xref: /openbmc/linux/arch/arm64/kvm/guest.c (revision 74ba9207)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/guest.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/bits.h>
23 #include <linux/errno.h>
24 #include <linux/err.h>
25 #include <linux/nospec.h>
26 #include <linux/kvm_host.h>
27 #include <linux/module.h>
28 #include <linux/stddef.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/fs.h>
32 #include <kvm/arm_psci.h>
33 #include <asm/cputype.h>
34 #include <linux/uaccess.h>
35 #include <asm/fpsimd.h>
36 #include <asm/kvm.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/kvm_host.h>
40 #include <asm/sigcontext.h>
41 
42 #include "trace.h"
43 
44 #define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
45 #define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
46 
47 struct kvm_stats_debugfs_item debugfs_entries[] = {
48 	VCPU_STAT(hvc_exit_stat),
49 	VCPU_STAT(wfe_exit_stat),
50 	VCPU_STAT(wfi_exit_stat),
51 	VCPU_STAT(mmio_exit_user),
52 	VCPU_STAT(mmio_exit_kernel),
53 	VCPU_STAT(exits),
54 	{ NULL }
55 };
56 
57 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
58 {
59 	return 0;
60 }
61 
62 static bool core_reg_offset_is_vreg(u64 off)
63 {
64 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
65 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
66 }
67 
68 static u64 core_reg_offset_from_id(u64 id)
69 {
70 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
71 }
72 
73 static int validate_core_offset(const struct kvm_vcpu *vcpu,
74 				const struct kvm_one_reg *reg)
75 {
76 	u64 off = core_reg_offset_from_id(reg->id);
77 	int size;
78 
79 	switch (off) {
80 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
81 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
82 	case KVM_REG_ARM_CORE_REG(regs.sp):
83 	case KVM_REG_ARM_CORE_REG(regs.pc):
84 	case KVM_REG_ARM_CORE_REG(regs.pstate):
85 	case KVM_REG_ARM_CORE_REG(sp_el1):
86 	case KVM_REG_ARM_CORE_REG(elr_el1):
87 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
88 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
89 		size = sizeof(__u64);
90 		break;
91 
92 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
93 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
94 		size = sizeof(__uint128_t);
95 		break;
96 
97 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
98 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
99 		size = sizeof(__u32);
100 		break;
101 
102 	default:
103 		return -EINVAL;
104 	}
105 
106 	if (KVM_REG_SIZE(reg->id) != size ||
107 	    !IS_ALIGNED(off, size / sizeof(__u32)))
108 		return -EINVAL;
109 
110 	/*
111 	 * The KVM_REG_ARM64_SVE regs must be used instead of
112 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
113 	 * SVE-enabled vcpus:
114 	 */
115 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
116 		return -EINVAL;
117 
118 	return 0;
119 }
120 
121 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
122 {
123 	/*
124 	 * Because the kvm_regs structure is a mix of 32, 64 and
125 	 * 128bit fields, we index it as if it was a 32bit
126 	 * array. Hence below, nr_regs is the number of entries, and
127 	 * off the index in the "array".
128 	 */
129 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
130 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
131 	int nr_regs = sizeof(*regs) / sizeof(__u32);
132 	u32 off;
133 
134 	/* Our ID is an index into the kvm_regs struct. */
135 	off = core_reg_offset_from_id(reg->id);
136 	if (off >= nr_regs ||
137 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
138 		return -ENOENT;
139 
140 	if (validate_core_offset(vcpu, reg))
141 		return -EINVAL;
142 
143 	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
144 		return -EFAULT;
145 
146 	return 0;
147 }
148 
149 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
150 {
151 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
152 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
153 	int nr_regs = sizeof(*regs) / sizeof(__u32);
154 	__uint128_t tmp;
155 	void *valp = &tmp;
156 	u64 off;
157 	int err = 0;
158 
159 	/* Our ID is an index into the kvm_regs struct. */
160 	off = core_reg_offset_from_id(reg->id);
