1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/guest.c: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #include <linux/bits.h> 12 #include <linux/errno.h> 13 #include <linux/err.h> 14 #include <linux/nospec.h> 15 #include <linux/kvm_host.h> 16 #include <linux/module.h> 17 #include <linux/stddef.h> 18 #include <linux/string.h> 19 #include <linux/vmalloc.h> 20 #include <linux/fs.h> 21 #include <kvm/arm_hypercalls.h> 22 #include <asm/cputype.h> 23 #include <linux/uaccess.h> 24 #include <asm/fpsimd.h> 25 #include <asm/kvm.h> 26 #include <asm/kvm_emulate.h> 27 #include <asm/sigcontext.h> 28 29 #include "trace.h" 30 31 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 32 KVM_GENERIC_VM_STATS() 33 }; 34 35 const struct kvm_stats_header kvm_vm_stats_header = { 36 .name_size = KVM_STATS_NAME_SIZE, 37 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 38 .id_offset = sizeof(struct kvm_stats_header), 39 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 40 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 41 sizeof(kvm_vm_stats_desc), 42 }; 43 44 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 45 KVM_GENERIC_VCPU_STATS(), 46 STATS_DESC_COUNTER(VCPU, hvc_exit_stat), 47 STATS_DESC_COUNTER(VCPU, wfe_exit_stat), 48 STATS_DESC_COUNTER(VCPU, wfi_exit_stat), 49 STATS_DESC_COUNTER(VCPU, mmio_exit_user), 50 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel), 51 STATS_DESC_COUNTER(VCPU, signal_exits), 52 STATS_DESC_COUNTER(VCPU, exits) 53 }; 54 55 const struct kvm_stats_header kvm_vcpu_stats_header = { 56 .name_size = KVM_STATS_NAME_SIZE, 57 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 58 .id_offset = sizeof(struct kvm_stats_header), 59 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 60 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 61 sizeof(kvm_vcpu_stats_desc), 62 }; 63 64 static bool core_reg_offset_is_vreg(u64 off) 65 { 66 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) && 67 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr); 68 } 69 70 static u64 core_reg_offset_from_id(u64 id) 71 { 72 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE); 73 } 74 75 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off) 76 { 77 int size; 78 79 switch (off) { 80 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... 81 KVM_REG_ARM_CORE_REG(regs.regs[30]): 82 case KVM_REG_ARM_CORE_REG(regs.sp): 83 case KVM_REG_ARM_CORE_REG(regs.pc): 84 case KVM_REG_ARM_CORE_REG(regs.pstate): 85 case KVM_REG_ARM_CORE_REG(sp_el1): 86 case KVM_REG_ARM_CORE_REG(elr_el1): 87 case KVM_REG_ARM_CORE_REG(spsr[0]) ... 88 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]): 89 size = sizeof(__u64); 90 break; 91 92 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... 93 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): 94 size = sizeof(__uint128_t); 95 break; 96 97 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): 98 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): 99 size = sizeof(__u32); 100 break; 101 102 default: 103 return -EINVAL; 104 } 105 106 if (!IS_ALIGNED(off, size / sizeof(__u32))) 107 return -EINVAL; 108 109 /* 110 * The KVM_REG_ARM64_SVE regs must be used instead of 111 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on 112 * SVE-enabled vcpus: 113 */ 114 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off)) 115 return -EINVAL; 116 117 return size; 118 } 119 120 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 121 { 122 u64 off = core_reg_offset_from_id(reg->id); 123 int size = core_reg_size_from_offset(vcpu, off); 124 125 if (size < 0) 126 return NULL; 127 128 if (KVM_REG_SIZE(reg->id) != size) 129 return NULL; 130 131 switch (off) { 132 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... 