xref: /openbmc/linux/arch/arm64/kvm/guest.c (revision a1b2f04ea527397fcacacd09e0d690927feef429)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_host.h>
29 #include <asm/sigcontext.h>
30 
31 #include "trace.h"
32 
33 #define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
34 #define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
35 
36 struct kvm_stats_debugfs_item debugfs_entries[] = {
37 	VCPU_STAT(hvc_exit_stat),
38 	VCPU_STAT(wfe_exit_stat),
39 	VCPU_STAT(wfi_exit_stat),
40 	VCPU_STAT(mmio_exit_user),
41 	VCPU_STAT(mmio_exit_kernel),
42 	VCPU_STAT(exits),
43 	{ NULL }
44 };
45 
46 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
47 {
48 	return 0;
49 }
50 
51 static bool core_reg_offset_is_vreg(u64 off)
52 {
53 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
54 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
55 }
56 
57 static u64 core_reg_offset_from_id(u64 id)
58 {
59 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
60 }
61 
62 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
63 {
64 	int size;
65 
66 	switch (off) {
67 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
68 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
69 	case KVM_REG_ARM_CORE_REG(regs.sp):
70 	case KVM_REG_ARM_CORE_REG(regs.pc):
71 	case KVM_REG_ARM_CORE_REG(regs.pstate):
72 	case KVM_REG_ARM_CORE_REG(sp_el1):
73 	case KVM_REG_ARM_CORE_REG(elr_el1):
74 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
75 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
76 		size = sizeof(__u64);
77 		break;
78 
79 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
80 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
81 		size = sizeof(__uint128_t);
82 		break;
83 
84 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
85 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
86 		size = sizeof(__u32);
87 		break;
88 
89 	default:
90 		return -EINVAL;
91 	}
92 
93 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
94 		return -EINVAL;
95 
96 	/*
97 	 * The KVM_REG_ARM64_SVE regs must be used instead of
98 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
99 	 * SVE-enabled vcpus:
100 	 */
101 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
102 		return -EINVAL;
103 
104 	return size;
105 }
106 
107 static int validate_core_offset(const struct kvm_vcpu *vcpu,
108 				const struct kvm_one_reg *reg)
109 {
110 	u64 off = core_reg_offset_from_id(reg->id);
111 	int size = core_reg_size_from_offset(vcpu, off);
112 
113 	if (size < 0)
114 		return -EINVAL;
115 
116 	if (KVM_REG_SIZE(reg->id) != size)
117 		return -EINVAL;
118 
119 	return 0;
120 }
121 
122 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
123 {
124 	/*
125 	 * Because the kvm_regs structure is a mix of 32, 64 and
126 	 * 128bit fields, we index it as if it was a 32bit
127 	 * array. Hence below, nr_regs is the number of entries, and
128 	 * off the index in the "array".
129 	 */
130 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
131 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
132 	int nr_regs = sizeof(*regs) / sizeof(__u32);
133 	u32 off;
134 
135 	/* Our ID is an index into the kvm_regs struct. */
136 	off = core_reg_offset_from_id(reg->id);
137 	if (off >= nr_regs ||
138 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
139 		return -ENOENT;
140 
141 	if (validate_core_offset(vcpu, reg))
142 		return -EINVAL;
143 
144 	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
145 		return -EFAULT;
146 
147 	return 0;
148 }
149 
150 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
151 {
152 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
153 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
154 	int nr_regs = sizeof(*regs) / sizeof(__u32);
155 	__uint128_t tmp;
156 	void *valp = &tmp;
157 	u64 off;
158 	int err = 0;
159 
160 	/* Our ID is an index into the kvm_regs struct. */
161 	off = core_reg_offset_from_id(reg->id);
162 	if (off >= nr_regs ||
163 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
164 		return -ENOENT;
165 
166 	if (validate_core_offset(vcpu, reg))
167 		return -EINVAL;
168 
169 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
170 		return -EINVAL;
171 
172 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
173 		err = -EFAULT;
174 		goto out;
175 	}
176 
177 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
178 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
179 		switch (mode) {
180 		case PSR_AA32_MODE_USR:
181 			if (!system_supports_32bit_el0())
182 				return -EINVAL;
183 			break;
184 		case PSR_AA32_MODE_FIQ:
185 		case PSR_AA32_MODE_IRQ:
186 		case PSR_AA32_MODE_SVC:
187 		case PSR_AA32_MODE_ABT:
188 		case PSR_AA32_MODE_UND:
189 			if (!vcpu_el1_is_32bit(vcpu))
190 				return -EINVAL;
191 			break;
192 		case PSR_MODE_EL0t:
193 		case PSR_MODE_EL1t:
194 		case PSR_MODE_EL1h:
195 			if (vcpu_el1_is_32bit(vcpu))
196 				return -EINVAL;
197 			break;
198 		default:
199 			err = -EINVAL;
200 			goto out;
201 		}
202 	}
203 
204 	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
205 out:
206 	return err;
207 }
208 
209 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
210 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
211 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
212 
