xref: /openbmc/linux/arch/arm64/kvm/guest.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/guest.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/sigcontext.h>
29 
30 #include "trace.h"
31 
32 #define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM }
33 #define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU }
34 
35 struct kvm_stats_debugfs_item debugfs_entries[] = {
36 	VCPU_STAT(halt_successful_poll),
37 	VCPU_STAT(halt_attempted_poll),
38 	VCPU_STAT(halt_poll_invalid),
39 	VCPU_STAT(halt_wakeup),
40 	VCPU_STAT(hvc_exit_stat),
41 	VCPU_STAT(wfe_exit_stat),
42 	VCPU_STAT(wfi_exit_stat),
43 	VCPU_STAT(mmio_exit_user),
44 	VCPU_STAT(mmio_exit_kernel),
45 	VCPU_STAT(exits),
46 	{ NULL }
47 };
48 
49 static bool core_reg_offset_is_vreg(u64 off)
50 {
51 	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
52 		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
53 }
54 
55 static u64 core_reg_offset_from_id(u64 id)
56 {
57 	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
58 }
59 
60 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
61 {
62 	int size;
63 
64 	switch (off) {
65 	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
66 	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
67 	case KVM_REG_ARM_CORE_REG(regs.sp):
68 	case KVM_REG_ARM_CORE_REG(regs.pc):
69 	case KVM_REG_ARM_CORE_REG(regs.pstate):
70 	case KVM_REG_ARM_CORE_REG(sp_el1):
71 	case KVM_REG_ARM_CORE_REG(elr_el1):
72 	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
73 	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
74 		size = sizeof(__u64);
75 		break;
76 
77 	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
78 	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
79 		size = sizeof(__uint128_t);
80 		break;
81 
82 	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
83 	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
84 		size = sizeof(__u32);
85 		break;
86 
87 	default:
88 		return -EINVAL;
89 	}
90 
91 	if (!IS_ALIGNED(off, size / sizeof(__u32)))
92 		return -EINVAL;
93 
94 	/*
95 	 * The KVM_REG_ARM64_SVE regs must be used instead of
96 	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
97 	 * SVE-enabled vcpus:
98 	 */
99 	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
100 		return -EINVAL;
101 
102 	return size;
103 }
104 
105 static int validate_core_offset(const struct kvm_vcpu *vcpu,
106 				const struct kvm_one_reg *reg)
107 {
108 	u64 off = core_reg_offset_from_id(reg->id);
109 	int size = core_reg_size_from_offset(vcpu, off);
110 
111 	if (size < 0)
112 		return -EINVAL;
113 
114 	if (KVM_REG_SIZE(reg->id) != size)
115 		return -EINVAL;
116 
117 	return 0;
118 }
119 
120 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
121 {
122 	/*
123 	 * Because the kvm_regs structure is a mix of 32, 64 and
124 	 * 128bit fields, we index it as if it was a 32bit
125 	 * array. Hence below, nr_regs is the number of entries, and
126 	 * off the index in the "array".
127 	 */
128 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
129 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
130 	int nr_regs = sizeof(*regs) / sizeof(__u32);
131 	u32 off;
132 
133 	/* Our ID is an index into the kvm_regs struct. */
134 	off = core_reg_offset_from_id(reg->id);
135 	if (off >= nr_regs ||
136 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
137 		return -ENOENT;
138 
139 	if (validate_core_offset(vcpu, reg))
140 		return -EINVAL;
141 
142 	if (copy_to_user(uaddr, ((u32 *)regs) + off, KVM_REG_SIZE(reg->id)))
143 		return -EFAULT;
144 
145 	return 0;
146 }
147 
148 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
149 {
150 	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
151 	struct kvm_regs *regs = vcpu_gp_regs(vcpu);
152 	int nr_regs = sizeof(*regs) / sizeof(__u32);
153 	__uint128_t tmp;
154 	void *valp = &tmp;
155 	u64 off;
156 	int err = 0;
157 
158 	/* Our ID is an index into the kvm_regs struct. */
159 	off = core_reg_offset_from_id(reg->id);
160 	if (off >= nr_regs ||
161 	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