133 KVM_REG_ARM_CORE_REG(regs.regs[30]): 134 off -= KVM_REG_ARM_CORE_REG(regs.regs[0]); 135 off /= 2; 136 return &vcpu->arch.ctxt.regs.regs[off]; 137 138 case KVM_REG_ARM_CORE_REG(regs.sp): 139 return &vcpu->arch.ctxt.regs.sp; 140 141 case KVM_REG_ARM_CORE_REG(regs.pc): 142 return &vcpu->arch.ctxt.regs.pc; 143 144 case KVM_REG_ARM_CORE_REG(regs.pstate): 145 return &vcpu->arch.ctxt.regs.pstate; 146 147 case KVM_REG_ARM_CORE_REG(sp_el1): 148 return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1); 149 150 case KVM_REG_ARM_CORE_REG(elr_el1): 151 return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1); 152 153 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]): 154 return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1); 155 156 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]): 157 return &vcpu->arch.ctxt.spsr_abt; 158 159 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]): 160 return &vcpu->arch.ctxt.spsr_und; 161 162 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]): 163 return &vcpu->arch.ctxt.spsr_irq; 164 165 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]): 166 return &vcpu->arch.ctxt.spsr_fiq; 167 168 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... 169 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): 170 off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]); 171 off /= 4; 172 return &vcpu->arch.ctxt.fp_regs.vregs[off]; 173 174 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): 175 return &vcpu->arch.ctxt.fp_regs.fpsr; 176 177 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): 178 return &vcpu->arch.ctxt.fp_regs.fpcr; 179 180 default: 181 return NULL; 182 } 183 } 184 185 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 186 { 187 /* 188 * Because the kvm_regs structure is a mix of 32, 64 and 189 * 128bit fields, we index it as if it was a 32bit 190 * array. Hence below, nr_regs is the number of entries, and 191 * off the index in the "array". 192 */ 193 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; 194 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32); 195 void *addr; 196 u32 off; 197 198 /* Our ID is an index into the kvm_regs struct. */ 199 off = core_reg_offset_from_id(reg->id); 200 if (off >= nr_regs || 201 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) 202 return -ENOENT; 203 204 addr = core_reg_addr(vcpu, reg); 205 if (!addr) 206 return -EINVAL; 207 208 if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id))) 209 return -EFAULT; 210 211 return 0; 212 } 213 214 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 215 { 216 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; 217 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32); 218 __uint128_t tmp; 219 void *valp = &tmp, *addr; 220 u64 off; 221 int err = 0; 222 223 /* Our ID is an index into the kvm_regs struct. */ 224 off = core_reg_offset_from_id(reg->id); 225 if (off >= nr_regs || 226 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) 227 return -ENOENT; 228 229 addr = core_reg_addr(vcpu, reg); 230 if (!addr) 231 return -EINVAL; 232 233 if (KVM_REG_SIZE(reg->id) > sizeof(tmp)) 234 return -EINVAL; 235 236 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) { 237 err = -EFAULT; 238 goto out; 239 } 240 241 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) { 242 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK; 243 switch (mode) { 244 case PSR_AA32_MODE_USR: 245 if (!kvm_supports_32bit_el0()) 246 return -EINVAL; 247 break; 248 case PSR_AA32_MODE_FIQ: 249 case PSR_AA32_MODE_IRQ: 250 case PSR_AA32_MODE_SVC: 251 case PSR_AA32_MODE_ABT: 252 case PSR_AA32_MODE_UND: 253 if (!vcpu_el1_is_32bit(vcpu)) 254 return -EINVAL; 255 break; 256 case PSR_MODE_EL0t: 257 case PSR_MODE_EL1t: 258 case PSR_MODE_EL1h: 259 if (vcpu_el1_is_32bit(vcpu)) 260 return -EINVAL; 261 break; 262 default: 263 err = -EINVAL; 264 goto out; 265 } 266 } 267 268 memcpy(addr, valp, KVM_REG_SIZE(reg->id)); 269 270 if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) { 271 int i, nr_reg; 272 273 switch (*vcpu_cpsr(vcpu)) { 274 /* 275 * Either we are dealing with user mode, and only the 276 * first 15 registers (+ PC) must be narrowed to 32bit. 277 * AArch32 r0-r14 conveniently map to AArch64 x0-x14. 