213 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
214 {
215 	unsigned int max_vq, vq;
216 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
217 
218 	if (!vcpu_has_sve(vcpu))
219 		return -ENOENT;
220 
221 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
222 		return -EINVAL;
223 
224 	memset(vqs, 0, sizeof(vqs));
225 
226 	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
227 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
228 		if (sve_vq_available(vq))
229 			vqs[vq_word(vq)] |= vq_mask(vq);
230 
231 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
232 		return -EFAULT;
233 
234 	return 0;
235 }
236 
237 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
238 {
239 	unsigned int max_vq, vq;
240 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
241 
242 	if (!vcpu_has_sve(vcpu))
243 		return -ENOENT;
244 
245 	if (kvm_arm_vcpu_sve_finalized(vcpu))
246 		return -EPERM; /* too late! */
247 
248 	if (WARN_ON(vcpu->arch.sve_state))
249 		return -EINVAL;
250 
251 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
252 		return -EFAULT;
253 
254 	max_vq = 0;
255 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
256 		if (vq_present(vqs, vq))
257 			max_vq = vq;
258 
259 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
260 		return -EINVAL;
261 
262 	/*
263 	 * Vector lengths supported by the host can't currently be
264 	 * hidden from the guest individually: instead we can only set a
265 	 * maxmium via ZCR_EL2.LEN.  So, make sure the available vector
266 	 * lengths match the set requested exactly up to the requested
267 	 * maximum:
268 	 */
269 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
270 		if (vq_present(vqs, vq) != sve_vq_available(vq))
271 			return -EINVAL;
272 
273 	/* Can't run with no vector lengths at all: */
274 	if (max_vq < SVE_VQ_MIN)
275 		return -EINVAL;
276 
277 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
278 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
279 
280 	return 0;
281 }
282 
283 #define SVE_REG_SLICE_SHIFT	0
284 #define SVE_REG_SLICE_BITS	5
285 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
286 #define SVE_REG_ID_BITS		5
287 
288 #define SVE_REG_SLICE_MASK					\
289 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
290 		SVE_REG_SLICE_SHIFT)
291 #define SVE_REG_ID_MASK							\
292 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
293 
294 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
295 
296 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
297 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
298 
299 /*
300  * Number of register slices required to cover each whole SVE register.
301  * NOTE: Only the first slice every exists, for now.
302  * If you are tempted to modify this, you must also rework sve_reg_to_region()
303  * to match:
304  */
305 #define vcpu_sve_slices(vcpu) 1
306 
307 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
308 struct sve_state_reg_region {
309 	unsigned int koffset;	/* offset into sve_state in kernel memory */
310 	unsigned int klen;	/* length in kernel memory */
311 	unsigned int upad;	/* extra trailing padding in user memory */
312 };
313 
314 /*
315  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
316  * register copy
317  */
318 static int sve_reg_to_region(struct sve_state_reg_region *region,
319 			     struct kvm_vcpu *vcpu,
320 			     const struct kvm_one_reg *reg)
321 {
322 	/* reg ID ranges for Z- registers */
323 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
324 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
325 						       SVE_NUM_SLICES - 1);
326 
327 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
328 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
329 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
330 
331 	unsigned int vq;
332 	unsigned int reg_num;
333 
334 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
335 	unsigned int maxlen; /* Maxmimum permitted length */
336 
337 	size_t sve_state_size;
338 
339 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
340 							SVE_NUM_SLICES - 1);
341 
342 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
343 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
344 
345 	/* Verify that we match the UAPI header: */
346 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
347 
348 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
349 
350 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
351 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
352 			return -ENOENT;
353 
354 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
355 
356 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
357 				SVE_SIG_REGS_OFFSET;
358 		reqlen = KVM_SVE_ZREG_SIZE;
359 		maxlen = SVE_SIG_ZREG_SIZE(vq);
360 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
361 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
362 			return -ENOENT;
363 
364 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
365 
366 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
367 				SVE_SIG_REGS_OFFSET;
368 		reqlen = KVM_SVE_PREG_SIZE;
369 		maxlen = SVE_SIG_PREG_SIZE(vq);
370 	} else {
371 		return -EINVAL;
372 	}
373 
374 	sve_state_size = vcpu_sve_state_size(vcpu);
375 	if (WARN_ON(!sve_state_size))
376 		return -EINVAL;
377 
