xref: /openbmc/linux/arch/arm64/kvm/guest.c (revision da2ef666)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/guest.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/errno.h>
23 #include <linux/err.h>
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <kvm/arm_psci.h>
29 #include <asm/cputype.h>
30 #include <linux/uaccess.h>
31 #include <asm/kvm.h>
32 #include <asm/kvm_emulate.h>
33 #include <asm/kvm_coproc.h>
34 
35 #include "trace.h"
36 
37 #define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
38 #define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
39 
40 struct kvm_stats_debugfs_item debugfs_entries[] = {
41 	VCPU_STAT(hvc_exit_stat),
42 	VCPU_STAT(wfe_exit_stat),
43 	VCPU_STAT(wfi_exit_stat),
44 	VCPU_STAT(mmio_exit_user),
45 	VCPU_STAT(mmio_exit_kernel),
46 	VCPU_STAT(exits),
47 	{ NULL }
48 };
49 
50 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
51 {
52 	return 0;
53 }
54 
55 static u64 core_reg_offset_from_id(u64 id)
56 {
57 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
58 }
59 
60 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
61 {
62 	/*
63 	 * Because the kvm_regs structure is a mix of 32, 64 and
64 	 * 128bit fields, we index it as if it was a 32bit
65 	 * array. Hence below, nr_regs is the number of entries, and
66 	 * off the index in the "array".
67 	 */
68 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
69 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
70 	int nr_regs = sizeof(*regs) / sizeof(__u32);
71 	u32 off;
72 
73 	/* Our ID is an index into the kvm_regs struct. */
74 	off = core_reg_offset_from_id(reg->id);
75 	if (off >= nr_regs ||
76 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
77 		return -ENOENT;
78 
79 	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
80 		return -EFAULT;
81 
82 	return 0;
83 }
84 
85 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
86 {
87 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
88 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
89 	int nr_regs = sizeof(*regs) / sizeof(__u32);
90 	__uint128_t tmp;
91 	void *valp = &tmp;
92 	u64 off;
93 	int err = 0;
94 
95 	/* Our ID is an index into the kvm_regs struct. */
96 	off = core_reg_offset_from_id(reg->id);
97 	if (off >= nr_regs ||
98 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
99 		return -ENOENT;
100 
101 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
102 		return -EINVAL;
103 
104 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
105 		err = -EFAULT;
106 		goto out;
107 	}
108 
109 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
110 		u32 mode = (*(u32 *)valp) & PSR_AA32_MODE_MASK;
111 		switch (mode) {
112 		case PSR_AA32_MODE_USR:
113 		case PSR_AA32_MODE_FIQ:
114 		case PSR_AA32_MODE_IRQ:
115 		case PSR_AA32_MODE_SVC:
116 		case PSR_AA32_MODE_ABT:
117 		case PSR_AA32_MODE_UND:
118 		case PSR_MODE_EL0t:
119 		case PSR_MODE_EL1t:
120 		case PSR_MODE_EL1h:
121 			break;
122 		default:
123 			err = -EINVAL;
124 			goto out;
125 		}
126 	}
127 
128 	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
129 out:
130 	return err;
131 }
132 
133 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
134 {
135 	return -EINVAL;
136 }
137 
138 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
139 {
140 	return -EINVAL;
141 }
142 
143 static unsigned long num_core_regs(void)
144 {
145 	return sizeof(struct kvm_regs) / sizeof(__u32);
146 }
147 
148 /**
149  * ARM64 versions of the TIMER registers, always available on arm64
150  */
151 
152 #define NUM_TIMER_REGS 3
153 
154 static bool is_timer_reg(u64 index)
155 {
156 	switch (index) {
157 	case KVM_REG_ARM_TIMER_CTL:
158 	case KVM_REG_ARM_TIMER_CNT:
159 	case KVM_REG_ARM_TIMER_CVAL:
160 		return true;
161 	}
162 	return false;
163 }
164 
165 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
166 {
167 	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
168 		return -EFAULT;
169 	uindices++;
170 	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
171 		return -EFAULT;
172 	uindices++;
173 	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
174 		return -EFAULT;
175 
176 	return 0;
177 }
178 
179 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
180 {
181 	void __user *uaddr = (void __user *)(long)reg->addr;
182 	u64 val;
183 	int ret;
184 
185 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
186 	if (ret != 0)
187 		return -EFAULT;
188 
189 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
190 }
191 
192 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
193 {
194 	void __user *uaddr = (void __user *)(long)reg->addr;
195 	u64 val;
196 
197 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
198 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
199 }
200 
201 /**
202  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
203  *
204  * This is for all registers.
