xref: /openbmc/linux/arch/arm64/kvm/handle_exit.c (revision bd1f88a12843e0b876eabecd042e307941643ed9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/handle_exit.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/kvm.h>
12 #include <linux/kvm_host.h>
13 
14 #include <asm/esr.h>
15 #include <asm/exception.h>
16 #include <asm/kvm_asm.h>
17 #include <asm/kvm_emulate.h>
18 #include <asm/kvm_mmu.h>
19 #include <asm/kvm_nested.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/stacktrace/nvhe.h>
22 #include <asm/traps.h>
23 
24 #include <kvm/arm_hypercalls.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_handle_exit.h"
28 
29 typedef int (*exit_handle_fn)(struct kvm_vcpu *);
30 
31 static void kvm_handle_guest_serror(struct kvm_vcpu *vcpu, u64 esr)
32 {
33 	if (!arm64_is_ras_serror(esr) || arm64_is_fatal_ras_serror(NULL, esr))
34 		kvm_inject_vabt(vcpu);
35 }
36 
37 static int handle_hvc(struct kvm_vcpu *vcpu)
38 {
39 	trace_kvm_hvc_arm64(*vcpu_pc(vcpu), vcpu_get_reg(vcpu, 0),
40 			    kvm_vcpu_hvc_get_imm(vcpu));
41 	vcpu->stat.hvc_exit_stat++;
42 
43 	/* Forward hvc instructions to the virtual EL2 if the guest has EL2. */
44 	if (vcpu_has_nv(vcpu)) {
45 		if (vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_HCD)
46 			kvm_inject_undefined(vcpu);
47 		else
48 			kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
49 
50 		return 1;
51 	}
52 
53 	return kvm_smccc_call_handler(vcpu);
54 }
55 
56 static int handle_smc(struct kvm_vcpu *vcpu)
57 {
58 	/*
59 	 * "If an SMC instruction executed at Non-secure EL1 is
60 	 * trapped to EL2 because HCR_EL2.TSC is 1, the exception is a
61 	 * Trap exception, not a Secure Monitor Call exception [...]"
62 	 *
63 	 * We need to advance the PC after the trap, as it would
64 	 * otherwise return to the same address. Furthermore, pre-incrementing
65 	 * the PC before potentially exiting to userspace maintains the same
66 	 * abstraction for both SMCs and HVCs.
67 	 */
68 	kvm_incr_pc(vcpu);
69 
70 	/*
71 	 * SMCs with a nonzero immediate are reserved according to DEN0028E 2.9
72 	 * "SMC and HVC immediate value".
73 	 */
74 	if (kvm_vcpu_hvc_get_imm(vcpu)) {
75 		vcpu_set_reg(vcpu, 0, ~0UL);
76 		return 1;
77 	}
78 
79 	/*
80 	 * If imm is zero then it is likely an SMCCC call.
81 	 *
82 	 * Note that on ARMv8.3, even if EL3 is not implemented, SMC executed
83 	 * at Non-secure EL1 is trapped to EL2 if HCR_EL2.TSC==1, rather than
84 	 * being treated as UNDEFINED.
85 	 */
86 	return kvm_smccc_call_handler(vcpu);
87 }
88 
89 /*
90  * Guest access to FP/ASIMD registers are routed to this handler only
91  * when the system doesn't support FP/ASIMD.
92  */
93 static int handle_no_fpsimd(struct kvm_vcpu *vcpu)
94 {
95 	kvm_inject_undefined(vcpu);
96 	return 1;
97 }
98 
99 /**
100  * kvm_handle_wfx - handle a wait-for-interrupts or wait-for-event
101  *		    instruction executed by a guest
102  *
103  * @vcpu:	the vcpu pointer
104  *
105  * WFE[T]: Yield the CPU and come back to this vcpu when the scheduler
106  * decides to.
107  * WFI: Simply call kvm_vcpu_halt(), which will halt execution of
108  * world-switches and schedule other host processes until there is an
109  * incoming IRQ or FIQ to the VM.
110  * WFIT: Same as WFI, with a timed wakeup implemented as a background timer
111  *
112  * WF{I,E}T can immediately return if the deadline has already expired.