378 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
379 	region->klen = min(maxlen, reqlen);
380 	region->upad = reqlen - region->klen;
381 
382 	return 0;
383 }
384 
385 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
386 {
387 	int ret;
388 	struct sve_state_reg_region region;
389 	char __user *uptr = (char __user *)reg->addr;
390 
391 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
392 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
393 		return get_sve_vls(vcpu, reg);
394 
395 	/* Try to interpret reg ID as an architectural SVE register... */
396 	ret = sve_reg_to_region(&region, vcpu, reg);
397 	if (ret)
398 		return ret;
399 
400 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
401 		return -EPERM;
402 
403 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
404 			 region.klen) ||
405 	    clear_user(uptr + region.klen, region.upad))
406 		return -EFAULT;
407 
408 	return 0;
409 }
410 
411 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
412 {
413 	int ret;
414 	struct sve_state_reg_region region;
415 	const char __user *uptr = (const char __user *)reg->addr;
416 
417 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
418 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
419 		return set_sve_vls(vcpu, reg);
420 
421 	/* Try to interpret reg ID as an architectural SVE register... */
422 	ret = sve_reg_to_region(&region, vcpu, reg);
423 	if (ret)
424 		return ret;
425 
426 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
427 		return -EPERM;
428 
429 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
430 			   region.klen))
431 		return -EFAULT;
432 
433 	return 0;
434 }
435 
436 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
437 {
438 	return -EINVAL;
439 }
440 
441 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
442 {
443 	return -EINVAL;
444 }
445 
446 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
447 				 u64 __user *uindices)
448 {
449 	unsigned int i;
450 	int n = 0;
451 
452 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
453 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
454 		int size = core_reg_size_from_offset(vcpu, i);
455 
456 		if (size < 0)
457 			continue;
458 
459 		switch (size) {
460 		case sizeof(__u32):
461 			reg |= KVM_REG_SIZE_U32;
462 			break;
463 
464 		case sizeof(__u64):
465 			reg |= KVM_REG_SIZE_U64;
466 			break;
467 
468 		case sizeof(__uint128_t):
469 			reg |= KVM_REG_SIZE_U128;
470 			break;
471 
472 		default:
473 			WARN_ON(1);
474 			continue;
475 		}
476 
477 		if (uindices) {
478 			if (put_user(reg, uindices))
479 				return -EFAULT;
480 			uindices++;
481 		}
482 
483 		n++;
484 	}
485 
486 	return n;
487 }
488 
489 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
490 {
491 	return copy_core_reg_indices(vcpu, NULL);
492 }
493 
494 /**
495  * ARM64 versions of the TIMER registers, always available on arm64
496  */
497 
498 #define NUM_TIMER_REGS 3
499 
500 static bool is_timer_reg(u64 index)
501 {
502 	switch (index) {
503 	case KVM_REG_ARM_TIMER_CTL:
504 	case KVM_REG_ARM_TIMER_CNT:
505 	case KVM_REG_ARM_TIMER_CVAL:
506 		return true;
507 	}
508 	return false;
509 }
510 
511 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
512 {
513 	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
514 		return -EFAULT;
515 	uindices++;
516 	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
517 		return -EFAULT;
518 	uindices++;
519 	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
520 		return -EFAULT;
521 
522 	return 0;
523 }
524 
525 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
526 {
527 	void __user *uaddr = (void __user *)(long)reg->addr;
528 	u64 val;
529 	int ret;
530 
531 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
532 	if (ret != 0)
533 		return -EFAULT;
534 
535 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
536 }
537 
538 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
539 {
540 	void __user *uaddr = (void __user *)(long)reg->addr;
541 	u64 val;
542 
543 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
544 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
545 }
546 
547 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
548 {
549 	const unsigned int slices = vcpu_sve_slices(vcpu);
550 
551 	if (!vcpu_has_sve(vcpu))
552 		return 0;
553 
554 	/* Policed by KVM_GET_REG_LIST: */
555 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
556 
557 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
558 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
559 }
560 
561 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
562 				u64 __user *uindices)
563 {
564 	const unsigned int slices = vcpu_sve_slices(vcpu);
565 	u64 reg;
566 	unsigned int i, n;
567 	int num_regs = 0;
568 
569 	if (!vcpu_has_sve(vcpu))
570 		return 0;
571 
572 	/* Policed by KVM_GET_REG_LIST: */
573 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
574 
575 	/*
576 	 * Enumerate this first, so that userspace can save/restore in
577 	 * the order reported by KVM_GET_REG_LIST:
578 	 */
579 	reg = KVM_REG_ARM64_SVE_VLS;
580 	if (put_user(reg, uindices++))
581 		return -EFAULT;
582 	++num_regs;
583 
584 	for (i = 0; i < slices; i++) {
585 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
586 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
