xref: /openbmc/linux/arch/arm64/kvm/guest.c (revision e2bd6bad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/sigcontext.h>
28 
29 #include "trace.h"
30 
31 struct kvm_stats_debugfs_item debugfs_entries[] = {
32 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
33 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
34 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
35 	VCPU_STAT("halt_wakeup", halt_wakeup),
36 	VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
37 	VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
38 	VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
39 	VCPU_STAT("mmio_exit_user", mmio_exit_user),
40 	VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
41 	VCPU_STAT("exits", exits),
42 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
43 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
44 	{ NULL }
45 };
46 
47 static bool core_reg_offset_is_vreg(u64 off)
48 {
49 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
50 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
51 }
52 
53 static u64 core_reg_offset_from_id(u64 id)
54 {
55 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
56 }
57 
58 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
59 {
60 	int size;
61 
62 	switch (off) {
63 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
64 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
65 	case KVM_REG_ARM_CORE_REG(regs.sp):
66 	case KVM_REG_ARM_CORE_REG(regs.pc):
67 	case KVM_REG_ARM_CORE_REG(regs.pstate):
68 	case KVM_REG_ARM_CORE_REG(sp_el1):
69 	case KVM_REG_ARM_CORE_REG(elr_el1):
70 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
71 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
72 		size = sizeof(__u64);
73 		break;
74 
75 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
76 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
77 		size = sizeof(__uint128_t);
78 		break;
79 
80 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
81 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
82 		size = sizeof(__u32);
83 		break;
84 
85 	default:
86 		return -EINVAL;
87 	}
88 
89 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
90 		return -EINVAL;
91 
92 	/*
93 	 * The KVM_REG_ARM64_SVE regs must be used instead of
94 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
95 	 * SVE-enabled vcpus:
96 	 */
97 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
98 		return -EINVAL;
99 
100 	return size;
101 }
102 
103 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
104 {
105 	u64 off = core_reg_offset_from_id(reg->id);
106 	int size = core_reg_size_from_offset(vcpu, off);
107 
108 	if (size < 0)
109 		return NULL;
110 
111 	if (KVM_REG_SIZE(reg->id) != size)
112 		return NULL;
113 
114 	switch (off) {
115 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
116 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
117 		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
118 		off /= 2;
119 		return &vcpu->arch.ctxt.regs.regs[off];
120 
121 	case KVM_REG_ARM_CORE_REG(regs.sp):
122 		return &vcpu->arch.ctxt.regs.sp;
123 
124 	case KVM_REG_ARM_CORE_REG(regs.pc):
125 		return &vcpu->arch.ctxt.regs.pc;
126 
127 	case KVM_REG_ARM_CORE_REG(regs.pstate):
128 		return &vcpu->arch.ctxt.regs.pstate;
129 
130 	case KVM_REG_ARM_CORE_REG(sp_el1):
131 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
132 
133 	case KVM_REG_ARM_CORE_REG(elr_el1):
134 		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
135 
136 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
137 		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
138 
139 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
140 		return &vcpu->arch.ctxt.spsr_abt;
141 
142 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
143 		return &vcpu->arch.ctxt.spsr_und;
144 
145 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
146 		return &vcpu->arch.ctxt.spsr_irq;
147 
148 	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
149 		return &vcpu->arch.ctxt.spsr_fiq;
150 
151 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
152 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
153 		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
154 		off /= 4;
155 		return &vcpu->arch.ctxt.fp_regs.vregs[off];
156 
157 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
158 		return &vcpu->arch.ctxt.fp_regs.fpsr;
159 
160 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
161 		return &vcpu->arch.ctxt.fp_regs.fpcr;
162 
163 	default:
164 		return NULL;
165 	}
166 }
167 
168 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
169 {
170 	/*
171 	 * Because the kvm_regs structure is a mix of 32, 64 and
172 	 * 128bit fields, we index it as if it was a 32bit
173 	 * array. Hence below, nr_regs is the number of entries, and
174 	 * off the index in the "array".
