xref: /openbmc/linux/arch/arm64/kvm/guest.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/sigcontext.h>
29 
30 #include "trace.h"
31 
32 struct kvm_stats_debugfs_item debugfs_entries[] = {
33 	VCPU_STAT("halt_successful_poll", halt_successful_poll),
34 	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
35 	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
36 	VCPU_STAT("halt_wakeup", halt_wakeup),
37 	VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
38 	VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
39 	VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
40 	VCPU_STAT("mmio_exit_user", mmio_exit_user),
41 	VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
42 	VCPU_STAT("exits", exits),
43 	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
44 	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
45 	{ NULL }
46 };
47 
48 static bool core_reg_offset_is_vreg(u64 off)
49 {
50 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
51 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
52 }
53 
54 static u64 core_reg_offset_from_id(u64 id)
55 {
56 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
57 }
58 
59 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
60 {
61 	int size;
62 
63 	switch (off) {
64 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
65 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
66 	case KVM_REG_ARM_CORE_REG(regs.sp):
67 	case KVM_REG_ARM_CORE_REG(regs.pc):
68 	case KVM_REG_ARM_CORE_REG(regs.pstate):
69 	case KVM_REG_ARM_CORE_REG(sp_el1):
70 	case KVM_REG_ARM_CORE_REG(elr_el1):
71 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
72 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
73 		size = sizeof(__u64);
74 		break;
75 
76 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
77 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
78 		size = sizeof(__uint128_t);
79 		break;
80 
81 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
82 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
83 		size = sizeof(__u32);
84 		break;
85 
86 	default:
87 		return -EINVAL;
88 	}
89 
90 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
91 		return -EINVAL;
92 
93 	/*
94 	 * The KVM_REG_ARM64_SVE regs must be used instead of
95 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
96 	 * SVE-enabled vcpus:
97 	 */
98 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
99 		return -EINVAL;
100 
101 	return size;
102 }
103 
104 static int validate_core_offset(const struct kvm_vcpu *vcpu,
105 				const struct kvm_one_reg *reg)
106 {
107 	u64 off = core_reg_offset_from_id(reg->id);
108 	int size = core_reg_size_from_offset(vcpu, off);
109 
110 	if (size < 0)
111 		return -EINVAL;
112 
113 	if (KVM_REG_SIZE(reg->id) != size)
114 		return -EINVAL;
115 
116 	return 0;
117 }
118 
119 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
120 {
121 	/*
122 	 * Because the kvm_regs structure is a mix of 32, 64 and
123 	 * 128bit fields, we index it as if it was a 32bit
124 	 * array. Hence below, nr_regs is the number of entries, and
125 	 * off the index in the "array".
126 	 */
127 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
128 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
129 	int nr_regs = sizeof(*regs) / sizeof(__u32);
130 	u32 off;
131 
132 	/* Our ID is an index into the kvm_regs struct. */
133 	off = core_reg_offset_from_id(reg->id);
134 	if (off >= nr_regs ||
135 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
136 		return -ENOENT;
137 
138 	if (validate_core_offset(vcpu, reg))
139 		return -EINVAL;
140 
141 	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
142 		return -EFAULT;
143 
144 	return 0;
145 }
146 
147 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
148 {
149 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
150 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
151 	int nr_regs = sizeof(*regs) / sizeof(__u32);
152 	__uint128_t tmp;
153 	void *valp = &tmp;
154 	u64 off;
155 	int err = 0;
156 
157 	/* Our ID is an index into the kvm_regs struct. */
158 	off = core_reg_offset_from_id(reg->id);
159 	if (off >= nr_regs ||
160 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
161 		return -ENOENT;
162 
163 	if (validate_core_offset(vcpu, reg))
164 		return -EINVAL;
165 
166 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
167 		return -EINVAL;
168 
169 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
170 		err = -EFAULT;
171 		goto out;
172 	}
173 
174 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
175 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
176 		switch (mode) {
177 		case PSR_AA32_MODE_USR:
178 			if (!system_supports_32bit_el0())
179 				return -EINVAL;
180 			break;
181 		case PSR_AA32_MODE_FIQ:
182 		case PSR_AA32_MODE_IRQ:
183 		case PSR_AA32_MODE_SVC:
184 		case PSR_AA32_MODE_ABT:
185 		case PSR_AA32_MODE_UND:
186 			if (!vcpu_el1_is_32bit(vcpu))
187 				return -EINVAL;
188 			break;
189 		case PSR_MODE_EL0t:
190 		case PSR_MODE_EL1t:
191 		case PSR_MODE_EL1h:
192 			if (vcpu_el1_is_32bit(vcpu))
193 				return -EINVAL;
194 			break;
195 		default:
196 			err = -EINVAL;
197 			goto out;
198 		}
199 	}
200 
201 	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
202 
203 	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
204 		int i;
205 
206 		for (i = 0; i < 16; i++)
207 			*vcpu_reg32(vcpu, i) = (u32)*vcpu_reg32(vcpu, i);
208 	}
209 out:
210 	return err;
211 }
212 
213 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
214 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