278 */ 279 case PSR_AA32_MODE_USR: 280 case PSR_AA32_MODE_SYS: 281 nr_reg = 15; 282 break; 283 284 /* 285 * Otherwise, this is a privileged mode, and *all* the 286 * registers must be narrowed to 32bit. 287 */ 288 default: 289 nr_reg = 31; 290 break; 291 } 292 293 for (i = 0; i < nr_reg; i++) 294 vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i)); 295 296 *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu); 297 } 298 out: 299 return err; 300 } 301 302 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64) 303 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64) 304 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq))) 305 306 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 307 { 308 unsigned int max_vq, vq; 309 u64 vqs[KVM_ARM64_SVE_VLS_WORDS]; 310 311 if (!vcpu_has_sve(vcpu)) 312 return -ENOENT; 313 314 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl))) 315 return -EINVAL; 316 317 memset(vqs, 0, sizeof(vqs)); 318 319 max_vq = vcpu_sve_max_vq(vcpu); 320 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq) 321 if (sve_vq_available(vq)) 322 vqs[vq_word(vq)] |= vq_mask(vq); 323 324 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs))) 325 return -EFAULT; 326 327 return 0; 328 } 329 330 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 331 { 332 unsigned int max_vq, vq; 333 u64 vqs[KVM_ARM64_SVE_VLS_WORDS]; 334 335 if (!vcpu_has_sve(vcpu)) 336 return -ENOENT; 337 338 if (kvm_arm_vcpu_sve_finalized(vcpu)) 339 return -EPERM; /* too late! */ 340 341 if (WARN_ON(vcpu->arch.sve_state)) 342 return -EINVAL; 343 344 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs))) 345 return -EFAULT; 346 347 max_vq = 0; 348 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq) 349 if (vq_present(vqs, vq)) 350 max_vq = vq; 351 352 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl)) 353 return -EINVAL; 354 355 /* 356 * Vector lengths supported by the host can't currently be 357 * hidden from the guest individually: instead we can only set a 358 * maximum via ZCR_EL2.LEN. So, make sure the available vector 359 * lengths match the set requested exactly up to the requested 360 * maximum: 361 */ 362 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq) 363 if (vq_present(vqs, vq) != sve_vq_available(vq)) 364 return -EINVAL; 365 366 /* Can't run with no vector lengths at all: */ 367 if (max_vq < SVE_VQ_MIN) 368 return -EINVAL; 369 370 /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */ 371 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq); 372 373 return 0; 374 } 375 376 #define SVE_REG_SLICE_SHIFT 0 377 #define SVE_REG_SLICE_BITS 5 378 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS) 379 #define SVE_REG_ID_BITS 5 380 381 #define SVE_REG_SLICE_MASK \ 382 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \ 383 SVE_REG_SLICE_SHIFT) 384 #define SVE_REG_ID_MASK \ 385 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT) 386 387 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS) 388 389 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0)) 390 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0)) 391 392 /* 393 * Number of register slices required to cover each whole SVE register. 