113  */
114 static int kvm_handle_wfx(struct kvm_vcpu *vcpu)
115 {
116 	u64 esr = kvm_vcpu_get_esr(vcpu);
117 
118 	if (esr & ESR_ELx_WFx_ISS_WFE) {
119 		trace_kvm_wfx_arm64(*vcpu_pc(vcpu), true);
120 		vcpu->stat.wfe_exit_stat++;
121 	} else {
122 		trace_kvm_wfx_arm64(*vcpu_pc(vcpu), false);
123 		vcpu->stat.wfi_exit_stat++;
124 	}
125 
126 	if (esr & ESR_ELx_WFx_ISS_WFxT) {
127 		if (esr & ESR_ELx_WFx_ISS_RV) {
128 			u64 val, now;
129 
130 			now = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_TIMER_CNT);
131 			val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
132 
133 			if (now >= val)
134 				goto out;
135 		} else {
136 			/* Treat WFxT as WFx if RN is invalid */
137 			esr &= ~ESR_ELx_WFx_ISS_WFxT;
138 		}
139 	}
140 
141 	if (esr & ESR_ELx_WFx_ISS_WFE) {
142 		kvm_vcpu_on_spin(vcpu, vcpu_mode_priv(vcpu));
143 	} else {
144 		if (esr & ESR_ELx_WFx_ISS_WFxT)
145 			vcpu_set_flag(vcpu, IN_WFIT);
146 
147 		kvm_vcpu_wfi(vcpu);
148 	}
149 out:
150 	kvm_incr_pc(vcpu);
151 
152 	return 1;
153 }
154 
155 /**
156  * kvm_handle_guest_debug - handle a debug exception instruction
157  *
158  * @vcpu:	the vcpu pointer
159  *
160  * We route all debug exceptions through the same handler. If both the
161  * guest and host are using the same debug facilities it will be up to
162  * userspace to re-inject the correct exception for guest delivery.
163  *
164  * @return: 0 (while setting vcpu->run->exit_reason)
165  */
166 static int kvm_handle_guest_debug(struct kvm_vcpu *vcpu)
167 {
168 	struct kvm_run *run = vcpu->run;
169 	u64 esr = kvm_vcpu_get_esr(vcpu);
170 
171 	run->exit_reason = KVM_EXIT_DEBUG;
172 	run->debug.arch.hsr = lower_32_bits(esr);
173 	run->debug.arch.hsr_high = upper_32_bits(esr);
174 	run->flags = KVM_DEBUG_ARCH_HSR_HIGH_VALID;
175 
176 	switch (ESR_ELx_EC(esr)) {
177 	case ESR_ELx_EC_WATCHPT_LOW:
178 		run->debug.arch.far = vcpu->arch.fault.far_el2;
179 		break;
180 	case ESR_ELx_EC_SOFTSTP_LOW:
181 		vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING);
182 		break;
183 	}
184 
185 	return 0;
186 }
187 
188 static int kvm_handle_unknown_ec(struct kvm_vcpu *vcpu)
189 {
190 	u64 esr = kvm_vcpu_get_esr(vcpu);
191 
192 	kvm_pr_unimpl("Unknown exception class: esr: %#016llx -- %s\n",
193 		      esr, esr_get_class_string(esr));
194 
195 	kvm_inject_undefined(vcpu);
196 	return 1;
197 }
198 
199 /*
200  * Guest access to SVE registers should be routed to this handler only
201  * when the system doesn't support SVE.
202  */
203 static int handle_sve(struct kvm_vcpu *vcpu)
204 {
205 	kvm_inject_undefined(vcpu);
206 	return 1;
207 }
208 
209 /*
210  * Guest usage of a ptrauth instruction (which the guest EL1 did not turn into
211  * a NOP). If we get here, it is that we didn't fixup ptrauth on exit, and all
212  * that we can do is give the guest an UNDEF.
213  */
214 static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu)
215 {
216 	kvm_inject_undefined(vcpu);
217 	return 1;
218 }
219 
220 static int kvm_handle_eret(struct kvm_vcpu *vcpu)
221 {
222 	if (kvm_vcpu_get_esr(vcpu) & ESR_ELx_ERET_ISS_ERET)
223 		return kvm_handle_ptrauth(vcpu);
224 
225 	/*
226 	 * If we got here, two possibilities:
227 	 *
228 	 * - the guest is in EL2, and we need to fully emulate ERET
229 	 *
230 	 * - the guest is in EL1, and we need to reinject the
231          *   exception into the L1 hypervisor.
232 	 *
233 	 * If KVM ever traps ERET for its own use, we'll have to
234 	 * revisit this.