175 	 */
176 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
177 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
178 	void *addr;
179 	u32 off;
180 
181 	/* Our ID is an index into the kvm_regs struct. */
182 	off = core_reg_offset_from_id(reg->id);
183 	if (off >= nr_regs ||
184 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
185 		return -ENOENT;
186 
187 	addr = core_reg_addr(vcpu, reg);
188 	if (!addr)
189 		return -EINVAL;
190 
191 	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
192 		return -EFAULT;
193 
194 	return 0;
195 }
196 
197 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
198 {
199 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
200 	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
201 	__uint128_t tmp;
202 	void *valp = &tmp, *addr;
203 	u64 off;
204 	int err = 0;
205 
206 	/* Our ID is an index into the kvm_regs struct. */
207 	off = core_reg_offset_from_id(reg->id);
208 	if (off >= nr_regs ||
209 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
210 		return -ENOENT;
211 
212 	addr = core_reg_addr(vcpu, reg);
213 	if (!addr)
214 		return -EINVAL;
215 
216 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
217 		return -EINVAL;
218 
219 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
220 		err = -EFAULT;
221 		goto out;
222 	}
223 
224 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
225 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
226 		switch (mode) {
227 		case PSR_AA32_MODE_USR:
228 			if (!system_supports_32bit_el0())
229 				return -EINVAL;
230 			break;
231 		case PSR_AA32_MODE_FIQ:
232 		case PSR_AA32_MODE_IRQ:
233 		case PSR_AA32_MODE_SVC:
234 		case PSR_AA32_MODE_ABT:
235 		case PSR_AA32_MODE_UND:
236 			if (!vcpu_el1_is_32bit(vcpu))
237 				return -EINVAL;
238 			break;
239 		case PSR_MODE_EL0t:
240 		case PSR_MODE_EL1t:
241 		case PSR_MODE_EL1h:
242 			if (vcpu_el1_is_32bit(vcpu))
243 				return -EINVAL;
244 			break;
245 		default:
246 			err = -EINVAL;
247 			goto out;
248 		}
249 	}
250 
251 	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
252 
253 	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
254 		int i, nr_reg;
255 
256 		switch (*vcpu_cpsr(vcpu)) {
257 		/*
258 		 * Either we are dealing with user mode, and only the
259 		 * first 15 registers (+ PC) must be narrowed to 32bit.
260 		 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
261 		 */
262 		case PSR_AA32_MODE_USR:
263 		case PSR_AA32_MODE_SYS:
264 			nr_reg = 15;
265 			break;
266 
267 		/*
268 		 * Otherwide, this is a priviledged mode, and *all* the
269 		 * registers must be narrowed to 32bit.
270 		 */
271 		default:
272 			nr_reg = 31;
273 			break;
274 		}
275 
276 		for (i = 0; i < nr_reg; i++)
277 			vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
278 
279 		*vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
280 	}
281 out:
282 	return err;
283 }
284 
285 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
286 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
287 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
288 
289 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
290 {
291 	unsigned int max_vq, vq;
292 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
293 
294 	if (!vcpu_has_sve(vcpu))
295 		return -ENOENT;
296 
297 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
298 		return -EINVAL;
299 
300 	memset(vqs, 0, sizeof(vqs));
301 
302 	max_vq = vcpu_sve_max_vq(vcpu);
303 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
304 		if (sve_vq_available(vq))
305 			vqs[vq_word(vq)] |= vq_mask(vq);
306 
307 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
308 		return -EFAULT;
309 
310 	return 0;
311 }
312 
313 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
314 {
315 	unsigned int max_vq, vq;
316 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
317 
318 	if (!vcpu_has_sve(vcpu))
319 		return -ENOENT;
320 
321 	if (kvm_arm_vcpu_sve_finalized(vcpu))
322 		return -EPERM; /* too late! */
323 
324 	if (WARN_ON(vcpu->arch.sve_state))
325 		return -EINVAL;
326 
327 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
328 		return -EFAULT;
329 
330 	max_vq = 0;
331 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
332 		if (vq_present(vqs, vq))
333 			max_vq = vq;
334 
335 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
336 		return -EINVAL;
337 
338 	/*
339 	 * Vector lengths supported by the host can't currently be
340 	 * hidden from the guest individually: instead we can only set a
341 	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
342 	 * lengths match the set requested exactly up to the requested
343 	 * maximum:
344 	 */
345 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
346 		if (vq_present(vqs, vq) != sve_vq_available(vq))
347 			return -EINVAL;
348 
349 	/* Can't run with no vector lengths at all: */
350 	if (max_vq < SVE_VQ_MIN)
351 		return -EINVAL;
352 
353 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
354 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
355 
356 	return 0;
357 }
358 
359 #define SVE_REG_SLICE_SHIFT	0
360 #define SVE_REG_SLICE_BITS	5
361 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
362 #define SVE_REG_ID_BITS		5
363 
364 #define SVE_REG_SLICE_MASK					\
365 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
366 		SVE_REG_SLICE_SHIFT)
367 #define SVE_REG_ID_MASK							\
368 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
369 
370 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
371 
372 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
373 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
374 
375 /*
376  * Number of register slices required to cover each whole SVE register.
