xref: /openbmc/linux/arch/arm64/kvm/guest.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/sigcontext.h>
29 
30 #include "trace.h"
31 
32 struct kvm_stats_debugfs_item debugfs_entries[] = {
33 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
34 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
35 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
36 	VCPU_STAT("halt_wakeup", halt_wakeup),
37 	VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
38 	VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
39 	VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
40 	VCPU_STAT("mmio_exit_user", mmio_exit_user),
41 	VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
42 	VCPU_STAT("exits", exits),
43 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
44 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
45 	{ NULL }
46 };
47 
48 static bool core_reg_offset_is_vreg(u64 off)
49 {
50 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
51 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
52 }
53 
54 static u64 core_reg_offset_from_id(u64 id)
55 {
56 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
57 }
58 
59 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
60 {
61 	int size;
62 
63 	switch (off) {
64 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
65 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
66 	case KVM_REG_ARM_CORE_REG(regs.sp):
67 	case KVM_REG_ARM_CORE_REG(regs.pc):
68 	case KVM_REG_ARM_CORE_REG(regs.pstate):
69 	case KVM_REG_ARM_CORE_REG(sp_el1):
70 	case KVM_REG_ARM_CORE_REG(elr_el1):
71 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
72 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
73 		size = sizeof(__u64);
74 		break;
75 
76 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
77 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
78 		size = sizeof(__uint128_t);
79 		break;
80 
81 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
82 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
83 		size = sizeof(__u32);
84 		break;
85 
86 	default:
87 		return -EINVAL;
88 	}
89 
90 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
91 		return -EINVAL;
92 
93 	/*
94 	 * The KVM_REG_ARM64_SVE regs must be used instead of
95 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
96 	 * SVE-enabled vcpus:
97 	 */
98 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
99 		return -EINVAL;
100 
101 	return size;
102 }
103 
104 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
105 {
106 	u64 off = core_reg_offset_from_id(reg->id);
107 	int size = core_reg_size_from_offset(vcpu, off);
108 
109 	if (size < 0)
110 		return NULL;
111 
112 	if (KVM_REG_SIZE(reg->id) != size)
113 		return NULL;
114 
115 	switch (off) {
116 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
117 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
118 		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
119 		off /= 2;
120 		return &vcpu->arch.ctxt.regs.regs[off];
121 
122 	case KVM_REG_ARM_CORE_REG(regs.sp):
123 		return &vcpu->arch.ctxt.regs.sp;
124 
125 	case KVM_REG_ARM_CORE_REG(regs.pc):
126 		return &vcpu->arch.ctxt.regs.pc;
127 
128 	case KVM_REG_ARM_CORE_REG(regs.pstate):
129 		return &vcpu->arch.ctxt.regs.pstate;
130 
131 	case KVM_REG_ARM_CORE_REG(sp_el1):
132 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
133 
134 	case KVM_REG_ARM_CORE_REG(elr_el1):
135 		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
136 
137 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
138 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
139 
140 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
141 		return &vcpu->arch.ctxt.spsr_abt;
142 
143 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
144 		return &vcpu->arch.ctxt.spsr_und;
145 
146 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
147 		return &vcpu->arch.ctxt.spsr_irq;
148 
149 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
150 		return &vcpu->arch.ctxt.spsr_fiq;
151 
152 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
153 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
154 		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
155 		off /= 4;
156 		return &vcpu->arch.ctxt.fp_regs.vregs[off];
157 
158 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
159 		return &vcpu->arch.ctxt.fp_regs.fpsr;
160 
161 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
162 		return &vcpu->arch.ctxt.fp_regs.fpcr;
163 
164 	default:
165 		return NULL;
166 	}
167 }
168 
169 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
170 {
171 	/*
172 	 * Because the kvm_regs structure is a mix of 32, 64 and
173 	 * 128bit fields, we index it as if it was a 32bit
174 	 * array. Hence below, nr_regs is the number of entries, and
175 	 * off the index in the "array".