161 	if (off >= nr_regs ||
162 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
163 		return -ENOENT;
164 
165 	if (validate_core_offset(vcpu, reg))
166 		return -EINVAL;
167 
168 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
169 		return -EINVAL;
170 
171 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
172 		err = -EFAULT;
173 		goto out;
174 	}
175 
176 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
177 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
178 		switch (mode) {
179 		case PSR_AA32_MODE_USR:
180 			if (!system_supports_32bit_el0())
181 				return -EINVAL;
182 			break;
183 		case PSR_AA32_MODE_FIQ:
184 		case PSR_AA32_MODE_IRQ:
185 		case PSR_AA32_MODE_SVC:
186 		case PSR_AA32_MODE_ABT:
187 		case PSR_AA32_MODE_UND:
188 			if (!vcpu_el1_is_32bit(vcpu))
189 				return -EINVAL;
190 			break;
191 		case PSR_MODE_EL0t:
192 		case PSR_MODE_EL1t:
193 		case PSR_MODE_EL1h:
194 			if (vcpu_el1_is_32bit(vcpu))
195 				return -EINVAL;
196 			break;
197 		default:
198 			err = -EINVAL;
199 			goto out;
200 		}
201 	}
202 
203 	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
204 out:
205 	return err;
206 }
207 
208 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
209 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
210 
211 static bool vq_present(
212 	const u64 (*const vqs)[KVM_ARM64_SVE_VLS_WORDS],
213 	unsigned int vq)
214 {
215 	return (*vqs)[vq_word(vq)] & vq_mask(vq);
216 }
217 
218 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
219 {
220 	unsigned int max_vq, vq;
221 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
222 
223 	if (!vcpu_has_sve(vcpu))
224 		return -ENOENT;
225 
226 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
227 		return -EINVAL;
228 
229 	memset(vqs, 0, sizeof(vqs));
230 
231 	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
232 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
233 		if (sve_vq_available(vq))
234 			vqs[vq_word(vq)] |= vq_mask(vq);
235 
236 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
237 		return -EFAULT;
238 
239 	return 0;
240 }
241 
242 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
243 {
244 	unsigned int max_vq, vq;
245 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
246 
247 	if (!vcpu_has_sve(vcpu))
248 		return -ENOENT;
249 
250 	if (kvm_arm_vcpu_sve_finalized(vcpu))
251 		return -EPERM; /* too late! */
252 
253 	if (WARN_ON(vcpu->arch.sve_state))
254 		return -EINVAL;
255 
256 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
257 		return -EFAULT;
258 
259 	max_vq = 0;
260 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
261 		if (vq_present(&vqs, vq))
262 			max_vq = vq;
263 
264 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
265 		return -EINVAL;
266 
267 	/*
268 	 * Vector lengths supported by the host can't currently be
269 	 * hidden from the guest individually: instead we can only set a
270 	 * maxmium via ZCR_EL2.LEN.  So, make sure the available vector
271 	 * lengths match the set requested exactly up to the requested
272 	 * maximum:
273 	 */
274 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
275 		if (vq_present(&vqs, vq) != sve_vq_available(vq))
276 			return -EINVAL;
277 
278 	/* Can't run with no vector lengths at all: */
279 	if (max_vq < SVE_VQ_MIN)
280 		return -EINVAL;
281 
282 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
283 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
284 
285 	return 0;
286 }
287 
288 #define SVE_REG_SLICE_SHIFT	0
289 #define SVE_REG_SLICE_BITS	5
290 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
291 #define SVE_REG_ID_BITS		5
292 
293 #define SVE_REG_SLICE_MASK					\
294 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
295 		SVE_REG_SLICE_SHIFT)
296 #define SVE_REG_ID_MASK							\
297 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
298 
299 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
300 
301 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
302 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
303 
304 /*
305  * Number of register slices required to cover each whole SVE register.
306  * NOTE: Only the first slice every exists, for now.
