xref: /openbmc/linux/arch/arm64/kvm/guest.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_host.h>
29 #include <asm/sigcontext.h>
30 
31 #include "trace.h"
32 
33 #define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
34 #define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
35 
36 struct kvm_stats_debugfs_item debugfs_entries[] = {
37 	VCPU_STAT(halt_successful_poll),
38 	VCPU_STAT(halt_attempted_poll),
39 	VCPU_STAT(halt_poll_invalid),
40 	VCPU_STAT(halt_wakeup),
41 	VCPU_STAT(hvc_exit_stat),
42 	VCPU_STAT(wfe_exit_stat),
43 	VCPU_STAT(wfi_exit_stat),
44 	VCPU_STAT(mmio_exit_user),
45 	VCPU_STAT(mmio_exit_kernel),
46 	VCPU_STAT(exits),
47 	{ NULL }
48 };
49 
50 static bool core_reg_offset_is_vreg(u64 off)
51 {
52 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
53 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
54 }
55 
56 static u64 core_reg_offset_from_id(u64 id)
57 {
58 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
59 }
60 
61 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
62 {
63 	int size;
64 
65 	switch (off) {
66 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
67 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
68 	case KVM_REG_ARM_CORE_REG(regs.sp):
69 	case KVM_REG_ARM_CORE_REG(regs.pc):
70 	case KVM_REG_ARM_CORE_REG(regs.pstate):
71 	case KVM_REG_ARM_CORE_REG(sp_el1):
72 	case KVM_REG_ARM_CORE_REG(elr_el1):
73 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
74 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
75 		size = sizeof(__u64);
76 		break;
77 
78 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
79 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
80 		size = sizeof(__uint128_t);
81 		break;
82 
83 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
84 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
85 		size = sizeof(__u32);
86 		break;
87 
88 	default:
89 		return -EINVAL;
90 	}
91 
92 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
93 		return -EINVAL;
94 
95 	/*
96 	 * The KVM_REG_ARM64_SVE regs must be used instead of
97 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
98 	 * SVE-enabled vcpus:
99 	 */
100 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
101 		return -EINVAL;
102 
103 	return size;
104 }
105 
106 static int validate_core_offset(const struct kvm_vcpu *vcpu,
107 				const struct kvm_one_reg *reg)
108 {
109 	u64 off = core_reg_offset_from_id(reg->id);
110 	int size = core_reg_size_from_offset(vcpu, off);
111 
112 	if (size < 0)
113 		return -EINVAL;
114 
115 	if (KVM_REG_SIZE(reg->id) != size)
116 		return -EINVAL;
117 
118 	return 0;
119 }
120 
121 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
122 {
123 	/*
124 	 * Because the kvm_regs structure is a mix of 32, 64 and
125 	 * 128bit fields, we index it as if it was a 32bit
126 	 * array. Hence below, nr_regs is the number of entries, and
127 	 * off the index in the "array".
128 	 */
129 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
130 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
131 	int nr_regs = sizeof(*regs) / sizeof(__u32);
132 	u32 off;
133 
134 	/* Our ID is an index into the kvm_regs struct. */
135 	off = core_reg_offset_from_id(reg->id);
136 	if (off >= nr_regs ||
137 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
138 		return -ENOENT;
139 
140 	if (validate_core_offset(vcpu, reg))
141 		return -EINVAL;
142 
143 	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
144 		return -EFAULT;
145 
146 	return 0;
147 }
148 
149 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
150 {
151 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
152 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
153 	int nr_regs = sizeof(*regs) / sizeof(__u32);
154 	__uint128_t tmp;
155 	void *valp = &tmp;
156 	u64 off;
157 	int err = 0;
158 
159 	/* Our ID is an index into the kvm_regs struct. */
160 	off = core_reg_offset_from_id(reg->id);
161 	if (off >= nr_regs ||
162 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
163 		return -ENOENT;
164 
165 	if (validate_core_offset(vcpu, reg))
166 		return -EINVAL;
167 
168 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
169 		return -EINVAL;
170 
171 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
172 		err = -EFAULT;
173 		goto out;
174 	}
175 
176 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
177 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
178 		switch (mode) {
179 		case PSR_AA32_MODE_USR:
180 			if (!system_supports_32bit_el0())
181 				return -EINVAL;
182 			break;
183 		case PSR_AA32_MODE_FIQ:
184 		case PSR_AA32_MODE_IRQ:
185 		case PSR_AA32_MODE_SVC:
186 		case PSR_AA32_MODE_ABT:
187 		case PSR_AA32_MODE_UND:
188 			if (!vcpu_el1_is_32bit(vcpu))
189 				return -EINVAL;
190 			break;
191 		case PSR_MODE_EL0t:
192 		case PSR_MODE_EL1t:
193 		case PSR_MODE_EL1h:
194 			if (vcpu_el1_is_32bit(vcpu))
195 				return -EINVAL;
196 			break;
197 		default:
198 			err = -EINVAL;
199 			goto out;
200 		}
201 	}
202 
203 	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
204 out:
205 	return err;
206 }
207 
208 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
209 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
210 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
211 
212 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
213 {
214 	unsigned int max_vq, vq;
215 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
216 
217 	if (!vcpu_has_sve(vcpu))
218 		return -ENOENT;