215 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
216 
217 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
218 {
219 	unsigned int max_vq, vq;
220 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
221 
222 	if (!vcpu_has_sve(vcpu))
223 		return -ENOENT;
224 
225 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
226 		return -EINVAL;
227 
228 	memset(vqs, 0, sizeof(vqs));
229 
230 	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
231 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
232 		if (sve_vq_available(vq))
233 			vqs[vq_word(vq)] |= vq_mask(vq);
234 
235 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
236 		return -EFAULT;
237 
238 	return 0;
239 }
240 
241 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
242 {
243 	unsigned int max_vq, vq;
244 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
245 
246 	if (!vcpu_has_sve(vcpu))
247 		return -ENOENT;
248 
249 	if (kvm_arm_vcpu_sve_finalized(vcpu))
250 		return -EPERM; /* too late! */
251 
252 	if (WARN_ON(vcpu->arch.sve_state))
253 		return -EINVAL;
254 
255 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
256 		return -EFAULT;
257 
258 	max_vq = 0;
259 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
260 		if (vq_present(vqs, vq))
261 			max_vq = vq;
262 
263 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
264 		return -EINVAL;
265 
266 	/*
267 	 * Vector lengths supported by the host can't currently be
268 	 * hidden from the guest individually: instead we can only set a
269 	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
270 	 * lengths match the set requested exactly up to the requested
271 	 * maximum:
272 	 */
273 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
274 		if (vq_present(vqs, vq) != sve_vq_available(vq))
275 			return -EINVAL;
276 
277 	/* Can't run with no vector lengths at all: */
278 	if (max_vq < SVE_VQ_MIN)
279 		return -EINVAL;
280 
281 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
282 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
283 
284 	return 0;
285 }
286 
287 #define SVE_REG_SLICE_SHIFT	0
288 #define SVE_REG_SLICE_BITS	5
289 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
290 #define SVE_REG_ID_BITS		5
291 
292 #define SVE_REG_SLICE_MASK					\
293 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
294 		SVE_REG_SLICE_SHIFT)
295 #define SVE_REG_ID_MASK							\
296 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
297 
298 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
299 
300 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
301 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
302 
303 /*
304  * Number of register slices required to cover each whole SVE register.
305  * NOTE: Only the first slice every exists, for now.
306  * If you are tempted to modify this, you must also rework sve_reg_to_region()
307  * to match:
308  */
309 #define vcpu_sve_slices(vcpu) 1
310 
311 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
312 struct sve_state_reg_region {
313 	unsigned int koffset;	/* offset into sve_state in kernel memory */
314 	unsigned int klen;	/* length in kernel memory */
315 	unsigned int upad;	/* extra trailing padding in user memory */
316 };
317 
318 /*
319  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
320  * register copy
321  */
322 static int sve_reg_to_region(struct sve_state_reg_region *region,
323 			     struct kvm_vcpu *vcpu,
324 			     const struct kvm_one_reg *reg)
325 {
326 	/* reg ID ranges for Z- registers */
327 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
328 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
329 						       SVE_NUM_SLICES - 1);
330 
331 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
332 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
333 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
334 
335 	unsigned int vq;
336 	unsigned int reg_num;
337 
338 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
339 	unsigned int maxlen; /* Maximum permitted length */
340 
341 	size_t sve_state_size;
342 
343 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
344 							SVE_NUM_SLICES - 1);
345 
346 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
347 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
348 
349 	/* Verify that we match the UAPI header: */
350 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
351 
352 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
353 
354 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
355 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
356 			return -ENOENT;
357 
358 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
359 
360 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
361 				SVE_SIG_REGS_OFFSET;
362 		reqlen = KVM_SVE_ZREG_SIZE;
363 		maxlen = SVE_SIG_ZREG_SIZE(vq);
364 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
365 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
366 			return -ENOENT;
367 
368 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
369 
370 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
371 				SVE_SIG_REGS_OFFSET;
372 		reqlen = KVM_SVE_PREG_SIZE;
373 		maxlen = SVE_SIG_PREG_SIZE(vq);
374 	} else {
375 		return -EINVAL;
376 	}
377 
378 	sve_state_size = vcpu_sve_state_size(vcpu);
379 	if (WARN_ON(!sve_state_size))
380 		return -EINVAL;
381 
382 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
383 	region->klen = min(maxlen, reqlen);
384 	region->upad = reqlen - region->klen;
385 
386 	return 0;
387 }
388 
389 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
390 {
391 	int ret;
392 	struct sve_state_reg_region region;