176 	 */
177 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
178 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
179 	void *addr;
180 	u32 off;
181 
182 	/* Our ID is an index into the kvm_regs struct. */
183 	off = core_reg_offset_from_id(reg->id);
184 	if (off >= nr_regs ||
185 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
186 		return -ENOENT;
187 
188 	addr = core_reg_addr(vcpu, reg);
189 	if (!addr)
190 		return -EINVAL;
191 
192 	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
193 		return -EFAULT;
194 
195 	return 0;
196 }
197 
198 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
199 {
200 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
201 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
202 	__uint128_t tmp;
203 	void *valp = &tmp, *addr;
204 	u64 off;
205 	int err = 0;
206 
207 	/* Our ID is an index into the kvm_regs struct. */
208 	off = core_reg_offset_from_id(reg->id);
209 	if (off >= nr_regs ||
210 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
211 		return -ENOENT;
212 
213 	addr = core_reg_addr(vcpu, reg);
214 	if (!addr)
215 		return -EINVAL;
216 
217 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
218 		return -EINVAL;
219 
220 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
221 		err = -EFAULT;
222 		goto out;
223 	}
224 
225 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
226 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
227 		switch (mode) {
228 		case PSR_AA32_MODE_USR:
229 			if (!system_supports_32bit_el0())
230 				return -EINVAL;
231 			break;
232 		case PSR_AA32_MODE_FIQ:
233 		case PSR_AA32_MODE_IRQ:
234 		case PSR_AA32_MODE_SVC:
235 		case PSR_AA32_MODE_ABT:
236 		case PSR_AA32_MODE_UND:
237 			if (!vcpu_el1_is_32bit(vcpu))
238 				return -EINVAL;
239 			break;
240 		case PSR_MODE_EL0t:
241 		case PSR_MODE_EL1t:
242 		case PSR_MODE_EL1h:
243 			if (vcpu_el1_is_32bit(vcpu))
244 				return -EINVAL;
245 			break;
246 		default:
247 			err = -EINVAL;
248 			goto out;
249 		}
250 	}
251 
252 	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
253 
254 	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
255 		int i;
256 
257 		for (i = 0; i < 16; i++)
258 			*vcpu_reg32(vcpu, i) = (u32)*vcpu_reg32(vcpu, i);
259 	}
260 out:
261 	return err;
262 }
263 
264 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
265 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
266 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
267 
268 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
269 {
270 	unsigned int max_vq, vq;
271 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
272 
273 	if (!vcpu_has_sve(vcpu))
274 		return -ENOENT;
275 
276 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
277 		return -EINVAL;
278 
279 	memset(vqs, 0, sizeof(vqs));
280 
281 	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
282 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
283 		if (sve_vq_available(vq))
284 			vqs[vq_word(vq)] |= vq_mask(vq);
285 
286 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
287 		return -EFAULT;
288 
289 	return 0;
290 }
291 
292 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
293 {
294 	unsigned int max_vq, vq;
295 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
296 
297 	if (!vcpu_has_sve(vcpu))
298 		return -ENOENT;
299 
300 	if (kvm_arm_vcpu_sve_finalized(vcpu))
301 		return -EPERM; /* too late! */
302 
303 	if (WARN_ON(vcpu->arch.sve_state))
304 		return -EINVAL;
305 
306 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
307 		return -EFAULT;
308 
309 	max_vq = 0;
310 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
311 		if (vq_present(vqs, vq))
312 			max_vq = vq;
313 
314 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
315 		return -EINVAL;
316 
317 	/*
318 	 * Vector lengths supported by the host can't currently be
319 	 * hidden from the guest individually: instead we can only set a
320 	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
321 	 * lengths match the set requested exactly up to the requested
322 	 * maximum:
323 	 */
324 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
325 		if (vq_present(vqs, vq) != sve_vq_available(vq))
326 			return -EINVAL;
327 
328 	/* Can't run with no vector lengths at all: */
329 	if (max_vq < SVE_VQ_MIN)
330 		return -EINVAL;
331 
332 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
333 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
334 
335 	return 0;
336 }
337 
338 #define SVE_REG_SLICE_SHIFT	0
339 #define SVE_REG_SLICE_BITS	5
340 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
341 #define SVE_REG_ID_BITS		5
342 
343 #define SVE_REG_SLICE_MASK					\
344 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
345 		SVE_REG_SLICE_SHIFT)
346 #define SVE_REG_ID_MASK							\
347 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
348 
349 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
350 
351 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
352 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
353 
354 /*
355  * Number of register slices required to cover each whole SVE register.