377  * NOTE: Only the first slice every exists, for now.
378  * If you are tempted to modify this, you must also rework sve_reg_to_region()
379  * to match:
380  */
381 #define vcpu_sve_slices(vcpu) 1
382 
383 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
384 struct sve_state_reg_region {
385 	unsigned int koffset;	/* offset into sve_state in kernel memory */
386 	unsigned int klen;	/* length in kernel memory */
387 	unsigned int upad;	/* extra trailing padding in user memory */
388 };
389 
390 /*
391  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
392  * register copy
393  */
394 static int sve_reg_to_region(struct sve_state_reg_region *region,
395 			     struct kvm_vcpu *vcpu,
396 			     const struct kvm_one_reg *reg)
397 {
398 	/* reg ID ranges for Z- registers */
399 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
400 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
401 						       SVE_NUM_SLICES - 1);
402 
403 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
404 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
405 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
406 
407 	unsigned int vq;
408 	unsigned int reg_num;
409 
410 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
411 	unsigned int maxlen; /* Maximum permitted length */
412 
413 	size_t sve_state_size;
414 
415 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
416 							SVE_NUM_SLICES - 1);
417 
418 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
419 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
420 
421 	/* Verify that we match the UAPI header: */
422 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
423 
424 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
425 
426 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
427 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
428 			return -ENOENT;
429 
430 		vq = vcpu_sve_max_vq(vcpu);
431 
432 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
433 				SVE_SIG_REGS_OFFSET;
434 		reqlen = KVM_SVE_ZREG_SIZE;
435 		maxlen = SVE_SIG_ZREG_SIZE(vq);
436 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
437 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
438 			return -ENOENT;
439 
440 		vq = vcpu_sve_max_vq(vcpu);
441 
442 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
443 				SVE_SIG_REGS_OFFSET;
444 		reqlen = KVM_SVE_PREG_SIZE;
445 		maxlen = SVE_SIG_PREG_SIZE(vq);
446 	} else {
447 		return -EINVAL;
448 	}
449 
450 	sve_state_size = vcpu_sve_state_size(vcpu);
451 	if (WARN_ON(!sve_state_size))
452 		return -EINVAL;
453 
454 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
455 	region->klen = min(maxlen, reqlen);
456 	region->upad = reqlen - region->klen;
457 
458 	return 0;
459 }
460 
461 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
462 {
463 	int ret;
464 	struct sve_state_reg_region region;
465 	char __user *uptr = (char __user *)reg->addr;
466 
467 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
468 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
469 		return get_sve_vls(vcpu, reg);
470 
471 	/* Try to interpret reg ID as an architectural SVE register... */
472 	ret = sve_reg_to_region(&region, vcpu, reg);
473 	if (ret)
474 		return ret;
475 
476 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
477 		return -EPERM;
478 
479 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
480 			 region.klen) ||
481 	    clear_user(uptr + region.klen, region.upad))
482 		return -EFAULT;
483 
484 	return 0;
485 }
486 
487 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
488 {
489 	int ret;
490 	struct sve_state_reg_region region;
491 	const char __user *uptr = (const char __user *)reg->addr;
492 
493 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
494 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
495 		return set_sve_vls(vcpu, reg);
496 
497 	/* Try to interpret reg ID as an architectural SVE register... */
498 	ret = sve_reg_to_region(&region, vcpu, reg);
499 	if (ret)
500 		return ret;
501 
502 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
503 		return -EPERM;
504 
505 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
506 			   region.klen))
507 		return -EFAULT;
508 
509 	return 0;