393 	char __user *uptr = (char __user *)reg->addr;
394 
395 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
396 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
397 		return get_sve_vls(vcpu, reg);
398 
399 	/* Try to interpret reg ID as an architectural SVE register... */
400 	ret = sve_reg_to_region(&region, vcpu, reg);
401 	if (ret)
402 		return ret;
403 
404 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
405 		return -EPERM;
406 
407 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
408 			 region.klen) ||
409 	    clear_user(uptr + region.klen, region.upad))
410 		return -EFAULT;
411 
412 	return 0;
413 }
414 
415 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
416 {
417 	int ret;
418 	struct sve_state_reg_region region;
419 	const char __user *uptr = (const char __user *)reg->addr;
420 
421 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
422 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
423 		return set_sve_vls(vcpu, reg);
424 
425 	/* Try to interpret reg ID as an architectural SVE register... */
426 	ret = sve_reg_to_region(&region, vcpu, reg);
427 	if (ret)
428 		return ret;
429 
430 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
431 		return -EPERM;
432 
433 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
434 			   region.klen))
435 		return -EFAULT;
436 
437 	return 0;
438 }
439 
440 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
441 {
442 	return -EINVAL;
443 }
444 
445 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
446 {
447 	return -EINVAL;
448 }
449 
450 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
451 				 u64 __user *uindices)
452 {
453 	unsigned int i;
454 	int n = 0;
455 
456 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
457 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
458 		int size = core_reg_size_from_offset(vcpu, i);
459 
460 		if (size < 0)
461 			continue;
462 
463 		switch (size) {
464 		case sizeof(__u32):
465 			reg |= KVM_REG_SIZE_U32;
466 			break;
467 
468 		case sizeof(__u64):
469 			reg |= KVM_REG_SIZE_U64;
470 			break;
471 
472 		case sizeof(__uint128_t):
473 			reg |= KVM_REG_SIZE_U128;
474 			break;
475 
476 		default:
477 			WARN_ON(1);
478 			continue;
479 		}
480 
481 		if (uindices) {
482 			if (put_user(reg, uindices))
483 				return -EFAULT;
484 			uindices++;
485 		}
486 
487 		n++;
488 	}
489 
490 	return n;
491 }
492 
493 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
494 {
495 	return copy_core_reg_indices(vcpu, NULL);
496 }
497 
498 /**
499  * ARM64 versions of the TIMER registers, always available on arm64
500  */
501 
502 #define NUM_TIMER_REGS 3
503 
504 static bool is_timer_reg(u64 index)
505 {
506 	switch (index) {
507 	case KVM_REG_ARM_TIMER_CTL:
508 	case KVM_REG_ARM_TIMER_CNT:
509 	case KVM_REG_ARM_TIMER_CVAL:
510 		return true;
511 	}
512 	return false;
513 }
514 
515 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
516 {
517 	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
518 		return -EFAULT;
519 	uindices++;
520 	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
521 		return -EFAULT;
522 	uindices++;
523 	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
524 		return -EFAULT;
525 
526 	return 0;
527 }
528 
529 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
530 {
531 	void __user *uaddr = (void __user *)(long)reg->addr;
532 	u64 val;
533 	int ret;
534 
535 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
536 	if (ret != 0)
537 		return -EFAULT;
538 
539 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
540 }
541 
542 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
543 {
544 	void __user *uaddr = (void __user *)(long)reg->addr;
545 	u64 val;
546 
547 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
548 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
549 }
550 
551 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
552 {
553 	const unsigned int slices = vcpu_sve_slices(vcpu);
554 
555 	if (!vcpu_has_sve(vcpu))
556 		return 0;
557 
558 	/* Policed by KVM_GET_REG_LIST: */
559 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
560 
561 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
562 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
563 }
564 
565 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
566 				u64 __user *uindices)
567 {
568 	const unsigned int slices = vcpu_sve_slices(vcpu);
569 	u64 reg;
570 	unsigned int i, n;
571 	int num_regs = 0;
572 
573 	if (!vcpu_has_sve(vcpu))
574 		return 0;
575 
576 	/* Policed by KVM_GET_REG_LIST: */
577 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
578 
579 	/*
580 	 * Enumerate this first, so that userspace can save/restore in
581 	 * the order reported by KVM_GET_REG_LIST:
582 	 */
583 	reg = KVM_REG_ARM64_SVE_VLS;
584 	if (put_user(reg, uindices++))
585 		return -EFAULT;
586 	++num_regs;
587 
588 	for (i = 0; i < slices; i++) {
589 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
590 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
591 			if (put_user(reg, uindices++))
592 				return -EFAULT;
593 			num_regs++;
594 		}
595 
596 		for (n = 0; n < SVE_NUM_PREGS; n++) {
597 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
598 			if (put_user(reg, uindices++))
599 				return -EFAULT;
600 			num_regs++;
601 		}
602 
603 		reg = KVM_REG_ARM64_SVE_FFR(i);
604 		if (put_user(reg, uindices++))
605 			return -EFAULT;
606 		num_regs++;
607 	}
608 
609 	return num_regs;
610 }
611 
612 /**
613  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
614  *
615  * This is for all registers.