356  * NOTE: Only the first slice every exists, for now.
357  * If you are tempted to modify this, you must also rework sve_reg_to_region()
358  * to match:
359  */
360 #define vcpu_sve_slices(vcpu) 1
361 
362 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
363 struct sve_state_reg_region {
364 	unsigned int koffset;	/* offset into sve_state in kernel memory */
365 	unsigned int klen;	/* length in kernel memory */
366 	unsigned int upad;	/* extra trailing padding in user memory */
367 };
368 
369 /*
370  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
371  * register copy
372  */
373 static int sve_reg_to_region(struct sve_state_reg_region *region,
374 			     struct kvm_vcpu *vcpu,
375 			     const struct kvm_one_reg *reg)
376 {
377 	/* reg ID ranges for Z- registers */
378 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
379 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
380 						       SVE_NUM_SLICES - 1);
381 
382 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
383 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
384 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
385 
386 	unsigned int vq;
387 	unsigned int reg_num;
388 
389 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
390 	unsigned int maxlen; /* Maximum permitted length */
391 
392 	size_t sve_state_size;
393 
394 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
395 							SVE_NUM_SLICES - 1);
396 
397 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
398 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
399 
400 	/* Verify that we match the UAPI header: */
401 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
402 
403 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
404 
405 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
406 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
407 			return -ENOENT;
408 
409 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
410 
411 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
412 				SVE_SIG_REGS_OFFSET;
413 		reqlen = KVM_SVE_ZREG_SIZE;
414 		maxlen = SVE_SIG_ZREG_SIZE(vq);
415 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
416 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
417 			return -ENOENT;
418 
419 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
420 
421 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
422 				SVE_SIG_REGS_OFFSET;
423 		reqlen = KVM_SVE_PREG_SIZE;
424 		maxlen = SVE_SIG_PREG_SIZE(vq);
425 	} else {
426 		return -EINVAL;
427 	}
428 
429 	sve_state_size = vcpu_sve_state_size(vcpu);
430 	if (WARN_ON(!sve_state_size))
431 		return -EINVAL;
432 
433 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
434 	region->klen = min(maxlen, reqlen);
435 	region->upad = reqlen - region->klen;
436 
437 	return 0;
438 }
439 
440 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
441 {
442 	int ret;
443 	struct sve_state_reg_region region;
444 	char __user *uptr = (char __user *)reg->addr;
445 
446 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
447 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
448 		return get_sve_vls(vcpu, reg);
449 
450 	/* Try to interpret reg ID as an architectural SVE register... */
451 	ret = sve_reg_to_region(&region, vcpu, reg);
452 	if (ret)
453 		return ret;
454 
455 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
456 		return -EPERM;
457 
458 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
459 			 region.klen) ||
460 	    clear_user(uptr + region.klen, region.upad))
461 		return -EFAULT;
462 
463 	return 0;
464 }
465 
466 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
467 {
468 	int ret;
469 	struct sve_state_reg_region region;
470 	const char __user *uptr = (const char __user *)reg->addr;
471 
472 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
473 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
474 		return set_sve_vls(vcpu, reg);
475 
476 	/* Try to interpret reg ID as an architectural SVE register... */
477 	ret = sve_reg_to_region(&region, vcpu, reg);
478 	if (ret)
479 		return ret;
480 
481 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
482 		return -EPERM;
483 
484 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
485 			   region.klen))
486 		return -EFAULT;