394 * NOTE: Only the first slice every exists, for now. 395 * If you are tempted to modify this, you must also rework sve_reg_to_region() 396 * to match: 397 */ 398 #define vcpu_sve_slices(vcpu) 1 399 400 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */ 401 struct sve_state_reg_region { 402 unsigned int koffset; /* offset into sve_state in kernel memory */ 403 unsigned int klen; /* length in kernel memory */ 404 unsigned int upad; /* extra trailing padding in user memory */ 405 }; 406 407 /* 408 * Validate SVE register ID and get sanitised bounds for user/kernel SVE 409 * register copy 410 */ 411 static int sve_reg_to_region(struct sve_state_reg_region *region, 412 struct kvm_vcpu *vcpu, 413 const struct kvm_one_reg *reg) 414 { 415 /* reg ID ranges for Z- registers */ 416 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0); 417 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1, 418 SVE_NUM_SLICES - 1); 419 420 /* reg ID ranges for P- registers and FFR (which are contiguous) */ 421 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0); 422 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1); 423 424 unsigned int vq; 425 unsigned int reg_num; 426 427 unsigned int reqoffset, reqlen; /* User-requested offset and length */ 428 unsigned int maxlen; /* Maximum permitted length */ 429 430 size_t sve_state_size; 431 432 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1, 433 SVE_NUM_SLICES - 1); 434 435 /* Verify that the P-regs and FFR really do have contiguous IDs: */ 436 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1); 437 438 /* Verify that we match the UAPI header: */ 439 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES); 440 441 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT; 442 443 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) { 444 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0) 445 return -ENOENT; 446 447 vq = vcpu_sve_max_vq(vcpu); 448 449 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) - 450 SVE_SIG_REGS_OFFSET; 451 reqlen = KVM_SVE_ZREG_SIZE; 452 maxlen = SVE_SIG_ZREG_SIZE(vq); 453 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) { 454 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0) 455 return -ENOENT; 456 457 vq = vcpu_sve_max_vq(vcpu); 458 459 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) - 460 SVE_SIG_REGS_OFFSET; 461 reqlen = KVM_SVE_PREG_SIZE; 462 maxlen = SVE_SIG_PREG_SIZE(vq); 463 } else { 464 return -EINVAL; 465 } 466 467 sve_state_size = vcpu_sve_state_size(vcpu); 468 if (WARN_ON(!sve_state_size)) 469 return -EINVAL; 470 471 region->koffset = array_index_nospec(reqoffset, sve_state_size); 472 region->klen = min(maxlen, reqlen); 473 region->upad = reqlen - region->klen; 474 475 return 0; 476 } 477 478 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 479 { 480 int ret; 481 struct sve_state_reg_region region; 482 char __user *uptr = (char __user *)reg->addr; 483 484 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */ 485 if (reg->id == KVM_REG_ARM64_SVE_VLS) 486 return get_sve_vls(vcpu, reg); 487 488 /* Try to interpret reg ID as an architectural SVE register... */ 489 ret = sve_reg_to_region(®ion, vcpu, reg); 490 if (ret) 491 return ret; 492 493 if (!kvm_arm_vcpu_sve_finalized(vcpu)) 494 return -EPERM; 495 496 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset, 497 region.klen) || 498 clear_user(uptr + region.klen, region.upad)) 499 return -EFAULT; 500 501 return 0; 502 } 503 504 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 505 { 506 int ret; 507 struct sve_state_reg_region region; 508 const char __user *uptr = (const char __user *)reg->addr; 509 510 