205  */
206 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
207 {
208 	return num_core_regs() + kvm_arm_num_sys_reg_descs(vcpu)
209 		+ kvm_arm_get_fw_num_regs(vcpu)	+ NUM_TIMER_REGS;
210 }
211 
212 /**
213  * kvm_arm_copy_reg_indices - get indices of all registers.
214  *
215  * We do core registers right here, then we append system regs.
216  */
217 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
218 {
219 	unsigned int i;
220 	const u64 core_reg = KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE;
221 	int ret;
222 
223 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
224 		if (put_user(core_reg | i, uindices))
225 			return -EFAULT;
226 		uindices++;
227 	}
228 
229 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
230 	if (ret)
231 		return ret;
232 	uindices += kvm_arm_get_fw_num_regs(vcpu);
233 
234 	ret = copy_timer_indices(vcpu, uindices);
235 	if (ret)
236 		return ret;
237 	uindices += NUM_TIMER_REGS;
238 
239 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
240 }
241 
242 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
243 {
244 	/* We currently use nothing arch-specific in upper 32 bits */
245 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
246 		return -EINVAL;
247 
248 	/* Register group 16 means we want a core register. */
249 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
250 		return get_core_reg(vcpu, reg);
251 
252 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_FW)
253 		return kvm_arm_get_fw_reg(vcpu, reg);
254 
255 	if (is_timer_reg(reg->id))
256 		return get_timer_reg(vcpu, reg);
257 
258 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
259 }
260 
261 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
262 {
263 	/* We currently use nothing arch-specific in upper 32 bits */
264 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
265 		return -EINVAL;
266 
267 	/* Register group 16 means we set a core register. */
268 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE)
269 		return set_core_reg(vcpu, reg);
270 
271 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_FW)
272 		return kvm_arm_set_fw_reg(vcpu, reg);
273 
274 	if (is_timer_reg(reg->id))
275 		return set_timer_reg(vcpu, reg);
276 
277 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
278 }
279 
280 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
281 				  struct kvm_sregs *sregs)
282 {
283 	return -EINVAL;
284 }
285 
286 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
287 				  struct kvm_sregs *sregs)
288 {
289 	return -EINVAL;
290 }
291 
292 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
293 			      struct kvm_vcpu_events *events)
294 {
295 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
296 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
297 
298 	if (events->exception.serror_pending && events->exception.serror_has_esr)
299 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
300 
301 	return 0;
302 }
303 
304 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
305 			      struct kvm_vcpu_events *events)
306 {
307 	bool serror_pending = events->exception.serror_pending;
308 	bool has_esr = events->exception.serror_has_esr;
309 
310 	if (serror_pending && has_esr) {
311 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
312 			return -EINVAL;
313 
314 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
315 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
316 		else
317 			return -EINVAL;
318 	} else if (serror_pending) {
319 		kvm_inject_vabt(vcpu);
320 	}
321 
322 	return 0;
323 }
324 
325 int __attribute_const__ kvm_target_cpu(void)
326 {
327 	unsigned long implementor = read_cpuid_implementor();
328 	unsigned long part_number = read_cpuid_part_number();
329 
330 	switch (implementor) {
331 	case ARM_CPU_IMP_ARM:
332 		switch (part_number) {
333 		case ARM_CPU_PART_AEM_V8:
334 			return KVM_ARM_TARGET_AEM_V8;
335 		case ARM_CPU_PART_FOUNDATION:
336 			return KVM_ARM_TARGET_FOUNDATION_V8;
337 		case ARM_CPU_PART_CORTEX_A53:
338 			return KVM_ARM_TARGET_CORTEX_A53;
339 		case ARM_CPU_PART_CORTEX_A57:
340 			return KVM_ARM_TARGET_CORTEX_A57;
341 		};
342 		break;
343 	case ARM_CPU_IMP_APM:
344 		switch (part_number) {
345 		case APM_CPU_PART_POTENZA:
346 			return KVM_ARM_TARGET_XGENE_POTENZA;
347 		};
348 		break;
349 	};
350 
351 	/* Return a default generic target */
352 	return KVM_ARM_TARGET_GENERIC_V8;
353 }
354 
355 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
356 {
357 	int target = kvm_target_cpu();
358 
359 	if (target < 0)
360 		return -ENODEV;
361 
362 	memset(init, 0, sizeof(*init));
363 
364 	/*
365 	 * For now, we don't return any features.