487 
488 	return 0;
489 }
490 
491 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
492 {
493 	return -EINVAL;
494 }
495 
496 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
497 {
498 	return -EINVAL;
499 }
500 
501 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
502 				 u64 __user *uindices)
503 {
504 	unsigned int i;
505 	int n = 0;
506 
507 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
508 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
509 		int size = core_reg_size_from_offset(vcpu, i);
510 
511 		if (size < 0)
512 			continue;
513 
514 		switch (size) {
515 		case sizeof(__u32):
516 			reg |= KVM_REG_SIZE_U32;
517 			break;
518 
519 		case sizeof(__u64):
520 			reg |= KVM_REG_SIZE_U64;
521 			break;
522 
523 		case sizeof(__uint128_t):
524 			reg |= KVM_REG_SIZE_U128;
525 			break;
526 
527 		default:
528 			WARN_ON(1);
529 			continue;
530 		}
531 
532 		if (uindices) {
533 			if (put_user(reg, uindices))
534 				return -EFAULT;
535 			uindices++;
536 		}
537 
538 		n++;
539 	}
540 
541 	return n;
542 }
543 
544 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
545 {
546 	return copy_core_reg_indices(vcpu, NULL);
547 }
548 
549 /**
550  * ARM64 versions of the TIMER registers, always available on arm64
551  */
552 
553 #define NUM_TIMER_REGS 3
554 
555 static bool is_timer_reg(u64 index)
556 {
557 	switch (index) {
558 	case KVM_REG_ARM_TIMER_CTL:
559 	case KVM_REG_ARM_TIMER_CNT:
560 	case KVM_REG_ARM_TIMER_CVAL:
561 		return true;
562 	}
563 	return false;
564 }
565 
566 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
567 {
568 	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
569 		return -EFAULT;
570 	uindices++;
571 	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
572 		return -EFAULT;
573 	uindices++;
574 	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
575 		return -EFAULT;
576 
577 	return 0;
578 }
579 
580 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
581 {
582 	void __user *uaddr = (void __user *)(long)reg->addr;
583 	u64 val;
584 	int ret;
585 
586 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
587 	if (ret != 0)
588 		return -EFAULT;
589 
590 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
591 }
592 
593 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
594 {
595 	void __user *uaddr = (void __user *)(long)reg->addr;
596 	u64 val;
597 
598 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
599 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
600 }
601 
602 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
603 {
604 	const unsigned int slices = vcpu_sve_slices(vcpu);
605 
606 	if (!vcpu_has_sve(vcpu))
607 		return 0;
608 
609 	/* Policed by KVM_GET_REG_LIST: */
610 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
611 
612 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
613 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
614 }
615 
616 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
617 				u64 __user *uindices)
618 {
619 	const unsigned int slices = vcpu_sve_slices(vcpu);
620 	u64 reg;
621 	unsigned int i, n;
622 	int num_regs = 0;
623 
624 	if (!vcpu_has_sve(vcpu))
625 		return 0;
626 
627 	/* Policed by KVM_GET_REG_LIST: */
628 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
629 
630 	/*
631 	 * Enumerate this first, so that userspace can save/restore in
632 	 * the order reported by KVM_GET_REG_LIST:
633 	 */
634 	reg = KVM_REG_ARM64_SVE_VLS;
635 	if (put_user(reg, uindices++))
636 		return -EFAULT;
637 	++num_regs;
638 
639 	for (i = 0; i < slices; i++) {
640 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
641 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
642 			if (put_user(reg, uindices++))
643 				return -EFAULT;
644 			num_regs++;
645 		}
646 
647 		for (n = 0; n < SVE_NUM_PREGS; n++) {
648 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
649 			if (put_user(reg, uindices++))
650 				return -EFAULT;
651 			num_regs++;
652 		}
653 
654 		reg = KVM_REG_ARM64_SVE_FFR(i);
655 		if (put_user(reg, uindices++))
656 			return -EFAULT;
657 		num_regs++;
658 	}
659 
660 	return num_regs;
661 }
662 
663 /**
664  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
665  *
666  * This is for all registers.
