1 /* 2 * Copyright (C) 2012,2013 - ARM Ltd 3 * Author: Marc Zyngier <marc.zyngier@arm.com> 4 * 5 * Derived from arch/arm/kvm/guest.c: 6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 7 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program. If not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include <linux/errno.h> 23 #include <linux/err.h> 24 #include <linux/kvm_host.h> 25 #include <linux/module.h> 26 #include <linux/vmalloc.h> 27 #include <linux/fs.h> 28 #include <asm/cputype.h> 29 #include <asm/uaccess.h> 30 #include <asm/kvm.h> 31 #include <asm/kvm_asm.h> 32 #include <asm/kvm_emulate.h> 33 #include <asm/kvm_coproc.h> 34 35 struct kvm_stats_debugfs_item debugfs_entries[] = { 36 { NULL } 37 }; 38 39 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 40 { 41 vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS; 42 return 0; 43 } 44 45 static u64 core_reg_offset_from_id(u64 id) 46 { 47 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE); 48 } 49 50 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 51 { 52 /* 53 * Because the kvm_regs structure is a mix of 32, 64 and 54 * 128bit fields, we index it as if it was a 32bit 55 * array. Hence below, nr_regs is the number of entries, and 56 * off the index in the "array". 57 */ 58 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; 59 struct kvm_regs *regs = vcpu_gp_regs(vcpu); 60 int nr_regs = sizeof(*regs) / sizeof(__u32); 61 u32 off; 62 63 /* Our ID is an index into the kvm_regs struct. */ 64 off = core_reg_offset_from_id(reg->id); 65 if (off >= nr_regs || 66 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) 67 return -ENOENT; 68 69 if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id))) 70 return -EFAULT; 71 72 return 0; 73 } 74 75 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 76 { 77 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr; 78 struct kvm_regs *regs = vcpu_gp_regs(vcpu); 79 int nr_regs = sizeof(*regs) / sizeof(__u32); 80 __uint128_t tmp; 81 void *valp = &tmp; 82 u64 off; 83 int err = 0; 84 85 /* Our ID is an index into the kvm_regs struct. */ 86 off = core_reg_offset_from_id(reg->id); 87 if (off >= nr_regs || 88 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs) 89 return -ENOENT; 90 91 if (KVM_REG_SIZE(reg->id) > sizeof(tmp)) 92 return -EINVAL; 93 94 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) { 95 err = -EFAULT; 96 goto out; 97 } 98 99 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) { 100 u32 mode = (*(u32 *)valp) & COMPAT_PSR_MODE_MASK; 101 switch (mode) { 102 case COMPAT_PSR_MODE_USR: 103 case COMPAT_PSR_MODE_FIQ: 104 case COMPAT_PSR_MODE_IRQ: 105 case COMPAT_PSR_MODE_SVC: 106 case COMPAT_PSR_MODE_ABT: 107 case COMPAT_PSR_MODE_UND: 108 case PSR_MODE_EL0t: 109 case PSR_MODE_EL1t: 110 case PSR_MODE_EL1h: 111 break; 112 default: 113 err = -EINVAL; 114 goto out; 115 } 116 } 117 118 memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id)); 119 out: 120 return err; 121 } 122 123 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 124 { 125 return -EINVAL; 126 } 127 128 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 129 { 130 return -EINVAL; 131 } 132 133 static unsigned long num_core_regs(void) 134 { 135 return sizeof(struct kvm_regs) / sizeof(__u32); 136 } 137 138 /** 139 * ARM64 versions of the TIMER registers, always available on arm64 140 */ 141 142 #define NUM_TIMER_REGS 3 143 144 static bool is_timer_reg(u64 index) 145 { 146 switch (index) { 147 case KVM_REG_ARM_TIMER_CTL: 148 case KVM_REG_ARM_TIMER_CNT: 149 case KVM_REG_ARM_TIMER_CVAL: 150 return true; 151 } 152 return false; 153 } 154 155 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 156 { 157 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices)) 158 return -EFAULT; 159 uindices++; 160 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices)) 161 return -EFAULT; 162 uindices++; 163 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices)) 164 return -EFAULT; 165 166 return 0; 167 } 168 169 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 170 { 171 void __user *uaddr = (void __user *)(long)reg->addr; 172 u64 val; 173 int ret; 174 175 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)); 176 if (ret != 0) 177 return -EFAULT; 178 179 return kvm_arm_timer_set_reg(vcpu, reg->id, val); 180 } 181 182 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 183 { 184 void __user *uaddr = (void __user *)(long)reg->addr; 185 u64 val; 186 187 val = kvm_arm_timer_get_reg(vcpu, reg->id); 188 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)); 189 } 190 191 /** 192 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG 193 * 194 * This is for all registers. 