307  * If you are tempted to modify this, you must also rework sve_reg_to_region()
308  * to match:
309  */
310 #define vcpu_sve_slices(vcpu) 1
311 
312 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
313 struct sve_state_reg_region {
314 	unsigned int koffset;	/* offset into sve_state in kernel memory */
315 	unsigned int klen;	/* length in kernel memory */
316 	unsigned int upad;	/* extra trailing padding in user memory */
317 };
318 
319 /*
320  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
321  * register copy
322  */
323 static int sve_reg_to_region(struct sve_state_reg_region *region,
324 			     struct kvm_vcpu *vcpu,
325 			     const struct kvm_one_reg *reg)
326 {
327 	/* reg ID ranges for Z- registers */
328 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
329 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
330 						       SVE_NUM_SLICES - 1);
331 
332 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
333 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
334 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
335 
336 	unsigned int vq;
337 	unsigned int reg_num;
338 
339 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
340 	unsigned int maxlen; /* Maxmimum permitted length */
341 
342 	size_t sve_state_size;
343 
344 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
345 							SVE_NUM_SLICES - 1);
346 
347 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
348 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
349 
350 	/* Verify that we match the UAPI header: */
351 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
352 
353 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
354 
355 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
356 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
357 			return -ENOENT;
358 
359 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
360 
361 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
362 				SVE_SIG_REGS_OFFSET;
363 		reqlen = KVM_SVE_ZREG_SIZE;
364 		maxlen = SVE_SIG_ZREG_SIZE(vq);
365 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
366 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
367 			return -ENOENT;
368 
369 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
370 
371 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
372 				SVE_SIG_REGS_OFFSET;
373 		reqlen = KVM_SVE_PREG_SIZE;
374 		maxlen = SVE_SIG_PREG_SIZE(vq);
375 	} else {
376 		return -EINVAL;
377 	}
378 
379 	sve_state_size = vcpu_sve_state_size(vcpu);
380 	if (WARN_ON(!sve_state_size))
381 		return -EINVAL;
382 
383 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
384 	region->klen = min(maxlen, reqlen);
385 	region->upad = reqlen - region->klen;
386 
387 	return 0;
388 }
389 
390 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
391 {
392 	int ret;
393 	struct sve_state_reg_region region;
394 	char __user *uptr = (char __user *)reg->addr;
395 
396 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
397 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
398 		return get_sve_vls(vcpu, reg);
399 
400 	/* Try to interpret reg ID as an architectural SVE register... */
401 	ret = sve_reg_to_region(&region, vcpu, reg);
402 	if (ret)
403 		return ret;
404 
405 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
406 		return -EPERM;
407 
408 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
409 			 region.klen) ||
410 	    clear_user(uptr + region.klen, region.upad))
411 		return -EFAULT;
412 
413 	return 0;
414 }
415 
416 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
417 {
418 	int ret;
419 	struct sve_state_reg_region region;
420 	const char __user *uptr = (const char __user *)reg->addr;
421 
422 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
423 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
424 		return set_sve_vls(vcpu, reg);
425 
426 	/* Try to interpret reg ID as an architectural SVE register... */
427 	ret = sve_reg_to_region(&region, vcpu, reg);
428 	if (ret)
429 		return ret;
430 
431 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
432 		return -EPERM;
433 
434 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
435 			   region.klen))
436 		return -EFAULT;
437 
438 	return 0;
439 }
440 
441 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
442 {
443 	return -EINVAL;
444 }
445 
446 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
447 {
448 	return -EINVAL;
449 }
450 
451 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
452 				 u64 __user *uindices)
453 {
454 	unsigned int i;
455 	int n = 0;
456 	const u64 core_reg = KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE;
457 
458 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
459 		/*
460 		 * The KVM_REG_ARM64_SVE regs must be used instead of
461 		 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
462 		 * SVE-enabled vcpus:
463 		 */
464 		if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(i))
465 			continue;
466 
467 		if (uindices) {
468 			if (put_user(core_reg | i, uindices))
469 				return -EFAULT;
470 			uindices++;
471 		}
472 
473 		n++;
474 	}
475 
476 	return n;
477 }
478 
479 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
480 {
481 	return copy_core_reg_indices(vcpu, NULL);
482 }
483 
484 /**
485  * ARM64 versions of the TIMER registers, always available on arm64
486  */
487 
488 #define NUM_TIMER_REGS 3
489 
490 static bool is_timer_reg(u64 index)
491 {
492 	switch (index) {
493 	case KVM_REG_ARM_TIMER_CTL:
494 	case KVM_REG_ARM_TIMER_CNT:
495 	case KVM_REG_ARM_TIMER_CVAL:
496 		return true;
497 	}
498 	return false;
499 }
500 
501 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
502 {
503 	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
504 		return -EFAULT;
505 	uindices++;
506 	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
507 		return -EFAULT;
508 	uindices++;
509 	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
510 		return -EFAULT;
511 
512 	return 0;
513 }
514 
515 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
516 {
517 	void __user *uaddr = (void __user *)(long)reg->addr;
518 	u64 val;
519 	int ret;
520 
521 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
522 	if (ret != 0)
523 		return -EFAULT;
524 
525 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
526 }
527 
528 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
529 {
530 	void __user *uaddr = (void __user *)(long)reg->addr;
531 	u64 val;
532 
533 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