667  */
668 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
669 {
670 	unsigned long res = 0;
671 
672 	res += num_core_regs(vcpu);
673 	res += num_sve_regs(vcpu);
674 	res += kvm_arm_num_sys_reg_descs(vcpu);
675 	res += kvm_arm_get_fw_num_regs(vcpu);
676 	res += NUM_TIMER_REGS;
677 
678 	return res;
679 }
680 
681 /**
682  * kvm_arm_copy_reg_indices - get indices of all registers.
683  *
684  * We do core registers right here, then we append system regs.
685  */
686 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
687 {
688 	int ret;
689 
690 	ret = copy_core_reg_indices(vcpu, uindices);
691 	if (ret < 0)
692 		return ret;
693 	uindices += ret;
694 
695 	ret = copy_sve_reg_indices(vcpu, uindices);
696 	if (ret < 0)
697 		return ret;
698 	uindices += ret;
699 
700 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
701 	if (ret < 0)
702 		return ret;
703 	uindices += kvm_arm_get_fw_num_regs(vcpu);
704 
705 	ret = copy_timer_indices(vcpu, uindices);
706 	if (ret < 0)
707 		return ret;
708 	uindices += NUM_TIMER_REGS;
709 
710 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
711 }
712 
713 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
714 {
715 	/* We currently use nothing arch-specific in upper 32 bits */
716 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
717 		return -EINVAL;
718 
719 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
720 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
721 	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
722 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
723 	}
724 
725 	if (is_timer_reg(reg->id))
726 		return get_timer_reg(vcpu, reg);
727 
728 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
729 }
730 
731 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
732 {
733 	/* We currently use nothing arch-specific in upper 32 bits */
734 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
735 		return -EINVAL;
736 
737 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
738 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
739 	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
740 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
741 	}
742 
743 	if (is_timer_reg(reg->id))
744 		return set_timer_reg(vcpu, reg);
745 
746 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
747 }
748 
749 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
750 				  struct kvm_sregs *sregs)
751 {
752 	return -EINVAL;
753 }
754 
755 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
756 				  struct kvm_sregs *sregs)
757 {
758 	return -EINVAL;
759 }
760 
761 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
762 			      struct kvm_vcpu_events *events)
763 {
764 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
765 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
766 
767 	if (events->exception.serror_pending && events->exception.serror_has_esr)
768 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
769 
770 	/*
771 	 * We never return a pending ext_dabt here because we deliver it to
772 	 * the virtual CPU directly when setting the event and it's no longer
773 	 * 'pending' at this point.
774 	 */
775 
776 	return 0;
777 }
778 
779 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
780 			      struct kvm_vcpu_events *events)
781 {
782 	bool serror_pending = events->exception.serror_pending;
783 	bool has_esr = events->exception.serror_has_esr;
784 	bool ext_dabt_pending = events->exception.ext_dabt_pending;
785 
786 	if (serror_pending && has_esr) {
787 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
788 			return -EINVAL;
789 
790 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
791 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
792 		else
793 			return -EINVAL;
794 	} else if (serror_pending) {
795 		kvm_inject_vabt(vcpu);
796 	}
797 
798 	if (ext_dabt_pending)
799 		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
800 
801 	return 0;
802 }
803 
804 int __attribute_const__ kvm_target_cpu(void)
805 {
806 	unsigned long implementor = read_cpuid_implementor();
807 	unsigned long part_number = read_cpuid_part_number();
808 
809 	switch (implementor) {
810 	case ARM_CPU_IMP_ARM:
811 		switch (part_number) {
812 		case ARM_CPU_PART_AEM_V8:
813 			return KVM_ARM_TARGET_AEM_V8;
814 		case ARM_CPU_PART_FOUNDATION:
815 			return KVM_ARM_TARGET_FOUNDATION_V8;
816 		case ARM_CPU_PART_CORTEX_A53:
817 			return KVM_ARM_TARGET_CORTEX_A53;
818 		case ARM_CPU_PART_CORTEX_A57:
819 			return KVM_ARM_TARGET_CORTEX_A57;
820 		}
821 		break;
822 	case ARM_CPU_IMP_APM:
823 		switch (part_number) {
824 		case APM_CPU_PART_POTENZA:
825 			return KVM_ARM_TARGET_XGENE_POTENZA;
826 		}
827 		break;
828 	}
829 
830 	/* Return a default generic target */
831 	return KVM_ARM_TARGET_GENERIC_V8;
832 }
833 
834 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
835 {
836 	int target = kvm_target_cpu();
837 
838 	if (target < 0)
839 		return -ENODEV;
840 
841 	memset(init, 0, sizeof(*init));
842 
843 	/*
844 	 * For now, we don't return any features.