235 	 */
236 	if (is_hyp_ctxt(vcpu))
237 		kvm_emulate_nested_eret(vcpu);
238 	else
239 		kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
240 
241 	return 1;
242 }
243 
244 static int handle_svc(struct kvm_vcpu *vcpu)
245 {
246 	/*
247 	 * So far, SVC traps only for NV via HFGITR_EL2. A SVC from a
248 	 * 32bit guest would be caught by vpcu_mode_is_bad_32bit(), so
249 	 * we should only have to deal with a 64 bit exception.
250 	 */
251 	kvm_inject_nested_sync(vcpu, kvm_vcpu_get_esr(vcpu));
252 	return 1;
253 }
254 
255 static exit_handle_fn arm_exit_handlers[] = {
256 	[0 ... ESR_ELx_EC_MAX]	= kvm_handle_unknown_ec,
257 	[ESR_ELx_EC_WFx]	= kvm_handle_wfx,
258 	[ESR_ELx_EC_CP15_32]	= kvm_handle_cp15_32,
259 	[ESR_ELx_EC_CP15_64]	= kvm_handle_cp15_64,
260 	[ESR_ELx_EC_CP14_MR]	= kvm_handle_cp14_32,
261 	[ESR_ELx_EC_CP14_LS]	= kvm_handle_cp14_load_store,
262 	[ESR_ELx_EC_CP10_ID]	= kvm_handle_cp10_id,
263 	[ESR_ELx_EC_CP14_64]	= kvm_handle_cp14_64,
264 	[ESR_ELx_EC_HVC32]	= handle_hvc,
265 	[ESR_ELx_EC_SMC32]	= handle_smc,
266 	[ESR_ELx_EC_HVC64]	= handle_hvc,
267 	[ESR_ELx_EC_SMC64]	= handle_smc,
268 	[ESR_ELx_EC_SVC64]	= handle_svc,
269 	[ESR_ELx_EC_SYS64]	= kvm_handle_sys_reg,
270 	[ESR_ELx_EC_SVE]	= handle_sve,
271 	[ESR_ELx_EC_ERET]	= kvm_handle_eret,
272 	[ESR_ELx_EC_IABT_LOW]	= kvm_handle_guest_abort,
273 	[ESR_ELx_EC_DABT_LOW]	= kvm_handle_guest_abort,
274 	[ESR_ELx_EC_SOFTSTP_LOW]= kvm_handle_guest_debug,
275 	[ESR_ELx_EC_WATCHPT_LOW]= kvm_handle_guest_debug,
276 	[ESR_ELx_EC_BREAKPT_LOW]= kvm_handle_guest_debug,
277 	[ESR_ELx_EC_BKPT32]	= kvm_handle_guest_debug,
278 	[ESR_ELx_EC_BRK64]	= kvm_handle_guest_debug,
279 	[ESR_ELx_EC_FP_ASIMD]	= handle_no_fpsimd,
280 	[ESR_ELx_EC_PAC]	= kvm_handle_ptrauth,
281 };
282 
283 static exit_handle_fn kvm_get_exit_handler(struct kvm_vcpu *vcpu)
284 {
285 	u64 esr = kvm_vcpu_get_esr(vcpu);
286 	u8 esr_ec = ESR_ELx_EC(esr);
287 
288 	return arm_exit_handlers[esr_ec];
289 }
290 
291 /*
292  * We may be single-stepping an emulated instruction. If the emulation
293  * has been completed in the kernel, we can return to userspace with a
294  * KVM_EXIT_DEBUG, otherwise userspace needs to complete its
295  * emulation first.
296  */
297 static int handle_trap_exceptions(struct kvm_vcpu *vcpu)
298 {
299 	int handled;
300 
301 	/*
302 	 * See ARM ARM B1.14.1: "Hyp traps on instructions
303 	 * that fail their condition code check"
304 	 */
305 	if (!kvm_condition_valid(vcpu)) {
306 		kvm_incr_pc(vcpu);
307 		handled = 1;
308 	} else {
309 		exit_handle_fn exit_handler;
310 
311 		exit_handler = kvm_get_exit_handler(vcpu);
312 		handled = exit_handler(vcpu);
313 	}
314 
315 	return handled;
316 }
317 
318 /*
319  * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
320  * proper exit to userspace.
321  */
322 int handle_exit(struct kvm_vcpu *vcpu, int exception_index)
323 {
324 	struct kvm_run *run = vcpu->run;
325 
326 	if (ARM_SERROR_PENDING(exception_index)) {
327 		/*
328 		 * The SError is handled by handle_exit_early(). If the guest
329 		 * survives it will re-execute the original instruction.