219 
220 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
221 		return -EINVAL;
222 
223 	memset(vqs, 0, sizeof(vqs));
224 
225 	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
226 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
227 		if (sve_vq_available(vq))
228 			vqs[vq_word(vq)] |= vq_mask(vq);
229 
230 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
231 		return -EFAULT;
232 
233 	return 0;
234 }
235 
236 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
237 {
238 	unsigned int max_vq, vq;
239 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
240 
241 	if (!vcpu_has_sve(vcpu))
242 		return -ENOENT;
243 
244 	if (kvm_arm_vcpu_sve_finalized(vcpu))
245 		return -EPERM; /* too late! */
246 
247 	if (WARN_ON(vcpu->arch.sve_state))
248 		return -EINVAL;
249 
250 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
251 		return -EFAULT;
252 
253 	max_vq = 0;
254 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
255 		if (vq_present(vqs, vq))
256 			max_vq = vq;
257 
258 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
259 		return -EINVAL;
260 
261 	/*
262 	 * Vector lengths supported by the host can't currently be
263 	 * hidden from the guest individually: instead we can only set a
264 	 * maxmium via ZCR_EL2.LEN.  So, make sure the available vector
265 	 * lengths match the set requested exactly up to the requested
266 	 * maximum:
267 	 */
268 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
269 		if (vq_present(vqs, vq) != sve_vq_available(vq))
270 			return -EINVAL;
271 
272 	/* Can't run with no vector lengths at all: */
273 	if (max_vq < SVE_VQ_MIN)
274 		return -EINVAL;
275 
276 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
277 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
278 
279 	return 0;
280 }
281 
282 #define SVE_REG_SLICE_SHIFT	0
283 #define SVE_REG_SLICE_BITS	5
284 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
285 #define SVE_REG_ID_BITS		5
286 
287 #define SVE_REG_SLICE_MASK					\
288 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
289 		SVE_REG_SLICE_SHIFT)
290 #define SVE_REG_ID_MASK							\
291 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
292 
293 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
294 
295 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
296 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
297 
298 /*
299  * Number of register slices required to cover each whole SVE register.
300  * NOTE: Only the first slice every exists, for now.
301  * If you are tempted to modify this, you must also rework sve_reg_to_region()
302  * to match:
303  */
304 #define vcpu_sve_slices(vcpu) 1
305 
306 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
307 struct sve_state_reg_region {
308 	unsigned int koffset;	/* offset into sve_state in kernel memory */
309 	unsigned int klen;	/* length in kernel memory */
310 	unsigned int upad;	/* extra trailing padding in user memory */
311 };
312 
313 /*
314  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
315  * register copy
316  */
317 static int sve_reg_to_region(struct sve_state_reg_region *region,
318 			     struct kvm_vcpu *vcpu,
319 			     const struct kvm_one_reg *reg)
320 {
321 	/* reg ID ranges for Z- registers */
322 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
323 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
324 						       SVE_NUM_SLICES - 1);
325 
326 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
327 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
328 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
329 
330 	unsigned int vq;
331 	unsigned int reg_num;
332 
333 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
334 	unsigned int maxlen; /* Maxmimum permitted length */
335 
336 	size_t sve_state_size;
337 
338 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
339 							SVE_NUM_SLICES - 1);
340 
341 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
342 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
343 
344 	/* Verify that we match the UAPI header: */
345 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
346 
347 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
348 
349 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
350 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
351 			return -ENOENT;
352 
353 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
354 
355 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
356 				SVE_SIG_REGS_OFFSET;
357 		reqlen = KVM_SVE_ZREG_SIZE;
358 		maxlen = SVE_SIG_ZREG_SIZE(vq);
359 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
360 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
361 			return -ENOENT;
362 
363 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
364 
365 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
366 				SVE_SIG_REGS_OFFSET;
367 		reqlen = KVM_SVE_PREG_SIZE;
368 		maxlen = SVE_SIG_PREG_SIZE(vq);
369 	} else {
370 		return -EINVAL;
371 	}
372 
373 	sve_state_size = vcpu_sve_state_size(vcpu);
374 	if (WARN_ON(!sve_state_size))
375 		return -EINVAL;
376 
377 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
378 	region->klen = min(maxlen, reqlen);
379 	region->upad = reqlen - region->klen;
380 
381 	return 0;
382 }
383 
384 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
385 {
386 	int ret;
387 	struct sve_state_reg_region region;
388 	char __user *uptr = (char __user *)reg->addr;
389 
390 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