845 	 * In future, we might use features to return target
846 	 * specific features available for the preferred
847 	 * target type.
848 	 */
849 	init->target = (__u32)target;
850 
851 	return 0;
852 }
853 
854 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
855 {
856 	return -EINVAL;
857 }
858 
859 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
860 {
861 	return -EINVAL;
862 }
863 
864 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
865 				  struct kvm_translation *tr)
866 {
867 	return -EINVAL;
868 }
869 
870 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
871 			    KVM_GUESTDBG_USE_SW_BP | \
872 			    KVM_GUESTDBG_USE_HW | \
873 			    KVM_GUESTDBG_SINGLESTEP)
874 
875 /**
876  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
877  * @kvm:	pointer to the KVM struct
878  * @kvm_guest_debug: the ioctl data buffer
879  *
880  * This sets up and enables the VM for guest debugging. Userspace
881  * passes in a control flag to enable different debug types and
882  * potentially other architecture specific information in the rest of
883  * the structure.
884  */
885 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
886 					struct kvm_guest_debug *dbg)
887 {
888 	int ret = 0;
889 
890 	trace_kvm_set_guest_debug(vcpu, dbg->control);
891 
892 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
893 		ret = -EINVAL;
894 		goto out;
895 	}
896 
897 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
898 		vcpu->guest_debug = dbg->control;
899 
900 		/* Hardware assisted Break and Watch points */
901 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
902 			vcpu->arch.external_debug_state = dbg->arch;
903 		}
904 
905 	} else {
906 		/* If not enabled clear all flags */
907 		vcpu->guest_debug = 0;
908 	}
909 
910 out:
911 	return ret;
912 }
913 
914 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
915 			       struct kvm_device_attr *attr)
916 {
917 	int ret;
918 
919 	switch (attr->group) {
920 	case KVM_ARM_VCPU_PMU_V3_CTRL:
921 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
922 		break;
923 	case KVM_ARM_VCPU_TIMER_CTRL:
924 		ret = kvm_arm_timer_set_attr(vcpu, attr);
925 		break;
926 	case KVM_ARM_VCPU_PVTIME_CTRL:
927 		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
928 		break;
929 	default:
930 		ret = -ENXIO;
931 		break;
932 	}
933 
934 	return ret;
935 }
936 
937 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
938 			       struct kvm_device_attr *attr)
939 {
940 	int ret;
941 
942 	switch (attr->group) {
943 	case KVM_ARM_VCPU_PMU_V3_CTRL:
944 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
945 		break;
946 	case KVM_ARM_VCPU_TIMER_CTRL:
947 		ret = kvm_arm_timer_get_attr(vcpu, attr);
948 		break;
949 	case KVM_ARM_VCPU_PVTIME_CTRL:
950 		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
951 		break;
952 	default:
953 		ret = -ENXIO;
954 		break;
955 	}
956 
957 	return ret;
958 }
959 
960 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
961 			       struct kvm_device_attr *attr)
962 {
963 	int ret;
964 
965 	switch (attr->group) {
966 	case KVM_ARM_VCPU_PMU_V3_CTRL:
967 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
968 		break;
969 	case KVM_ARM_VCPU_TIMER_CTRL:
970 		ret = kvm_arm_timer_has_attr(vcpu, attr);
971 		break;
972 	case KVM_ARM_VCPU_PVTIME_CTRL:
973 		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
974 		break;
975 	default:
976 		ret = -ENXIO;
977 		break;
978 	}
979 
980 	return ret;
981 }
982