162 		return -ENOENT;
163 
164 	if (validate_core_offset(vcpu, reg))
165 		return -EINVAL;
166 
167 	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
168 		return -EINVAL;
169 
170 	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
171 		err = -EFAULT;
172 		goto out;
173 	}
174 
175 	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
176 		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
177 		switch (mode) {
178 		case PSR_AA32_MODE_USR:
179 			if (!system_supports_32bit_el0())
180 				return -EINVAL;
181 			break;
182 		case PSR_AA32_MODE_FIQ:
183 		case PSR_AA32_MODE_IRQ:
184 		case PSR_AA32_MODE_SVC:
185 		case PSR_AA32_MODE_ABT:
186 		case PSR_AA32_MODE_UND:
187 			if (!vcpu_el1_is_32bit(vcpu))
188 				return -EINVAL;
189 			break;
190 		case PSR_MODE_EL0t:
191 		case PSR_MODE_EL1t:
192 		case PSR_MODE_EL1h:
193 			if (vcpu_el1_is_32bit(vcpu))
194 				return -EINVAL;
195 			break;
196 		default:
197 			err = -EINVAL;
198 			goto out;
199 		}
200 	}
201 
202 	memcpy((u32 *)regs + off, valp, KVM_REG_SIZE(reg->id));
203 out:
204 	return err;
205 }
206 
207 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
208 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
209 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
210 
211 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
212 {
213 	unsigned int max_vq, vq;
214 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
215 
216 	if (!vcpu_has_sve(vcpu))
217 		return -ENOENT;
218 
219 	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
220 		return -EINVAL;
221 
222 	memset(vqs, 0, sizeof(vqs));
223 
224 	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
225 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
226 		if (sve_vq_available(vq))
227 			vqs[vq_word(vq)] |= vq_mask(vq);
228 
229 	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
230 		return -EFAULT;
231 
232 	return 0;
233 }
234 
235 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
236 {
237 	unsigned int max_vq, vq;
238 	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
239 
240 	if (!vcpu_has_sve(vcpu))
241 		return -ENOENT;
242 
243 	if (kvm_arm_vcpu_sve_finalized(vcpu))
244 		return -EPERM; /* too late! */
245 
246 	if (WARN_ON(vcpu->arch.sve_state))
247 		return -EINVAL;
248 
249 	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
250 		return -EFAULT;
251 
252 	max_vq = 0;
253 	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
254 		if (vq_present(vqs, vq))
255 			max_vq = vq;
256 
257 	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
258 		return -EINVAL;
259 
260 	/*
261 	 * Vector lengths supported by the host can't currently be
262 	 * hidden from the guest individually: instead we can only set a
263 	 * maxmium via ZCR_EL2.LEN.  So, make sure the available vector
264 	 * lengths match the set requested exactly up to the requested
265 	 * maximum:
266 	 */
267 	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
268 		if (vq_present(vqs, vq) != sve_vq_available(vq))
269 			return -EINVAL;
270 
271 	/* Can't run with no vector lengths at all: */
272 	if (max_vq < SVE_VQ_MIN)
273 		return -EINVAL;
274 
275 	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
276 	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
277 
278 	return 0;
279 }
280 
281 #define SVE_REG_SLICE_SHIFT	0
282 #define SVE_REG_SLICE_BITS	5
283 #define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
284 #define SVE_REG_ID_BITS		5
285 
286 #define SVE_REG_SLICE_MASK					\
287 	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
288 		SVE_REG_SLICE_SHIFT)
289 #define SVE_REG_ID_MASK							\
290 	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
291 
292 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
293 
294 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
295 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
296 
297 /*
298  * Number of register slices required to cover each whole SVE register.
299  * NOTE: Only the first slice every exists, for now.