391 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
392 		return get_sve_vls(vcpu, reg);
393 
394 	/* Try to interpret reg ID as an architectural SVE register... */
395 	ret = sve_reg_to_region(&region, vcpu, reg);
396 	if (ret)
397 		return ret;
398 
399 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
400 		return -EPERM;
401 
402 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
403 			 region.klen) ||
404 	    clear_user(uptr + region.klen, region.upad))
405 		return -EFAULT;
406 
407 	return 0;
408 }
409 
410 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
411 {
412 	int ret;
413 	struct sve_state_reg_region region;
414 	const char __user *uptr = (const char __user *)reg->addr;
415 
416 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
417 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
418 		return set_sve_vls(vcpu, reg);
419 
420 	/* Try to interpret reg ID as an architectural SVE register... */
421 	ret = sve_reg_to_region(&region, vcpu, reg);
422 	if (ret)
423 		return ret;
424 
425 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
426 		return -EPERM;
427 
428 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
429 			   region.klen))
430 		return -EFAULT;
431 
432 	return 0;
433 }
434 
435 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
436 {
437 	return -EINVAL;
438 }
439 
440 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
441 {
442 	return -EINVAL;
443 }
444 
445 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
446 				 u64 __user *uindices)
447 {
448 	unsigned int i;
449 	int n = 0;
450 
451 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
452 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
453 		int size = core_reg_size_from_offset(vcpu, i);
454 
455 		if (size < 0)
456 			continue;
457 
458 		switch (size) {
459 		case sizeof(__u32):
460 			reg |= KVM_REG_SIZE_U32;
461 			break;
462 
463 		case sizeof(__u64):
464 			reg |= KVM_REG_SIZE_U64;
465 			break;
466 
467 		case sizeof(__uint128_t):
468 			reg |= KVM_REG_SIZE_U128;
469 			break;
470 
471 		default:
472 			WARN_ON(1);
473 			continue;
474 		}
475 
476 		if (uindices) {
477 			if (put_user(reg, uindices))
478 				return -EFAULT;
479 			uindices++;
480 		}
481 
482 		n++;
483 	}
484 
485 	return n;
486 }
487 
488 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
489 {
490 	return copy_core_reg_indices(vcpu, NULL);
491 }
492 
493 /**
494  * ARM64 versions of the TIMER registers, always available on arm64
495  */
496 
497 #define NUM_TIMER_REGS 3
498 
499 static bool is_timer_reg(u64 index)
500 {
501 	switch (index) {
502 	case KVM_REG_ARM_TIMER_CTL:
503 	case KVM_REG_ARM_TIMER_CNT:
504 	case KVM_REG_ARM_TIMER_CVAL:
505 		return true;
506 	}
507 	return false;
508 }
509 
510 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
511 {
512 	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
513 		return -EFAULT;
514 	uindices++;
515 	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
516 		return -EFAULT;
517 	uindices++;
518 	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
519 		return -EFAULT;
520 
521 	return 0;
522 }
523 
524 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
525 {
526 	void __user *uaddr = (void __user *)(long)reg->addr;
527 	u64 val;
528 	int ret;
529 
530 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
531 	if (ret != 0)
532 		return -EFAULT;
533 
534 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
535 }
536 
537 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
538 {
539 	void __user *uaddr = (void __user *)(long)reg->addr;
540 	u64 val;
541 
542 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
543 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
544 }
545 
546 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
547 {
548 	const unsigned int slices = vcpu_sve_slices(vcpu);
549 
550 	if (!vcpu_has_sve(vcpu))
551 		return 0;
552 
553 	/* Policed by KVM_GET_REG_LIST: */
554 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
555 
556 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
557 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
558 }
559 
560 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
561 				u64 __user *uindices)
562 {
563 	const unsigned int slices = vcpu_sve_slices(vcpu);
564 	u64 reg;
565 	unsigned int i, n;
566 	int num_regs = 0;
567 
568 	if (!vcpu_has_sve(vcpu))
569 		return 0;
570 
571 	/* Policed by KVM_GET_REG_LIST: */
572 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
573 
574 	/*
575 	 * Enumerate this first, so that userspace can save/restore in
576 	 * the order reported by KVM_GET_REG_LIST:
577 	 */
578 	reg = KVM_REG_ARM64_SVE_VLS;
579 	if (put_user(reg, uindices++))
580 		return -EFAULT;
581 	++num_regs;
582 
583 	for (i = 0; i < slices; i++) {
584 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
585 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
586 			if (put_user(reg, uindices++))
587 				return -EFAULT;
588 			num_regs++;
589 		}
590 
591 		for (n = 0; n < SVE_NUM_PREGS; n++) {
592 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
593 			if (put_user(reg, uindices++))
594 				return -EFAULT;
595 			num_regs++;
596 		}
597 
598 		reg = KVM_REG_ARM64_SVE_FFR(i);
599 		if (put_user(reg, uindices++))
600 			return -EFAULT;
601 		num_regs++;
602 	}
603 
604 	return num_regs;
605 }
606 
607 /**
608  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
609  *
610  * This is for all registers.
