447 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
448 
449 /*
450  * Allow the hypervisor to handle the exit with an exit handler if it has one.
451  *
452  * Returns true if the hypervisor handled the exit, and control should go back
453  * to the guest, or false if it hasn't.
454  */
455 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
456 {
457 	const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
458 	exit_handler_fn fn;
459 
460 	fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
461 
462 	if (fn)
463 		return fn(vcpu, exit_code);
464 
465 	return false;
466 }
467 
468 static inline void synchronize_vcpu_pstate(struct kvm_vcpu *vcpu, u64 *exit_code)
469 {
470 	/*
471 	 * Check for the conditions of Cortex-A510's #2077057. When these occur
472 	 * SPSR_EL2 can't be trusted, but isn't needed either as it is
473 	 * unchanged from the value in vcpu_gp_regs(vcpu)->pstate.
474 	 * Are we single-stepping the guest, and took a PAC exception from the
475 	 * active-not-pending state?
476 	 */
477 	if (cpus_have_final_cap(ARM64_WORKAROUND_2077057)		&&
478 	    vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP			&&
479 	    *vcpu_cpsr(vcpu) & DBG_SPSR_SS				&&
480 	    ESR_ELx_EC(read_sysreg_el2(SYS_ESR)) == ESR_ELx_EC_PAC)
481 		write_sysreg_el2(*vcpu_cpsr(vcpu), SYS_SPSR);
482 
483 	vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
484 }
485 
486 /*
487  * Return true when we were able to fixup the guest exit and should return to
488  * the guest, false when we should restore the host state and return to the
489  * main run loop.
490  */
491 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
492 {
493 	/*
494 	 * Save PSTATE early so that we can evaluate the vcpu mode
495 	 * early on.
496 	 */
497 	synchronize_vcpu_pstate(vcpu, exit_code);
498 
499 	/*
500 	 * Check whether we want to repaint the state one way or
501 	 * another.
502 	 */
503 	early_exit_filter(vcpu, exit_code);
504 
505 	if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
506 		vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
507 
508 	if (ARM_SERROR_PENDING(*exit_code) &&
509 	    ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ) {
510 		u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
511 
512 		/*
513 		 * HVC already have an adjusted PC, which we need to
514 		 * correct in order to return to after having injected
515 		 * the SError.
516 		 *
517 		 * SMC, on the other hand, is *trapped*, meaning its
518 		 * preferred return address is the SMC itself.
519 		 */
520 		if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
521 			write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
522 	}
523 
524 	/*
525 	 * We're using the raw exception code in order to only process
526 	 * the trap if no SError is pending. We will come back to the
527 	 * same PC once the SError has been injected, and replay the
528 	 * trapping instruction.
529 	 */
530 	if (*exit_code != ARM_EXCEPTION_TRAP)
531 		goto exit;
532 
533 	/* Check if there's an exit handler and allow it to handle the exit. */
534 	if (kvm_hyp_handle_exit(vcpu, exit_code))
535 		goto guest;
536 exit:
537 	/* Return to the host kernel and handle the exit */
538 	return false;
539 
540 guest:
541 	/* Re-enter the guest */
542 	asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
543 	return true;
544 }
545 
546 static inline void __kvm_unexpected_el2_exception(void)
547 {
548 	extern char __guest_exit_panic[];
549 	unsigned long addr, fixup;
550 	struct kvm_exception_table_entry *entry, *end;
551 	unsigned long elr_el2 = read_sysreg(elr_el2);
552 
553 	entry = &__start___kvm_ex_table;
554 	end = &__stop___kvm_ex_table;
555 
556 	while (entry < end) {
557 		addr = (unsigned long)&entry->insn + entry->insn;
558 		fixup = (unsigned long)&entry->fixup + entry->fixup;
559 
560 		if (addr != elr_el2) {
561 			entry++;
562 			continue;
563 		}
564 
565 		write_sysreg(fixup, elr_el2);
566 		return;
567 	}
568 
569 	/* Trigger a panic after restoring the hyp context. */
570 	write_sysreg(__guest_exit_panic, elr_el2);
571 }
572 
573 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
574