300  * If you are tempted to modify this, you must also rework sve_reg_to_region()
301  * to match:
302  */
303 #define vcpu_sve_slices(vcpu) 1
304 
305 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
306 struct sve_state_reg_region {
307 	unsigned int koffset;	/* offset into sve_state in kernel memory */
308 	unsigned int klen;	/* length in kernel memory */
309 	unsigned int upad;	/* extra trailing padding in user memory */
310 };
311 
312 /*
313  * Validate SVE register ID and get sanitised bounds for user/kernel SVE
314  * register copy
315  */
316 static int sve_reg_to_region(struct sve_state_reg_region *region,
317 			     struct kvm_vcpu *vcpu,
318 			     const struct kvm_one_reg *reg)
319 {
320 	/* reg ID ranges for Z- registers */
321 	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
322 	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
323 						       SVE_NUM_SLICES - 1);
324 
325 	/* reg ID ranges for P- registers and FFR (which are contiguous) */
326 	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
327 	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
328 
329 	unsigned int vq;
330 	unsigned int reg_num;
331 
332 	unsigned int reqoffset, reqlen; /* User-requested offset and length */
333 	unsigned int maxlen; /* Maxmimum permitted length */
334 
335 	size_t sve_state_size;
336 
337 	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
338 							SVE_NUM_SLICES - 1);
339 
340 	/* Verify that the P-regs and FFR really do have contiguous IDs: */
341 	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
342 
343 	/* Verify that we match the UAPI header: */
344 	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
345 
346 	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
347 
348 	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
349 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
350 			return -ENOENT;
351 
352 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
353 
354 		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
355 				SVE_SIG_REGS_OFFSET;
356 		reqlen = KVM_SVE_ZREG_SIZE;
357 		maxlen = SVE_SIG_ZREG_SIZE(vq);
358 	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
359 		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
360 			return -ENOENT;
361 
362 		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
363 
364 		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
365 				SVE_SIG_REGS_OFFSET;
366 		reqlen = KVM_SVE_PREG_SIZE;
367 		maxlen = SVE_SIG_PREG_SIZE(vq);
368 	} else {
369 		return -EINVAL;
370 	}
371 
372 	sve_state_size = vcpu_sve_state_size(vcpu);
373 	if (WARN_ON(!sve_state_size))
374 		return -EINVAL;
375 
376 	region->koffset = array_index_nospec(reqoffset, sve_state_size);
377 	region->klen = min(maxlen, reqlen);
378 	region->upad = reqlen - region->klen;
379 
380 	return 0;
381 }
382 
383 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
384 {
385 	int ret;
386 	struct sve_state_reg_region region;
387 	char __user *uptr = (char __user *)reg->addr;
388 
389 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
390 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
391 		return get_sve_vls(vcpu, reg);
392 
393 	/* Try to interpret reg ID as an architectural SVE register... */
394 	ret = sve_reg_to_region(&region, vcpu, reg);
395 	if (ret)
396 		return ret;
397 
398 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
399 		return -EPERM;
400 
401 	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
402 			 region.klen) ||
403 	    clear_user(uptr + region.klen, region.upad))
404 		return -EFAULT;
405 
406 	return 0;
407 }
408 
409 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
410 {
411 	int ret;
412 	struct sve_state_reg_region region;
413 	const char __user *uptr = (const char __user *)reg->addr;
414 
415 	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
416 	if (reg->id == KVM_REG_ARM64_SVE_VLS)
417 		return set_sve_vls(vcpu, reg);
418 
419 	/* Try to interpret reg ID as an architectural SVE register... */
420 	ret = sve_reg_to_region(&region, vcpu, reg);
421 	if (ret)
422 		return ret;
423 
424 	if (!kvm_arm_vcpu_sve_finalized(vcpu))
425 		return -EPERM;
426 
427 	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
428 			   region.klen))
429 		return -EFAULT;
430 
431 	return 0;
432 }
433 
434 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
435 {
436 	return -EINVAL;
437 }
438 
439 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
440 {
441 	return -EINVAL;
442 }
443 
444 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
445 				 u64 __user *uindices)
446 {
447 	unsigned int i;
448 	int n = 0;
449 
450 	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
451 		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
452 		int size = core_reg_size_from_offset(vcpu, i);
453 
454 		if (size < 0)
455 			continue;
456 
457 		switch (size) {
458 		case sizeof(__u32):
459 			reg |= KVM_REG_SIZE_U32;
460 			break;
461 
462 		case sizeof(__u64):
463 			reg |= KVM_REG_SIZE_U64;
464 			break;
465 
466 		case sizeof(__uint128_t):