534 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
535 }
536 
537 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
538 {
539 	const unsigned int slices = vcpu_sve_slices(vcpu);
540 
541 	if (!vcpu_has_sve(vcpu))
542 		return 0;
543 
544 	/* Policed by KVM_GET_REG_LIST: */
545 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
546 
547 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
548 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
549 }
550 
551 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
552 				u64 __user *uindices)
553 {
554 	const unsigned int slices = vcpu_sve_slices(vcpu);
555 	u64 reg;
556 	unsigned int i, n;
557 	int num_regs = 0;
558 
559 	if (!vcpu_has_sve(vcpu))
560 		return 0;
561 
562 	/* Policed by KVM_GET_REG_LIST: */
563 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
564 
565 	/*
566 	 * Enumerate this first, so that userspace can save/restore in
567 	 * the order reported by KVM_GET_REG_LIST:
568 	 */
569 	reg = KVM_REG_ARM64_SVE_VLS;
570 	if (put_user(reg, uindices++))
571 		return -EFAULT;
572 	++num_regs;
573 
574 	for (i = 0; i < slices; i++) {
575 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
576 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
577 			if (put_user(reg, uindices++))
578 				return -EFAULT;
579 			num_regs++;
580 		}
581 
582 		for (n = 0; n < SVE_NUM_PREGS; n++) {
583 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
584 			if (put_user(reg, uindices++))
585 				return -EFAULT;
586 			num_regs++;
587 		}
588 
589 		reg = KVM_REG_ARM64_SVE_FFR(i);
590 		if (put_user(reg, uindices++))
591 			return -EFAULT;
592 		num_regs++;
593 	}
594 
595 	return num_regs;
596 }
597 
598 /**
599  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
600  *
601  * This is for all registers.
602  */
603 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
604 {
605 	unsigned long res = 0;
606 
607 	res += num_core_regs(vcpu);
608 	res += num_sve_regs(vcpu);
609 	res += kvm_arm_num_sys_reg_descs(vcpu);
610 	res += kvm_arm_get_fw_num_regs(vcpu);
611 	res += NUM_TIMER_REGS;
612 
613 	return res;
614 }
615 
616 /**
617  * kvm_arm_copy_reg_indices - get indices of all registers.
618  *
619  * We do core registers right here, then we append system regs.
620  */
621 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
622 {
623 	int ret;
624 
625 	ret = copy_core_reg_indices(vcpu, uindices);
626 	if (ret < 0)
627 		return ret;
628 	uindices += ret;
629 
630 	ret = copy_sve_reg_indices(vcpu, uindices);
631 	if (ret < 0)
632 		return ret;
633 	uindices += ret;
634 
635 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
636 	if (ret < 0)
637 		return ret;
638 	uindices += kvm_arm_get_fw_num_regs(vcpu);
639 
640 	ret = copy_timer_indices(vcpu, uindices);
641 	if (ret < 0)
642 		return ret;
643 	uindices += NUM_TIMER_REGS;
644 
645 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
646 }
647 
648 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
649 {
650 	/* We currently use nothing arch-specific in upper 32 bits */
651 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
652 		return -EINVAL;
653 
654 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
655 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
656 	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
657 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
658 	}
659 
660 	if (is_timer_reg(reg->id))
661 		return get_timer_reg(vcpu, reg);
662 
663 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
664 }
665 
666 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
667 {
668 	/* We currently use nothing arch-specific in upper 32 bits */
669 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
670 		return -EINVAL;
671 
672 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
673 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
674 	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
675 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
676 	}
677 
678 	if (is_timer_reg(reg->id))
679 		return set_timer_reg(vcpu, reg);
680 
681 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
682 }
683 
684 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
685 				  struct kvm_sregs *sregs)
686 {
687 	return -EINVAL;
688 }
689 
690 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
691 				  struct kvm_sregs *sregs)
692 {
693 	return -EINVAL;
694 }
695 
696 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
697 			      struct kvm_vcpu_events *events)
698 {
699 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
700 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
701 
702 	if (events->exception.serror_pending && events->exception.serror_has_esr)
703 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
704 
705 	return 0;
706 }
707 
708 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
709 			      struct kvm_vcpu_events *events)
710 {
711 	bool serror_pending = events->exception.serror_pending;
712 	bool has_esr = events->exception.serror_has_esr;
713 
714 	if (serror_pending && has_esr) {
715 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
716 			return -EINVAL;
717 
718 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
719 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
720 		else
721 			return -EINVAL;
722 	} else if (serror_pending) {
723 		kvm_inject_vabt(vcpu);
724 	}
725 
726 	return 0;
727 }
728 
729 int __attribute_const__ kvm_target_cpu(void)
730 {
731 	unsigned long implementor = read_cpuid_implementor();
732 	unsigned long part_number = read_cpuid_part_number();
733 
734 	switch (implementor) {
735 	case ARM_CPU_IMP_ARM:
736 		switch (part_number) {
737 		case ARM_CPU_PART_AEM_V8:
738 			return KVM_ARM_TARGET_AEM_V8;
739 		case ARM_CPU_PART_FOUNDATION:
740 			return KVM_ARM_TARGET_FOUNDATION_V8;
741 		case ARM_CPU_PART_CORTEX_A53:
742 			return KVM_ARM_TARGET_CORTEX_A53;
743 		case ARM_CPU_PART_CORTEX_A57:
744 			return KVM_ARM_TARGET_CORTEX_A57;
745 		}
746 		break;
747 	case ARM_CPU_IMP_APM:
748 		switch (part_number) {
749 		case APM_CPU_PART_POTENZA:
750 			return KVM_ARM_TARGET_XGENE_POTENZA;
751 		}
752 		break;
753 	}
754 
755 	/* Return a default generic target */
756 	return KVM_ARM_TARGET_GENERIC_V8;
757 }
758 
759 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
760 {
761 	int target = kvm_target_cpu();
762 
763 	if (target < 0)
764 		return -ENODEV;
765 
766 	memset(init, 0, sizeof(*init));
767 
768 	/*
769 	 * For now, we don't return any features.