616  */
617 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
618 {
619 	unsigned long res = 0;
620 
621 	res += num_core_regs(vcpu);
622 	res += num_sve_regs(vcpu);
623 	res += kvm_arm_num_sys_reg_descs(vcpu);
624 	res += kvm_arm_get_fw_num_regs(vcpu);
625 	res += NUM_TIMER_REGS;
626 
627 	return res;
628 }
629 
630 /**
631  * kvm_arm_copy_reg_indices - get indices of all registers.
632  *
633  * We do core registers right here, then we append system regs.
634  */
635 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
636 {
637 	int ret;
638 
639 	ret = copy_core_reg_indices(vcpu, uindices);
640 	if (ret < 0)
641 		return ret;
642 	uindices += ret;
643 
644 	ret = copy_sve_reg_indices(vcpu, uindices);
645 	if (ret < 0)
646 		return ret;
647 	uindices += ret;
648 
649 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
650 	if (ret < 0)
651 		return ret;
652 	uindices += kvm_arm_get_fw_num_regs(vcpu);
653 
654 	ret = copy_timer_indices(vcpu, uindices);
655 	if (ret < 0)
656 		return ret;
657 	uindices += NUM_TIMER_REGS;
658 
659 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
660 }
661 
662 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
663 {
664 	/* We currently use nothing arch-specific in upper 32 bits */
665 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
666 		return -EINVAL;
667 
668 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
669 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
670 	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
671 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
672 	}
673 
674 	if (is_timer_reg(reg->id))
675 		return get_timer_reg(vcpu, reg);
676 
677 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
678 }
679 
680 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
681 {
682 	/* We currently use nothing arch-specific in upper 32 bits */
683 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
684 		return -EINVAL;
685 
686 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
687 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
688 	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
689 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
690 	}
691 
692 	if (is_timer_reg(reg->id))
693 		return set_timer_reg(vcpu, reg);
694 
695 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
696 }
697 
698 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
699 				  struct kvm_sregs *sregs)
700 {
701 	return -EINVAL;
702 }
703 
704 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
705 				  struct kvm_sregs *sregs)
706 {
707 	return -EINVAL;
708 }
709 
710 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
711 			      struct kvm_vcpu_events *events)
712 {
713 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
714 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
715 
716 	if (events->exception.serror_pending && events->exception.serror_has_esr)
717 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
718 
719 	/*
720 	 * We never return a pending ext_dabt here because we deliver it to
721 	 * the virtual CPU directly when setting the event and it's no longer
722 	 * 'pending' at this point.