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */ 511 if (reg->id == KVM_REG_ARM64_SVE_VLS) 512 return set_sve_vls(vcpu, reg); 513 514 /* Try to interpret reg ID as an architectural SVE register... */ 515 ret = sve_reg_to_region(®ion, vcpu, reg); 516 if (ret) 517 return ret; 518 519 if (!kvm_arm_vcpu_sve_finalized(vcpu)) 520 return -EPERM; 521 522 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr, 523 region.klen)) 524 return -EFAULT; 525 526 return 0; 527 } 528 529 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 530 { 531 return -EINVAL; 532 } 533 534 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 535 { 536 return -EINVAL; 537 } 538 539 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu, 540 u64 __user *uindices) 541 { 542 unsigned int i; 543 int n = 0; 544 545 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) { 546 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i; 547 int size = core_reg_size_from_offset(vcpu, i); 548 549 if (size < 0) 550 continue; 551 552 switch (size) { 553 case sizeof(__u32): 554 reg |= KVM_REG_SIZE_U32; 555 break; 556 557 case sizeof(__u64): 558 reg |= KVM_REG_SIZE_U64; 559 break; 560 561 case sizeof(__uint128_t): 562 reg |= KVM_REG_SIZE_U128; 563 break; 564 565 default: 566 WARN_ON(1); 567 continue; 568 } 569 570 if (uindices) { 571 if (put_user(reg, uindices)) 572 return -EFAULT; 573 uindices++; 574 } 575 576 n++; 577 } 578 579 return n; 580 } 581 582 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu) 583 { 584 return copy_core_reg_indices(vcpu, NULL); 585 } 586 587 /** 588 * ARM64 versions of the TIMER registers, always available on arm64 589 */ 590 591 #define NUM_TIMER_REGS 3 592 593 static bool is_timer_reg(u64 index) 594 { 595 switch (index) { 596 case KVM_REG_ARM_TIMER_CTL: 597 case KVM_REG_ARM_TIMER_CNT: 598 case KVM_REG_ARM_TIMER_CVAL: 599 return true; 600 } 601 return false; 602 } 603 604 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 605 { 606 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices)) 607 return -EFAULT; 608 uindices++; 609 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices)) 610 return -EFAULT; 611 uindices++; 612 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices)) 613 return -EFAULT; 614 615 return 0; 616 } 617 618 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 619 { 620 void __user *uaddr = (void __user *)(long)reg->addr; 621 u64 val; 622 int ret; 623 624 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)); 625 if (ret != 0) 626 return -EFAULT; 627 628 return kvm_arm_timer_set_reg(vcpu, reg->id, val); 629 } 630 631 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 632 { 633 void __user *uaddr = (void __user *)(long)reg->addr; 634 u64 val; 635 636 val = kvm_arm_timer_get_reg(vcpu, reg->id); 637 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0; 638 } 639 640 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu) 641 { 642 const unsigned int slices = vcpu_sve_slices(vcpu); 643 644 if (!vcpu_has_sve(vcpu)) 645 return 0; 646 647 /* Policed by KVM_GET_REG_LIST: */ 648 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu)); 649 650 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */) 651 + 1; /* KVM_REG_ARM64_SVE_VLS */ 652 } 653 654 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu, 655 u64 __user *uindices) 656 { 657 const unsigned int slices = vcpu_sve_slices(vcpu); 658 u64 reg; 659 unsigned int i, n; 660 int num_regs = 0; 661 662 if (!vcpu_has_sve(vcpu)) 663 return 0; 664 665 /* Policed by KVM_GET_REG_LIST: */ 666 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu)); 667 668 /* 669 * Enumerate this first, so that userspace can save/restore in 670 * the order reported by KVM_GET_REG_LIST: 671 */ 672 reg = KVM_REG_ARM64_SVE_VLS; 673 if (put_user(reg, uindices++)) 674 return -EFAULT; 675 ++num_regs; 676 677 for (i = 0; i < slices; i++) { 678 for (n = 0; n < SVE_NUM_ZREGS; n++) { 679 reg = KVM_REG_ARM64_SVE_ZREG(n, i); 680 if (put_user(reg, uindices++)) 681 return -EFAULT; 682 num_regs++; 683 } 684 685 for (n = 0; n < SVE_NUM_PREGS; n++) { 686 reg = KVM_REG_ARM64_SVE_PREG(n, i); 687 if (put_user(reg, uindices++)) 688 return -EFAULT; 689 num_regs++; 690 } 691 692 reg = KVM_REG_ARM64_SVE_FFR(i); 693 if (put_user(reg, uindices++)) 694 return -EFAULT; 695 num_regs++; 696 } 697 698 return num_regs; 699 } 700 701 /** 702 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG 703 * 704 * This is for all registers. 705 */ 706 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu) 707 { 708 unsigned long res = 0; 709 710 res += num_core_regs(vcpu); 711 res += num_sve_regs(vcpu); 712 res += kvm_arm_num_sys_reg_descs(vcpu); 713 res += kvm_arm_get_fw_num_regs(vcpu); 714 res += NUM_TIMER_REGS; 715 716 return res; 717 } 718 719 /** 720 * kvm_arm_copy_reg_indices - get indices of all registers. 721 * 722 * We do core registers right here, then we append system regs. 723 */ 724 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 725 { 726 int ret; 727 728 ret = copy_core_reg_indices(vcpu, uindices); 729 if (ret < 0) 730 return ret; 731 uindices += ret; 732 733 ret = copy_sve_reg_indices(vcpu, uindices); 734 if (ret < 0) 735 return ret; 736 uindices += ret; 737 738 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices); 739 if (ret < 0) 740 return ret; 741 uindices += kvm_arm_get_fw_num_regs(vcpu); 742 743 ret = copy_timer_indices(vcpu, uindices); 744 if (ret < 0) 745 return ret; 746 uindices += NUM_TIMER_REGS; 747 748 return kvm_arm_copy_sys_reg_indices(vcpu, uindices); 749 } 750 751 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 752 { 753 /* We currently use nothing arch-specific in upper 32 bits */ 754 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) 755 return -EINVAL; 756 757 switch (reg->id & KVM_REG_ARM_COPROC_MASK) { 758 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg); 759 case KVM_REG_ARM_FW: 760 case KVM_REG_ARM_FW_FEAT_BMAP: 761 return kvm_arm_get_fw_reg(vcpu, reg); 762 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg); 763 } 764 765 if (is_timer_reg(reg->id)) 766 return get_timer_reg(vcpu, reg); 767 768 return kvm_arm_sys_reg_get_reg(vcpu, reg); 769 } 770 771 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 772 { 773 /* We currently use nothing arch-specific in upper 32 bits */ 774 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) 775 return -EINVAL; 776 777 switch (reg->id & KVM_REG_ARM_COPROC_MASK) { 778 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg); 779 case KVM_REG_ARM_FW: 780 case KVM_REG_ARM_FW_FEAT_BMAP: 781 return kvm_arm_set_fw_reg(vcpu, reg); 782 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg); 783 } 784 785 if (is_timer_reg(reg->id)) 786 return set_timer_reg(vcpu, reg); 787 788 return kvm_arm_sys_reg_set_reg(vcpu, reg); 789 } 790 791 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 792 struct kvm_sregs *sregs) 793 { 794 return -EINVAL; 795 } 796 797 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 798 struct kvm_sregs *sregs) 799 { 800 return -EINVAL; 801 } 802 803 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 804 struct kvm_vcpu_events *events) 805 { 806 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE); 807 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); 808 809 if (events->exception.serror_pending && events->exception.serror_has_esr) 810 events->exception.serror_esr = vcpu_get_vsesr(vcpu); 811 812 /* 813 * We never return a pending ext_dabt here because we deliver it to 814 * the virtual CPU directly when setting the event and it's no longer 815 * 'pending' at this point. 