611  */
612 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
613 {
614 	unsigned long res = 0;
615 
616 	res += num_core_regs(vcpu);
617 	res += num_sve_regs(vcpu);
618 	res += kvm_arm_num_sys_reg_descs(vcpu);
619 	res += kvm_arm_get_fw_num_regs(vcpu);
620 	res += NUM_TIMER_REGS;
621 
622 	return res;
623 }
624 
625 /**
626  * kvm_arm_copy_reg_indices - get indices of all registers.
627  *
628  * We do core registers right here, then we append system regs.
629  */
630 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
631 {
632 	int ret;
633 
634 	ret = copy_core_reg_indices(vcpu, uindices);
635 	if (ret < 0)
636 		return ret;
637 	uindices += ret;
638 
639 	ret = copy_sve_reg_indices(vcpu, uindices);
640 	if (ret < 0)
641 		return ret;
642 	uindices += ret;
643 
644 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
645 	if (ret < 0)
646 		return ret;
647 	uindices += kvm_arm_get_fw_num_regs(vcpu);
648 
649 	ret = copy_timer_indices(vcpu, uindices);
650 	if (ret < 0)
651 		return ret;
652 	uindices += NUM_TIMER_REGS;
653 
654 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
655 }
656 
657 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
658 {
659 	/* We currently use nothing arch-specific in upper 32 bits */
660 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
661 		return -EINVAL;
662 
663 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
664 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
665 	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
666 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
667 	}
668 
669 	if (is_timer_reg(reg->id))
670 		return get_timer_reg(vcpu, reg);
671 
672 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
673 }
674 
675 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
676 {
677 	/* We currently use nothing arch-specific in upper 32 bits */
678 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
679 		return -EINVAL;
680 
681 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
682 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
683 	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
684 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
685 	}
686 
687 	if (is_timer_reg(reg->id))
688 		return set_timer_reg(vcpu, reg);
689 
690 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
691 }
692 
693 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
694 				  struct kvm_sregs *sregs)
695 {
696 	return -EINVAL;
697 }
698 
699 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
700 				  struct kvm_sregs *sregs)
701 {
702 	return -EINVAL;
703 }
704 
705 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
706 			      struct kvm_vcpu_events *events)
707 {
708 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
709 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
710 
711 	if (events->exception.serror_pending && events->exception.serror_has_esr)
712 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
713 
714 	/*
715 	 * We never return a pending ext_dabt here because we deliver it to
716 	 * the virtual CPU directly when setting the event and it's no longer
717 	 * 'pending' at this point.