510 }
511 
512 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
513 {
514 	return -EINVAL;
515 }
516 
517 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
518 {
519 	return -EINVAL;
520 }
521 
522 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
523 				 u64 __user *uindices)
524 {
525 	unsigned int i;
526 	int n = 0;
527 
528 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
529 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
530 		int size = core_reg_size_from_offset(vcpu, i);
531 
532 		if (size < 0)
533 			continue;
534 
535 		switch (size) {
536 		case sizeof(__u32):
537 			reg |= KVM_REG_SIZE_U32;
538 			break;
539 
540 		case sizeof(__u64):
541 			reg |= KVM_REG_SIZE_U64;
542 			break;
543 
544 		case sizeof(__uint128_t):
545 			reg |= KVM_REG_SIZE_U128;
546 			break;
547 
548 		default:
549 			WARN_ON(1);
550 			continue;
551 		}
552 
553 		if (uindices) {
554 			if (put_user(reg, uindices))
555 				return -EFAULT;
556 			uindices++;
557 		}
558 
559 		n++;
560 	}
561 
562 	return n;
563 }
564 
565 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
566 {
567 	return copy_core_reg_indices(vcpu, NULL);
568 }
569 
570 /**
571  * ARM64 versions of the TIMER registers, always available on arm64
572  */
573 
574 #define NUM_TIMER_REGS 3
575 
576 static bool is_timer_reg(u64 index)
577 {
578 	switch (index) {
579 	case KVM_REG_ARM_TIMER_CTL:
580 	case KVM_REG_ARM_TIMER_CNT:
581 	case KVM_REG_ARM_TIMER_CVAL:
582 		return true;
583 	}
584 	return false;
585 }
586 
587 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
588 {
589 	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
590 		return -EFAULT;
591 	uindices++;
592 	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
593 		return -EFAULT;
594 	uindices++;
595 	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
596 		return -EFAULT;
597 
598 	return 0;
599 }
600 
601 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
602 {
603 	void __user *uaddr = (void __user *)(long)reg->addr;
604 	u64 val;
605 	int ret;
606 
607 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
608 	if (ret != 0)
609 		return -EFAULT;
610 
611 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
612 }
613 
614 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
615 {
616 	void __user *uaddr = (void __user *)(long)reg->addr;
617 	u64 val;
618 
619 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
620 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
621 }
622 
623 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
624 {
625 	const unsigned int slices = vcpu_sve_slices(vcpu);
626 
627 	if (!vcpu_has_sve(vcpu))
628 		return 0;
629 
630 	/* Policed by KVM_GET_REG_LIST: */
631 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
632 
633 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
634 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
635 }
636 
637 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
638 				u64 __user *uindices)
639 {
640 	const unsigned int slices = vcpu_sve_slices(vcpu);
641 	u64 reg;
642 	unsigned int i, n;
643 	int num_regs = 0;
644 
645 	if (!vcpu_has_sve(vcpu))
646 		return 0;
647 
648 	/* Policed by KVM_GET_REG_LIST: */
649 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
650 
651 	/*
652 	 * Enumerate this first, so that userspace can save/restore in
653 	 * the order reported by KVM_GET_REG_LIST:
654 	 */
655 	reg = KVM_REG_ARM64_SVE_VLS;
656 	if (put_user(reg, uindices++))
657 		return -EFAULT;
658 	++num_regs;
659 
660 	for (i = 0; i < slices; i++) {
661 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
662 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
663 			if (put_user(reg, uindices++))
664 				return -EFAULT;
665 			num_regs++;
666 		}
667 
668 		for (n = 0; n < SVE_NUM_PREGS; n++) {
669 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
670 			if (put_user(reg, uindices++))
671 				return -EFAULT;
672 			num_regs++;
673 		}
674 
675 		reg = KVM_REG_ARM64_SVE_FFR(i);
676 		if (put_user(reg, uindices++))
677 			return -EFAULT;
678 		num_regs++;
679 	}
680 
681 	return num_regs;
682 }
683 
684 /**
685  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
686  *
687  * This is for all registers.