816 */ 817 818 return 0; 819 } 820 821 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 822 struct kvm_vcpu_events *events) 823 { 824 bool serror_pending = events->exception.serror_pending; 825 bool has_esr = events->exception.serror_has_esr; 826 bool ext_dabt_pending = events->exception.ext_dabt_pending; 827 828 if (serror_pending && has_esr) { 829 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN)) 830 return -EINVAL; 831 832 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK)) 833 kvm_set_sei_esr(vcpu, events->exception.serror_esr); 834 else 835 return -EINVAL; 836 } else if (serror_pending) { 837 kvm_inject_vabt(vcpu); 838 } 839 840 if (ext_dabt_pending) 841 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu)); 842 843 return 0; 844 } 845 846 u32 __attribute_const__ kvm_target_cpu(void) 847 { 848 unsigned long implementor = read_cpuid_implementor(); 849 unsigned long part_number = read_cpuid_part_number(); 850 851 switch (implementor) { 852 case ARM_CPU_IMP_ARM: 853 switch (part_number) { 854 case ARM_CPU_PART_AEM_V8: 855 return KVM_ARM_TARGET_AEM_V8; 856 case ARM_CPU_PART_FOUNDATION: 857 return KVM_ARM_TARGET_FOUNDATION_V8; 858 case ARM_CPU_PART_CORTEX_A53: 859 return KVM_ARM_TARGET_CORTEX_A53; 860 case ARM_CPU_PART_CORTEX_A57: 861 return KVM_ARM_TARGET_CORTEX_A57; 862 } 863 break; 864 case ARM_CPU_IMP_APM: 865 switch (part_number) { 866 case APM_CPU_PART_POTENZA: 867 return KVM_ARM_TARGET_XGENE_POTENZA; 868 } 869 break; 870 } 871 872 /* Return a default generic target */ 873 return KVM_ARM_TARGET_GENERIC_V8; 874 } 875 876 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init) 877 { 878 u32 target = kvm_target_cpu(); 879 880 memset(init, 0, sizeof(*init)); 881 882 /* 883 * For now, we don't return any features. 884 * In future, we might use features to return target 885 * specific features available for the preferred 886 * target type. 887 */ 888 init->target = (__u32)target; 889 } 890 891 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 892 { 893 return -EINVAL; 894 } 895 896 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 897 { 898 return -EINVAL; 899 } 900 901 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 902 struct kvm_translation *tr) 903 { 904 return -EINVAL; 905 } 906 907 /** 908 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging 909 * @kvm: pointer to the KVM struct 910 * @kvm_guest_debug: the ioctl data buffer 911 * 912 * This sets up and enables the VM for guest debugging. Userspace 913 * passes in a control flag to enable different debug types and 914 * potentially other architecture specific information in the rest of 915 * the structure. 916 */ 917 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 918 struct kvm_guest_debug *dbg) 919 { 920 int ret = 0; 921 922 trace_kvm_set_guest_debug(vcpu, dbg->control); 923 924 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) { 925 ret = -EINVAL; 926 goto out; 927 } 928 929 if (dbg->control & KVM_GUESTDBG_ENABLE) { 930 vcpu->guest_debug = dbg->control; 931 932 /* Hardware assisted Break and Watch points */ 933 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) { 934 vcpu->arch.external_debug_state = dbg->arch; 935 } 936 937 } else { 938 /* If not enabled clear all flags */ 939 vcpu->guest_debug = 0; 940 vcpu_clear_flag(vcpu, DBG_SS_ACTIVE_PENDING); 941 } 942 943 out: 944 return ret; 945 } 946 947 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu, 948 struct kvm_device_attr *attr) 949 { 950 int ret; 951 952 switch (attr->group) { 953 case KVM_ARM_VCPU_PMU_V3_CTRL: 954 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr); 