770 	 * In future, we might use features to return target
771 	 * specific features available for the preferred
772 	 * target type.
773 	 */
774 	init->target = (__u32)target;
775 
776 	return 0;
777 }
778 
779 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
780 {
781 	return -EINVAL;
782 }
783 
784 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
785 {
786 	return -EINVAL;
787 }
788 
789 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
790 				  struct kvm_translation *tr)
791 {
792 	return -EINVAL;
793 }
794 
795 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
796 			    KVM_GUESTDBG_USE_SW_BP | \
797 			    KVM_GUESTDBG_USE_HW | \
798 			    KVM_GUESTDBG_SINGLESTEP)
799 
800 /**
801  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
802  * @kvm:	pointer to the KVM struct
803  * @kvm_guest_debug: the ioctl data buffer
804  *
805  * This sets up and enables the VM for guest debugging. Userspace
806  * passes in a control flag to enable different debug types and
807  * potentially other architecture specific information in the rest of
808  * the structure.
809  */
810 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
811 					struct kvm_guest_debug *dbg)
812 {
813 	int ret = 0;
814 
815 	trace_kvm_set_guest_debug(vcpu, dbg->control);
816 
817 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
818 		ret = -EINVAL;
819 		goto out;
820 	}
821 
822 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
823 		vcpu->guest_debug = dbg->control;
824 
825 		/* Hardware assisted Break and Watch points */
826 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
827 			vcpu->arch.external_debug_state = dbg->arch;
828 		}
829 
830 	} else {
831 		/* If not enabled clear all flags */
832 		vcpu->guest_debug = 0;
833 	}
834 
835 out:
836 	return ret;
837 }
838 
839 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
840 			       struct kvm_device_attr *attr)
841 {
842 	int ret;
843 
844 	switch (attr->group) {
845 	case KVM_ARM_VCPU_PMU_V3_CTRL:
846 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
847 		break;
848 	case KVM_ARM_VCPU_TIMER_CTRL:
849 		ret = kvm_arm_timer_set_attr(vcpu, attr);
850 		break;
851 	default:
852 		ret = -ENXIO;
853 		break;
854 	}
855 
856 	return ret;
857 }
858 
859 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
860 			       struct kvm_device_attr *attr)
861 {
862 	int ret;
863 
864 	switch (attr->group) {
865 	case KVM_ARM_VCPU_PMU_V3_CTRL:
866 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
867 		break;
868 	case KVM_ARM_VCPU_TIMER_CTRL:
869 		ret = kvm_arm_timer_get_attr(vcpu, attr);
870 		break;
871 	default:
872 		ret = -ENXIO;
873 		break;
874 	}
875 
876 	return ret;
877 }
878 
879 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
880 			       struct kvm_device_attr *attr)
881 {
882 	int ret;
883 
884 	switch (attr->group) {
885 	case KVM_ARM_VCPU_PMU_V3_CTRL:
886 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
887 		break;
888 	case KVM_ARM_VCPU_TIMER_CTRL:
889 		ret = kvm_arm_timer_has_attr(vcpu, attr);
890 		break;
891 	default:
892 		ret = -ENXIO;
893 		break;
894 	}
895 
896 	return ret;
897 }
898