366 	 * In future, we might use features to return target
367 	 * specific features available for the preferred
368 	 * target type.
369 	 */
370 	init->target = (__u32)target;
371 
372 	return 0;
373 }
374 
375 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
376 {
377 	return -EINVAL;
378 }
379 
380 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
381 {
382 	return -EINVAL;
383 }
384 
385 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
386 				  struct kvm_translation *tr)
387 {
388 	return -EINVAL;
389 }
390 
391 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
392 			    KVM_GUESTDBG_USE_SW_BP | \
393 			    KVM_GUESTDBG_USE_HW | \
394 			    KVM_GUESTDBG_SINGLESTEP)
395 
396 /**
397  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
398  * @kvm:	pointer to the KVM struct
399  * @kvm_guest_debug: the ioctl data buffer
400  *
401  * This sets up and enables the VM for guest debugging. Userspace
402  * passes in a control flag to enable different debug types and
403  * potentially other architecture specific information in the rest of
404  * the structure.
405  */
406 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
407 					struct kvm_guest_debug *dbg)
408 {
409 	int ret = 0;
410 
411 	trace_kvm_set_guest_debug(vcpu, dbg->control);
412 
413 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
414 		ret = -EINVAL;
415 		goto out;
416 	}
417 
418 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
419 		vcpu->guest_debug = dbg->control;
420 
421 		/* Hardware assisted Break and Watch points */
422 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
423 			vcpu->arch.external_debug_state = dbg->arch;
424 		}
425 
426 	} else {
427 		/* If not enabled clear all flags */
428 		vcpu->guest_debug = 0;
429 	}
430 
431 out:
432 	return ret;
433 }
434 
435 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
436 			       struct kvm_device_attr *attr)
437 {
438 	int ret;
439 
440 	switch (attr->group) {
441 	case KVM_ARM_VCPU_PMU_V3_CTRL:
442 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
443 		break;
444 	case KVM_ARM_VCPU_TIMER_CTRL:
445 		ret = kvm_arm_timer_set_attr(vcpu, attr);
446 		break;
447 	default:
448 		ret = -ENXIO;
449 		break;
450 	}
451 
452 	return ret;
453 }
454 
455 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
456 			       struct kvm_device_attr *attr)
457 {
458 	int ret;
459 
460 	switch (attr->group) {
461 	case KVM_ARM_VCPU_PMU_V3_CTRL:
462 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
463 		break;
464 	case KVM_ARM_VCPU_TIMER_CTRL:
465 		ret = kvm_arm_timer_get_attr(vcpu, attr);
466 		break;
467 	default:
468 		ret = -ENXIO;
469 		break;
470 	}
471 
472 	return ret;
473 }
474 
475 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
476 			       struct kvm_device_attr *attr)
477 {
478 	int ret;
479 
480 	switch (attr->group) {
481 	case KVM_ARM_VCPU_PMU_V3_CTRL:
482 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
483 		break;
484 	case KVM_ARM_VCPU_TIMER_CTRL:
485 		ret = kvm_arm_timer_has_attr(vcpu, attr);
486 		break;
487 	default:
488 		ret = -ENXIO;
489 		break;
490 	}
491 
492 	return ret;
493 }
494