330 		 */
331 		return 1;
332 	}
333 
334 	exception_index = ARM_EXCEPTION_CODE(exception_index);
335 
336 	switch (exception_index) {
337 	case ARM_EXCEPTION_IRQ:
338 		return 1;
339 	case ARM_EXCEPTION_EL1_SERROR:
340 		return 1;
341 	case ARM_EXCEPTION_TRAP:
342 		return handle_trap_exceptions(vcpu);
343 	case ARM_EXCEPTION_HYP_GONE:
344 		/*
345 		 * EL2 has been reset to the hyp-stub. This happens when a guest
346 		 * is pre-emptied by kvm_reboot()'s shutdown call.
347 		 */
348 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
349 		return 0;
350 	case ARM_EXCEPTION_IL:
351 		/*
352 		 * We attempted an illegal exception return.  Guest state must
353 		 * have been corrupted somehow.  Give up.
354 		 */
355 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
356 		return -EINVAL;
357 	default:
358 		kvm_pr_unimpl("Unsupported exception type: %d",
359 			      exception_index);
360 		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
361 		return 0;
362 	}
363 }
364 
365 /* For exit types that need handling before we can be preempted */
366 void handle_exit_early(struct kvm_vcpu *vcpu, int exception_index)
367 {
368 	if (ARM_SERROR_PENDING(exception_index)) {
369 		if (this_cpu_has_cap(ARM64_HAS_RAS_EXTN)) {
370 			u64 disr = kvm_vcpu_get_disr(vcpu);
371 
372 			kvm_handle_guest_serror(vcpu, disr_to_esr(disr));
373 		} else {
374 			kvm_inject_vabt(vcpu);
375 		}
376 
377 		return;
378 	}
379 
380 	exception_index = ARM_EXCEPTION_CODE(exception_index);
381 
382 	if (exception_index == ARM_EXCEPTION_EL1_SERROR)
383 		kvm_handle_guest_serror(vcpu, kvm_vcpu_get_esr(vcpu));
384 }
385 
386 void __noreturn __cold nvhe_hyp_panic_handler(u64 esr, u64 spsr,
387 					      u64 elr_virt, u64 elr_phys,
388 					      u64 par, uintptr_t vcpu,
389 					      u64 far, u64 hpfar) {
390 	u64 elr_in_kimg = __phys_to_kimg(elr_phys);
391 	u64 hyp_offset = elr_in_kimg - kaslr_offset() - elr_virt;
392 	u64 mode = spsr & PSR_MODE_MASK;
393 	u64 panic_addr = elr_virt + hyp_offset;
394 
395 	if (mode != PSR_MODE_EL2t && mode != PSR_MODE_EL2h) {
396 		kvm_err("Invalid host exception to nVHE hyp!\n");
397 	} else if (ESR_ELx_EC(esr) == ESR_ELx_EC_BRK64 &&
398 		   (esr & ESR_ELx_BRK64_ISS_COMMENT_MASK) == BUG_BRK_IMM) {
399 		const char *file = NULL;
400 		unsigned int line = 0;
401 
402 		/* All hyp bugs, including warnings, are treated as fatal. */
403 		if (!is_protected_kvm_enabled() ||
404 		    IS_ENABLED(CONFIG_NVHE_EL2_DEBUG)) {
405 			struct bug_entry *bug = find_bug(elr_in_kimg);
406 
407 			if (bug)
408 				bug_get_file_line(bug, &file, &line);
409 		}
410 
411 		if (file)
412 			kvm_err("nVHE hyp BUG at: %s:%u!\n", file, line);
413 		else
414 			kvm_err("nVHE hyp BUG at: [<%016llx>] %pB!\n", panic_addr,
415 					(void *)(panic_addr + kaslr_offset()));
416 	} else {
417 		kvm_err("nVHE hyp panic at: [<%016llx>] %pB!\n", panic_addr,
418 				(void *)(panic_addr + kaslr_offset()));
419 	}
420 
421 	/* Dump the nVHE hypervisor backtrace */
422 	kvm_nvhe_dump_backtrace(hyp_offset);
423 
424 	/*
425 	 * Hyp has panicked and we're going to handle that by panicking the
426 	 * kernel. The kernel offset will be revealed in the panic so we're
427 	 * also safe to reveal the hyp offset as a debugging aid for translating
428 	 * hyp VAs to vmlinux addresses.
429 	 */
430 	kvm_err("Hyp Offset: 0x%llx\n", hyp_offset);
431 
432 	panic("HYP panic:\nPS:%08llx PC:%016llx ESR:%016llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%016lx\n",
433 	      spsr, elr_virt, esr, far, hpfar, par, vcpu);
434 }
435