718 	 */
719 
720 	return 0;
721 }
722 
723 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
724 			      struct kvm_vcpu_events *events)
725 {
726 	bool serror_pending = events->exception.serror_pending;
727 	bool has_esr = events->exception.serror_has_esr;
728 	bool ext_dabt_pending = events->exception.ext_dabt_pending;
729 
730 	if (serror_pending && has_esr) {
731 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
732 			return -EINVAL;
733 
734 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
735 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
736 		else
737 			return -EINVAL;
738 	} else if (serror_pending) {
739 		kvm_inject_vabt(vcpu);
740 	}
741 
742 	if (ext_dabt_pending)
743 		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
744 
745 	return 0;
746 }
747 
748 int __attribute_const__ kvm_target_cpu(void)
749 {
750 	unsigned long implementor = read_cpuid_implementor();
751 	unsigned long part_number = read_cpuid_part_number();
752 
753 	switch (implementor) {
754 	case ARM_CPU_IMP_ARM:
755 		switch (part_number) {
756 		case ARM_CPU_PART_AEM_V8:
757 			return KVM_ARM_TARGET_AEM_V8;
758 		case ARM_CPU_PART_FOUNDATION:
759 			return KVM_ARM_TARGET_FOUNDATION_V8;
760 		case ARM_CPU_PART_CORTEX_A53:
761 			return KVM_ARM_TARGET_CORTEX_A53;
762 		case ARM_CPU_PART_CORTEX_A57:
763 			return KVM_ARM_TARGET_CORTEX_A57;
764 		}
765 		break;
766 	case ARM_CPU_IMP_APM:
767 		switch (part_number) {
768 		case APM_CPU_PART_POTENZA:
769 			return KVM_ARM_TARGET_XGENE_POTENZA;
770 		}
771 		break;
772 	}
773 
774 	/* Return a default generic target */
775 	return KVM_ARM_TARGET_GENERIC_V8;
776 }
777 
778 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
779 {
780 	int target = kvm_target_cpu();
781 
782 	if (target < 0)
783 		return -ENODEV;
784 
785 	memset(init, 0, sizeof(*init));
786 
787 	/*
788 	 * For now, we don't return any features.
789 	 * In future, we might use features to return target
790 	 * specific features available for the preferred
791 	 * target type.
792 	 */
793 	init->target = (__u32)target;
794 
795 	return 0;
796 }
797 
798 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
799 {
800 	return -EINVAL;
801 }
802 
803 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
804 {
805 	return -EINVAL;
806 }
807 
808 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
809 				  struct kvm_translation *tr)
810 {
811 	return -EINVAL;
812 }
813 
814 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
815 			    KVM_GUESTDBG_USE_SW_BP | \
816 			    KVM_GUESTDBG_USE_HW | \
817 			    KVM_GUESTDBG_SINGLESTEP)
818 
819 /**
820  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
821  * @kvm:	pointer to the KVM struct
822  * @kvm_guest_debug: the ioctl data buffer
823  *
824  * This sets up and enables the VM for guest debugging. Userspace
825  * passes in a control flag to enable different debug types and
826  * potentially other architecture specific information in the rest of
827  * the structure.
828  */
829 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
830 					struct kvm_guest_debug *dbg)
831 {
832 	int ret = 0;
833 
834 	trace_kvm_set_guest_debug(vcpu, dbg->control);
835 
836 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
837 		ret = -EINVAL;
838 		goto out;
839 	}
840 
841 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
842 		vcpu->guest_debug = dbg->control;
843 
844 		/* Hardware assisted Break and Watch points */
845 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
846 			vcpu->arch.external_debug_state = dbg->arch;
847 		}
848 
849 	} else {
850 		/* If not enabled clear all flags */
851 		vcpu->guest_debug = 0;
852 	}
853 
854 out:
855 	return ret;
856 }
857 
858 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
859 			       struct kvm_device_attr *attr)
860 {
861 	int ret;
862 
863 	switch (attr->group) {
864 	case KVM_ARM_VCPU_PMU_V3_CTRL:
865 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
866 		break;
867 	case KVM_ARM_VCPU_TIMER_CTRL:
868 		ret = kvm_arm_timer_set_attr(vcpu, attr);
869 		break;
870 	case KVM_ARM_VCPU_PVTIME_CTRL:
871 		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
872 		break;
873 	default:
874 		ret = -ENXIO;
875 		break;
876 	}
877 
878 	return ret;
879 }
880 
881 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
882 			       struct kvm_device_attr *attr)
883 {
884 	int ret;
885 
886 	switch (attr->group) {
887 	case KVM_ARM_VCPU_PMU_V3_CTRL:
888 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
889 		break;
890 	case KVM_ARM_VCPU_TIMER_CTRL:
891 		ret = kvm_arm_timer_get_attr(vcpu, attr);
892 		break;
893 	case KVM_ARM_VCPU_PVTIME_CTRL:
894 		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
895 		break;
896 	default:
897 		ret = -ENXIO;
898 		break;
899 	}
900 
901 	return ret;
902 }
903 
904 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
905 			       struct kvm_device_attr *attr)
906 {
907 	int ret;
908 
909 	switch (attr->group) {
910 	case KVM_ARM_VCPU_PMU_V3_CTRL:
911 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
912 		break;
913 	case KVM_ARM_VCPU_TIMER_CTRL:
914 		ret = kvm_arm_timer_has_attr(vcpu, attr);
915 		break;
916 	case KVM_ARM_VCPU_PVTIME_CTRL:
917 		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
918 		break;
919 	default:
920 		ret = -ENXIO;
921 		break;
922 	}
923 
924 	return ret;
925 }
926