587 			if (put_user(reg, uindices++))
588 				return -EFAULT;
589 			num_regs++;
590 		}
591 
592 		for (n = 0; n < SVE_NUM_PREGS; n++) {
593 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
594 			if (put_user(reg, uindices++))
595 				return -EFAULT;
596 			num_regs++;
597 		}
598 
599 		reg = KVM_REG_ARM64_SVE_FFR(i);
600 		if (put_user(reg, uindices++))
601 			return -EFAULT;
602 		num_regs++;
603 	}
604 
605 	return num_regs;
606 }
607 
608 /**
609  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
610  *
611  * This is for all registers.
612  */
613 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
614 {
615 	unsigned long res = 0;
616 
617 	res += num_core_regs(vcpu);
618 	res += num_sve_regs(vcpu);
619 	res += kvm_arm_num_sys_reg_descs(vcpu);
620 	res += kvm_arm_get_fw_num_regs(vcpu);
621 	res += NUM_TIMER_REGS;
622 
623 	return res;
624 }
625 
626 /**
627  * kvm_arm_copy_reg_indices - get indices of all registers.
628  *
629  * We do core registers right here, then we append system regs.
630  */
631 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
632 {
633 	int ret;
634 
635 	ret = copy_core_reg_indices(vcpu, uindices);
636 	if (ret < 0)
637 		return ret;
638 	uindices += ret;
639 
640 	ret = copy_sve_reg_indices(vcpu, uindices);
641 	if (ret < 0)
642 		return ret;
643 	uindices += ret;
644 
645 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
646 	if (ret < 0)
647 		return ret;
648 	uindices += kvm_arm_get_fw_num_regs(vcpu);
649 
650 	ret = copy_timer_indices(vcpu, uindices);
651 	if (ret < 0)
652 		return ret;
653 	uindices += NUM_TIMER_REGS;
654 
655 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
656 }
657 
658 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
659 {
660 	/* We currently use nothing arch-specific in upper 32 bits */
661 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
662 		return -EINVAL;
663 
664 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
665 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
666 	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
667 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
668 	}
669 
670 	if (is_timer_reg(reg->id))
671 		return get_timer_reg(vcpu, reg);
672 
673 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
674 }
675 
676 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
677 {
678 	/* We currently use nothing arch-specific in upper 32 bits */
679 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
680 		return -EINVAL;
681 
682 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
683 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
684 	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
685 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
686 	}
687 
688 	if (is_timer_reg(reg->id))
689 		return set_timer_reg(vcpu, reg);
690 
691 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
692 }
693 
694 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
695 				  struct kvm_sregs *sregs)
696 {
697 	return -EINVAL;
698 }
699 
700 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
701 				  struct kvm_sregs *sregs)
702 {
703 	return -EINVAL;
704 }
705 
706 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
707 			      struct kvm_vcpu_events *events)
708 {
709 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
710 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
711 
712 	if (events->exception.serror_pending && events->exception.serror_has_esr)
713 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
714 
715 	return 0;
716 }
717 
718 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
719 			      struct kvm_vcpu_events *events)
720 {
721 	bool serror_pending = events->exception.serror_pending;
722 	bool has_esr = events->exception.serror_has_esr;
723 
724 	if (serror_pending && has_esr) {
725 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
726 			return -EINVAL;
727 
728 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
729 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
730 		else
731 			return -EINVAL;
732 	} else if (serror_pending) {
733 		kvm_inject_vabt(vcpu);
734 	}
735 
736 	return 0;
737 }
738 
739 int __attribute_const__ kvm_target_cpu(void)
740 {
741 	unsigned long implementor = read_cpuid_implementor();
742 	unsigned long part_number = read_cpuid_part_number();
743 
744 	switch (implementor) {
745 	case ARM_CPU_IMP_ARM:
746 		switch (part_number) {
747 		case ARM_CPU_PART_AEM_V8:
748 			return KVM_ARM_TARGET_AEM_V8;
749 		case ARM_CPU_PART_FOUNDATION:
750 			return KVM_ARM_TARGET_FOUNDATION_V8;
751 		case ARM_CPU_PART_CORTEX_A53:
752 			return KVM_ARM_TARGET_CORTEX_A53;
753 		case ARM_CPU_PART_CORTEX_A57:
754 			return KVM_ARM_TARGET_CORTEX_A57;
755 		}
756 		break;
757 	case ARM_CPU_IMP_APM:
758 		switch (part_number) {
759 		case APM_CPU_PART_POTENZA:
760 			return KVM_ARM_TARGET_XGENE_POTENZA;
761 		}
762 		break;
763 	}
764 
765 	/* Return a default generic target */
766 	return KVM_ARM_TARGET_GENERIC_V8;
767 }
768 
769 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
770 {
771 	int target = kvm_target_cpu();
772 
773 	if (target < 0)
774 		return -ENODEV;
775 
776 	memset(init, 0, sizeof(*init));
777 
778 	/*
779 	 * For now, we don't return any features.