688  */
689 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
690 {
691 	unsigned long res = 0;
692 
693 	res += num_core_regs(vcpu);
694 	res += num_sve_regs(vcpu);
695 	res += kvm_arm_num_sys_reg_descs(vcpu);
696 	res += kvm_arm_get_fw_num_regs(vcpu);
697 	res += NUM_TIMER_REGS;
698 
699 	return res;
700 }
701 
702 /**
703  * kvm_arm_copy_reg_indices - get indices of all registers.
704  *
705  * We do core registers right here, then we append system regs.
706  */
707 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
708 {
709 	int ret;
710 
711 	ret = copy_core_reg_indices(vcpu, uindices);
712 	if (ret < 0)
713 		return ret;
714 	uindices += ret;
715 
716 	ret = copy_sve_reg_indices(vcpu, uindices);
717 	if (ret < 0)
718 		return ret;
719 	uindices += ret;
720 
721 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
722 	if (ret < 0)
723 		return ret;
724 	uindices += kvm_arm_get_fw_num_regs(vcpu);
725 
726 	ret = copy_timer_indices(vcpu, uindices);
727 	if (ret < 0)
728 		return ret;
729 	uindices += NUM_TIMER_REGS;
730 
731 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
732 }
733 
734 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
735 {
736 	/* We currently use nothing arch-specific in upper 32 bits */
737 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
738 		return -EINVAL;
739 
740 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
741 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
742 	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
743 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
744 	}
745 
746 	if (is_timer_reg(reg->id))
747 		return get_timer_reg(vcpu, reg);
748 
749 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
750 }
751 
752 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
753 {
754 	/* We currently use nothing arch-specific in upper 32 bits */
755 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
756 		return -EINVAL;
757 
758 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
759 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
760 	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
761 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
762 	}
763 
764 	if (is_timer_reg(reg->id))
765 		return set_timer_reg(vcpu, reg);
766 
767 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
768 }
769 
770 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
771 				  struct kvm_sregs *sregs)
772 {
773 	return -EINVAL;
774 }
775 
776 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
777 				  struct kvm_sregs *sregs)
778 {
779 	return -EINVAL;
780 }
781 
782 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
783 			      struct kvm_vcpu_events *events)
784 {
785 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
786 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
787 
788 	if (events->exception.serror_pending && events->exception.serror_has_esr)
789 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
790 
791 	/*
792 	 * We never return a pending ext_dabt here because we deliver it to
793 	 * the virtual CPU directly when setting the event and it's no longer
794 	 * 'pending' at this point.
795 	 */
796 
797 	return 0;
798 }
799 
800 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
801 			      struct kvm_vcpu_events *events)
802 {
803 	bool serror_pending = events->exception.serror_pending;
804 	bool has_esr = events->exception.serror_has_esr;
805 	bool ext_dabt_pending = events->exception.ext_dabt_pending;
806 
807 	if (serror_pending && has_esr) {
808 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
809 			return -EINVAL;
810 
811 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
812 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
813 		else
814 			return -EINVAL;
815 	} else if (serror_pending) {
816 		kvm_inject_vabt(vcpu);
817 	}
818 
819 	if (ext_dabt_pending)
820 		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
821 
822 	return 0;
823 }
824 
825 int __attribute_const__ kvm_target_cpu(void)
826 {
827 	unsigned long implementor = read_cpuid_implementor();
828 	unsigned long part_number = read_cpuid_part_number();
829 
830 	switch (implementor) {
831 	case ARM_CPU_IMP_ARM:
832 		switch (part_number) {
833 		case ARM_CPU_PART_AEM_V8:
834 			return KVM_ARM_TARGET_AEM_V8;
835 		case ARM_CPU_PART_FOUNDATION:
836 			return KVM_ARM_TARGET_FOUNDATION_V8;
837 		case ARM_CPU_PART_CORTEX_A53:
838 			return KVM_ARM_TARGET_CORTEX_A53;
839 		case ARM_CPU_PART_CORTEX_A57:
840 			return KVM_ARM_TARGET_CORTEX_A57;
841 		}
842 		break;
843 	case ARM_CPU_IMP_APM:
844 		switch (part_number) {
845 		case APM_CPU_PART_POTENZA:
846 			return KVM_ARM_TARGET_XGENE_POTENZA;
847 		}
848 		break;
849 	}
850 
851 	/* Return a default generic target */
852 	return KVM_ARM_TARGET_GENERIC_V8;
853 }
854 
855 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
856 {
857 	int target = kvm_target_cpu();
858 
859 	if (target < 0)
860 		return -ENODEV;
861 
862 	memset(init, 0, sizeof(*init));
863 
864 	/*
865 	 * For now, we don't return any features.