955 break; 956 case KVM_ARM_VCPU_TIMER_CTRL: 957 ret = kvm_arm_timer_set_attr(vcpu, attr); 958 break; 959 case KVM_ARM_VCPU_PVTIME_CTRL: 960 ret = kvm_arm_pvtime_set_attr(vcpu, attr); 961 break; 962 default: 963 ret = -ENXIO; 964 break; 965 } 966 967 return ret; 968 } 969 970 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu, 971 struct kvm_device_attr *attr) 972 { 973 int ret; 974 975 switch (attr->group) { 976 case KVM_ARM_VCPU_PMU_V3_CTRL: 977 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr); 978 break; 979 case KVM_ARM_VCPU_TIMER_CTRL: 980 ret = kvm_arm_timer_get_attr(vcpu, attr); 981 break; 982 case KVM_ARM_VCPU_PVTIME_CTRL: 983 ret = kvm_arm_pvtime_get_attr(vcpu, attr); 984 break; 985 default: 986 ret = -ENXIO; 987 break; 988 } 989 990 return ret; 991 } 992 993 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu, 994 struct kvm_device_attr *attr) 995 { 996 int ret; 997 998 switch (attr->group) { 999 case KVM_ARM_VCPU_PMU_V3_CTRL: 1000 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr); 1001 break; 1002 case KVM_ARM_VCPU_TIMER_CTRL: 1003 ret = kvm_arm_timer_has_attr(vcpu, attr); 1004 break; 1005 case KVM_ARM_VCPU_PVTIME_CTRL: 1006 ret = kvm_arm_pvtime_has_attr(vcpu, attr); 1007 break; 1008 default: 1009 ret = -ENXIO; 1010 break; 1011 } 1012 1013 return ret; 1014 } 1015 1016 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm, 1017 struct kvm_arm_copy_mte_tags *copy_tags) 1018 { 1019 gpa_t guest_ipa = copy_tags->guest_ipa; 1020 size_t length = copy_tags->length; 1021 void __user *tags = copy_tags->addr; 1022 gpa_t gfn; 1023 bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST); 1024 int ret = 0; 1025 1026 if (!kvm_has_mte(kvm)) 1027 return -EINVAL; 1028 1029 if (copy_tags->reserved[0] || copy_tags->reserved[1]) 1030 return -EINVAL; 1031 1032 if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST) 1033 return -EINVAL; 1034 1035 if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK) 1036 return -EINVAL; 1037 1038 gfn = gpa_to_gfn(guest_ipa); 1039 1040 mutex_lock(&kvm->slots_lock); 1041 1042 while (length > 0) { 1043 kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL); 1044 void *maddr; 1045 unsigned long num_tags; 1046 struct page *page; 1047 1048 if (is_error_noslot_pfn(pfn)) { 1049 ret = -EFAULT; 1050 goto out; 1051 } 1052 1053 page = pfn_to_online_page(pfn); 1054 if (!page) { 1055 /* Reject ZONE_DEVICE memory */ 1056 ret = -EFAULT; 1057 goto out; 1058 } 1059 maddr = page_address(page); 1060 1061 if (!write) { 1062 if (page_mte_tagged(page)) 1063 num_tags = mte_copy_tags_to_user(tags, maddr, 1064 MTE_GRANULES_PER_PAGE); 1065 else 1066 /* No tags in memory, so write zeros */ 1067 num_tags = MTE_GRANULES_PER_PAGE - 1068 clear_user(tags, MTE_GRANULES_PER_PAGE); 1069 kvm_release_pfn_clean(pfn); 1070 } else { 1071 /* 1072 * Only locking to serialise with a concurrent 1073 * set_pte_at() in the VMM but still overriding the 1074 * tags, hence ignoring the return value. 1075 */ 1076 try_page_mte_tagging(page); 1077 num_tags = mte_copy_tags_from_user(maddr, tags, 1078 MTE_GRANULES_PER_PAGE); 1079 1080 /* uaccess failed, don't leave stale tags */ 1081 if (num_tags != MTE_GRANULES_PER_PAGE) 1082 mte_clear_page_tags(page); 1083 set_page_mte_tagged(page); 1084 1085 kvm_release_pfn_dirty(pfn); 1086 } 1087 1088 if (num_tags != MTE_GRANULES_PER_PAGE) { 1089 ret = -EFAULT; 1090 goto out; 1091 } 1092 1093 gfn++; 1094 tags += num_tags; 1095 length -= PAGE_SIZE; 1096 } 1097 1098 out: 1099 mutex_unlock(&kvm->slots_lock); 1100 /* If some data has been copied report the number of bytes copied */ 1101 if (length != copy_tags->length) 1102 return copy_tags->length - length; 1103 return ret; 1104 } 1105