723 	 */
724 
725 	return 0;
726 }
727 
728 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
729 			      struct kvm_vcpu_events *events)
730 {
731 	bool serror_pending = events->exception.serror_pending;
732 	bool has_esr = events->exception.serror_has_esr;
733 	bool ext_dabt_pending = events->exception.ext_dabt_pending;
734 
735 	if (serror_pending && has_esr) {
736 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
737 			return -EINVAL;
738 
739 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
740 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
741 		else
742 			return -EINVAL;
743 	} else if (serror_pending) {
744 		kvm_inject_vabt(vcpu);
745 	}
746 
747 	if (ext_dabt_pending)
748 		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
749 
750 	return 0;
751 }
752 
753 int __attribute_const__ kvm_target_cpu(void)
754 {
755 	unsigned long implementor = read_cpuid_implementor();
756 	unsigned long part_number = read_cpuid_part_number();
757 
758 	switch (implementor) {
759 	case ARM_CPU_IMP_ARM:
760 		switch (part_number) {
761 		case ARM_CPU_PART_AEM_V8:
762 			return KVM_ARM_TARGET_AEM_V8;
763 		case ARM_CPU_PART_FOUNDATION:
764 			return KVM_ARM_TARGET_FOUNDATION_V8;
765 		case ARM_CPU_PART_CORTEX_A53:
766 			return KVM_ARM_TARGET_CORTEX_A53;
767 		case ARM_CPU_PART_CORTEX_A57:
768 			return KVM_ARM_TARGET_CORTEX_A57;
769 		}
770 		break;
771 	case ARM_CPU_IMP_APM:
772 		switch (part_number) {
773 		case APM_CPU_PART_POTENZA:
774 			return KVM_ARM_TARGET_XGENE_POTENZA;
775 		}
776 		break;
777 	}
778 
779 	/* Return a default generic target */
780 	return KVM_ARM_TARGET_GENERIC_V8;
781 }
782 
783 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
784 {
785 	int target = kvm_target_cpu();
786 
787 	if (target < 0)
788 		return -ENODEV;
789 
790 	memset(init, 0, sizeof(*init));
791 
792 	/*
793 	 * For now, we don't return any features.
794 	 * In future, we might use features to return target
795 	 * specific features available for the preferred
796 	 * target type.
797 	 */
798 	init->target = (__u32)target;
799 
800 	return 0;
801 }
802 
803 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
804 {
805 	return -EINVAL;
806 }
807 
808 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
809 {
810 	return -EINVAL;
811 }
812 
813 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
814 				  struct kvm_translation *tr)
815 {
816 	return -EINVAL;
817 }
818 
819 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
820 			    KVM_GUESTDBG_USE_SW_BP | \
821 			    KVM_GUESTDBG_USE_HW | \
822 			    KVM_GUESTDBG_SINGLESTEP)
823 
824 /**
825  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
826  * @kvm:	pointer to the KVM struct
827  * @kvm_guest_debug: the ioctl data buffer
828  *
829  * This sets up and enables the VM for guest debugging. Userspace
830  * passes in a control flag to enable different debug types and
831  * potentially other architecture specific information in the rest of
832  * the structure.
833  */
834 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
835 					struct kvm_guest_debug *dbg)
836 {
837 	int ret = 0;
838 
839 	trace_kvm_set_guest_debug(vcpu, dbg->control);
840 
841 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
842 		ret = -EINVAL;
843 		goto out;
844 	}
845 
846 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
847 		vcpu->guest_debug = dbg->control;
848 
849 		/* Hardware assisted Break and Watch points */
850 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
851 			vcpu->arch.external_debug_state = dbg->arch;
852 		}
853 
854 	} else {
855 		/* If not enabled clear all flags */
856 		vcpu->guest_debug = 0;
857 	}
858 
859 out:
860 	return ret;
861 }
862 
863 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
864 			       struct kvm_device_attr *attr)
865 {
866 	int ret;
867 
868 	switch (attr->group) {
869 	case KVM_ARM_VCPU_PMU_V3_CTRL:
870 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
871 		break;
872 	case KVM_ARM_VCPU_TIMER_CTRL:
873 		ret = kvm_arm_timer_set_attr(vcpu, attr);
874 		break;
875 	case KVM_ARM_VCPU_PVTIME_CTRL:
876 		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
877 		break;
878 	default:
879 		ret = -ENXIO;
880 		break;
881 	}
882 
883 	return ret;
884 }
885 
886 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
887 			       struct kvm_device_attr *attr)
888 {
889 	int ret;
890 
891 	switch (attr->group) {
892 	case KVM_ARM_VCPU_PMU_V3_CTRL:
893 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
894 		break;
895 	case KVM_ARM_VCPU_TIMER_CTRL:
896 		ret = kvm_arm_timer_get_attr(vcpu, attr);
897 		break;
898 	case KVM_ARM_VCPU_PVTIME_CTRL:
899 		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
900 		break;
901 	default:
902 		ret = -ENXIO;
903 		break;
904 	}
905 
906 	return ret;
907 }
908 
909 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
910 			       struct kvm_device_attr *attr)
911 {
912 	int ret;
913 
914 	switch (attr->group) {
915 	case KVM_ARM_VCPU_PMU_V3_CTRL:
916 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
917 		break;
918 	case KVM_ARM_VCPU_TIMER_CTRL:
919 		ret = kvm_arm_timer_has_attr(vcpu, attr);
920 		break;
921 	case KVM_ARM_VCPU_PVTIME_CTRL:
922 		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
923 		break;
924 	default:
925 		ret = -ENXIO;
926 		break;
927 	}
928 
929 	return ret;
930 }
931