866 	 * In future, we might use features to return target
867 	 * specific features available for the preferred
868 	 * target type.
869 	 */
870 	init->target = (__u32)target;
871 
872 	return 0;
873 }
874 
875 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
876 {
877 	return -EINVAL;
878 }
879 
880 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
881 {
882 	return -EINVAL;
883 }
884 
885 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
886 				  struct kvm_translation *tr)
887 {
888 	return -EINVAL;
889 }
890 
891 /**
892  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
893  * @kvm:	pointer to the KVM struct
894  * @kvm_guest_debug: the ioctl data buffer
895  *
896  * This sets up and enables the VM for guest debugging. Userspace
897  * passes in a control flag to enable different debug types and
898  * potentially other architecture specific information in the rest of
899  * the structure.
900  */
901 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
902 					struct kvm_guest_debug *dbg)
903 {
904 	int ret = 0;
905 
906 	trace_kvm_set_guest_debug(vcpu, dbg->control);
907 
908 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
909 		ret = -EINVAL;
910 		goto out;
911 	}
912 
913 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
914 		vcpu->guest_debug = dbg->control;
915 
916 		/* Hardware assisted Break and Watch points */
917 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
918 			vcpu->arch.external_debug_state = dbg->arch;
919 		}
920 
921 	} else {
922 		/* If not enabled clear all flags */
923 		vcpu->guest_debug = 0;
924 	}
925 
926 out:
927 	return ret;
928 }
929 
930 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
931 			       struct kvm_device_attr *attr)
932 {
933 	int ret;
934 
935 	switch (attr->group) {
936 	case KVM_ARM_VCPU_PMU_V3_CTRL:
937 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
938 		break;
939 	case KVM_ARM_VCPU_TIMER_CTRL:
940 		ret = kvm_arm_timer_set_attr(vcpu, attr);
941 		break;
942 	case KVM_ARM_VCPU_PVTIME_CTRL:
943 		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
944 		break;
945 	default:
946 		ret = -ENXIO;
947 		break;
948 	}
949 
950 	return ret;
951 }
952 
953 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
954 			       struct kvm_device_attr *attr)
955 {
956 	int ret;
957 
958 	switch (attr->group) {
959 	case KVM_ARM_VCPU_PMU_V3_CTRL:
960 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
961 		break;
962 	case KVM_ARM_VCPU_TIMER_CTRL:
963 		ret = kvm_arm_timer_get_attr(vcpu, attr);
964 		break;
965 	case KVM_ARM_VCPU_PVTIME_CTRL:
966 		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
967 		break;
968 	default:
969 		ret = -ENXIO;
970 		break;
971 	}
972 
973 	return ret;
974 }
975 
976 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
977 			       struct kvm_device_attr *attr)
978 {
979 	int ret;
980 
981 	switch (attr->group) {
982 	case KVM_ARM_VCPU_PMU_V3_CTRL:
983 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
984 		break;
985 	case KVM_ARM_VCPU_TIMER_CTRL:
986 		ret = kvm_arm_timer_has_attr(vcpu, attr);
987 		break;
988 	case KVM_ARM_VCPU_PVTIME_CTRL:
989 		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
990 		break;
991 	default:
992 		ret = -ENXIO;
993 		break;
994 	}
995 
996 	return ret;
997 }
998