780 	 * In future, we might use features to return target
781 	 * specific features available for the preferred
782 	 * target type.
783 	 */
784 	init->target = (__u32)target;
785 
786 	return 0;
787 }
788 
789 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
790 {
791 	return -EINVAL;
792 }
793 
794 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
795 {
796 	return -EINVAL;
797 }
798 
799 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
800 				  struct kvm_translation *tr)
801 {
802 	return -EINVAL;
803 }
804 
805 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
806 			    KVM_GUESTDBG_USE_SW_BP | \
807 			    KVM_GUESTDBG_USE_HW | \
808 			    KVM_GUESTDBG_SINGLESTEP)
809 
810 /**
811  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
812  * @kvm:	pointer to the KVM struct
813  * @kvm_guest_debug: the ioctl data buffer
814  *
815  * This sets up and enables the VM for guest debugging. Userspace
816  * passes in a control flag to enable different debug types and
817  * potentially other architecture specific information in the rest of
818  * the structure.
819  */
820 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
821 					struct kvm_guest_debug *dbg)
822 {
823 	int ret = 0;
824 
825 	trace_kvm_set_guest_debug(vcpu, dbg->control);
826 
827 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
828 		ret = -EINVAL;
829 		goto out;
830 	}
831 
832 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
833 		vcpu->guest_debug = dbg->control;
834 
835 		/* Hardware assisted Break and Watch points */
836 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
837 			vcpu->arch.external_debug_state = dbg->arch;
838 		}
839 
840 	} else {
841 		/* If not enabled clear all flags */
842 		vcpu->guest_debug = 0;
843 	}
844 
845 out:
846 	return ret;
847 }
848 
849 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
850 			       struct kvm_device_attr *attr)
851 {
852 	int ret;
853 
854 	switch (attr->group) {
855 	case KVM_ARM_VCPU_PMU_V3_CTRL:
856 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
857 		break;
858 	case KVM_ARM_VCPU_TIMER_CTRL:
859 		ret = kvm_arm_timer_set_attr(vcpu, attr);
860 		break;
861 	default:
862 		ret = -ENXIO;
863 		break;
864 	}
865 
866 	return ret;
867 }
868 
869 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
870 			       struct kvm_device_attr *attr)
871 {
872 	int ret;
873 
874 	switch (attr->group) {
875 	case KVM_ARM_VCPU_PMU_V3_CTRL:
876 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
877 		break;
878 	case KVM_ARM_VCPU_TIMER_CTRL:
879 		ret = kvm_arm_timer_get_attr(vcpu, attr);
880 		break;
881 	default:
882 		ret = -ENXIO;
883 		break;
884 	}
885 
886 	return ret;
887 }
888 
889 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
890 			       struct kvm_device_attr *attr)
891 {
892 	int ret;
893 
894 	switch (attr->group) {
895 	case KVM_ARM_VCPU_PMU_V3_CTRL:
896 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
897 		break;
898 	case KVM_ARM_VCPU_TIMER_CTRL:
899 		ret = kvm_arm_timer_has_attr(vcpu, attr);
900 		break;
901 	default:
902 		ret = -ENXIO;
903 		break;
904 	}
905 
906 	return ret;
907 }
908