195 */ 196 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu) 197 { 198 return num_core_regs() + kvm_arm_num_sys_reg_descs(vcpu) 199 + NUM_TIMER_REGS; 200 } 201 202 /** 203 * kvm_arm_copy_reg_indices - get indices of all registers. 204 * 205 * We do core registers right here, then we apppend system regs. 206 */ 207 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 208 { 209 unsigned int i; 210 const u64 core_reg = KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE; 211 int ret; 212 213 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) { 214 if (put_user(core_reg | i, uindices)) 215 return -EFAULT; 216 uindices++; 217 } 218 219 ret = copy_timer_indices(vcpu, uindices); 220 if (ret) 221 return ret; 222 uindices += NUM_TIMER_REGS; 223 224 return kvm_arm_copy_sys_reg_indices(vcpu, uindices); 225 } 226 227 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 228 { 229 /* We currently use nothing arch-specific in upper 32 bits */ 230 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) 231 return -EINVAL; 232 233 /* Register group 16 means we want a core register. */ 234 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE) 235 return get_core_reg(vcpu, reg); 236 237 if (is_timer_reg(reg->id)) 238 return get_timer_reg(vcpu, reg); 239 240 return kvm_arm_sys_reg_get_reg(vcpu, reg); 241 } 242 243 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 244 { 245 /* We currently use nothing arch-specific in upper 32 bits */ 246 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32) 247 return -EINVAL; 248 249 /* Register group 16 means we set a core register. */ 250 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE) 251 return set_core_reg(vcpu, reg); 252 253 if (is_timer_reg(reg->id)) 254 return set_timer_reg(vcpu, reg); 255 256 return kvm_arm_sys_reg_set_reg(vcpu, reg); 257 } 258 259 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 260 struct kvm_sregs *sregs) 261 { 262 return -EINVAL; 263 } 264 265 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 266 struct kvm_sregs *sregs) 267 { 268 return -EINVAL; 269 } 270 271 int __attribute_const__ kvm_target_cpu(void) 272 { 273 unsigned long implementor = read_cpuid_implementor(); 274 unsigned long part_number = read_cpuid_part_number(); 275 276 switch (implementor) { 277 case ARM_CPU_IMP_ARM: 278 switch (part_number) { 279 case ARM_CPU_PART_AEM_V8: 280 return KVM_ARM_TARGET_AEM_V8; 281 case ARM_CPU_PART_FOUNDATION: 282 return KVM_ARM_TARGET_FOUNDATION_V8; 283 case ARM_CPU_PART_CORTEX_A53: 284 return KVM_ARM_TARGET_CORTEX_A53; 285 case ARM_CPU_PART_CORTEX_A57: 286 return KVM_ARM_TARGET_CORTEX_A57; 287 }; 288 break; 289 case ARM_CPU_IMP_APM: 290 switch (part_number) { 291 case APM_CPU_PART_POTENZA: 292 return KVM_ARM_TARGET_XGENE_POTENZA; 293 }; 294 break; 295 }; 296 297 return -EINVAL; 298 } 299 300 int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 301 const struct kvm_vcpu_init *init) 302 { 303 unsigned int i; 304 int phys_target = kvm_target_cpu(); 305 306 if (init->target != phys_target) 307 return -EINVAL; 308 309 vcpu->arch.target = phys_target; 310 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 311 312 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 313 for (i = 0; i < sizeof(init->features) * 8; i++) { 314 if (init->features[i / 32] & (1 << (i % 32))) { 315 if (i >= KVM_VCPU_MAX_FEATURES) 316 return -ENOENT; 317 set_bit(i, vcpu->arch.features); 318 } 319 } 320 321 /* Now we know what it is, we can reset it. */ 322 return kvm_reset_vcpu(vcpu); 323 } 324 325 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init) 326 { 327 int target = kvm_target_cpu(); 328 329 if (target < 0) 330 return -ENODEV; 331 332 memset(init, 0, sizeof(*init)); 333 334 /* 335 * For now, we don't return any features. 336 * In future, we might use features to return target 337 * specific features available for the preferred 338 * target type. 339 */ 340 init->target = (__u32)target; 341 342 return 0; 343 } 344 345 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 346 { 347 return -EINVAL; 348 } 349 350 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 351 { 352 return -EINVAL; 353 } 354 355 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 356 struct kvm_translation *tr) 357 { 358 return -EINVAL; 359 } 360