467 			reg |= KVM_REG_SIZE_U128;
468 			break;
469 
470 		default:
471 			WARN_ON(1);
472 			continue;
473 		}
474 
475 		if (uindices) {
476 			if (put_user(reg, uindices))
477 				return -EFAULT;
478 			uindices++;
479 		}
480 
481 		n++;
482 	}
483 
484 	return n;
485 }
486 
487 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
488 {
489 	return copy_core_reg_indices(vcpu, NULL);
490 }
491 
492 /**
493  * ARM64 versions of the TIMER registers, always available on arm64
494  */
495 
496 #define NUM_TIMER_REGS 3
497 
498 static bool is_timer_reg(u64 index)
499 {
500 	switch (index) {
501 	case KVM_REG_ARM_TIMER_CTL:
502 	case KVM_REG_ARM_TIMER_CNT:
503 	case KVM_REG_ARM_TIMER_CVAL:
504 		return true;
505 	}
506 	return false;
507 }
508 
509 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
510 {
511 	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
512 		return -EFAULT;
513 	uindices++;
514 	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
515 		return -EFAULT;
516 	uindices++;
517 	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
518 		return -EFAULT;
519 
520 	return 0;
521 }
522 
523 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
524 {
525 	void __user *uaddr = (void __user *)(long)reg->addr;
526 	u64 val;
527 	int ret;
528 
529 	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
530 	if (ret != 0)
531 		return -EFAULT;
532 
533 	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
534 }
535 
536 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
537 {
538 	void __user *uaddr = (void __user *)(long)reg->addr;
539 	u64 val;
540 
541 	val = kvm_arm_timer_get_reg(vcpu, reg->id);
542 	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
543 }
544 
545 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
546 {
547 	const unsigned int slices = vcpu_sve_slices(vcpu);
548 
549 	if (!vcpu_has_sve(vcpu))
550 		return 0;
551 
552 	/* Policed by KVM_GET_REG_LIST: */
553 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
554 
555 	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
556 		+ 1; /* KVM_REG_ARM64_SVE_VLS */
557 }
558 
559 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
560 				u64 __user *uindices)
561 {
562 	const unsigned int slices = vcpu_sve_slices(vcpu);
563 	u64 reg;
564 	unsigned int i, n;
565 	int num_regs = 0;
566 
567 	if (!vcpu_has_sve(vcpu))
568 		return 0;
569 
570 	/* Policed by KVM_GET_REG_LIST: */
571 	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
572 
573 	/*
574 	 * Enumerate this first, so that userspace can save/restore in
575 	 * the order reported by KVM_GET_REG_LIST:
576 	 */
577 	reg = KVM_REG_ARM64_SVE_VLS;
578 	if (put_user(reg, uindices++))
579 		return -EFAULT;
580 	++num_regs;
581 
582 	for (i = 0; i < slices; i++) {
583 		for (n = 0; n < SVE_NUM_ZREGS; n++) {
584 			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
585 			if (put_user(reg, uindices++))
586 				return -EFAULT;
587 			num_regs++;
588 		}
589 
590 		for (n = 0; n < SVE_NUM_PREGS; n++) {
591 			reg = KVM_REG_ARM64_SVE_PREG(n, i);
592 			if (put_user(reg, uindices++))
593 				return -EFAULT;
594 			num_regs++;
595 		}
596 
597 		reg = KVM_REG_ARM64_SVE_FFR(i);
598 		if (put_user(reg, uindices++))
599 			return -EFAULT;
600 		num_regs++;
601 	}
602 
603 	return num_regs;
604 }
605 
606 /**
607  * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
608  *
609  * This is for all registers.
610  */
611 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
612 {
613 	unsigned long res = 0;
614 
615 	res += num_core_regs(vcpu);
616 	res += num_sve_regs(vcpu);
617 	res += kvm_arm_num_sys_reg_descs(vcpu);
618 	res += kvm_arm_get_fw_num_regs(vcpu);
619 	res += NUM_TIMER_REGS;
620 
621 	return res;
622 }
623 
624 /**
625  * kvm_arm_copy_reg_indices - get indices of all registers.
626  *
627  * We do core registers right here, then we append system regs.
628  */
629 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
630 {
631 	int ret;
632 
633 	ret = copy_core_reg_indices(vcpu, uindices);
634 	if (ret < 0)
635 		return ret;
636 	uindices += ret;
637 
638 	ret = copy_sve_reg_indices(vcpu, uindices);
639 	if (ret < 0)
640 		return ret;
641 	uindices += ret;
642 
643 	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
644 	if (ret < 0)
645 		return ret;
646 	uindices += kvm_arm_get_fw_num_regs(vcpu);
647 
648 	ret = copy_timer_indices(vcpu, uindices);
649 	if (ret < 0)
650 		return ret;
651 	uindices += NUM_TIMER_REGS;
652 
653 	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
654 }
655 
656 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
657 {
658 	/* We currently use nothing arch-specific in upper 32 bits */
659 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
660 		return -EINVAL;
661 
662 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
663 	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
664 	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
665 	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
666 	}
667 
668 	if (is_timer_reg(reg->id))
669 		return get_timer_reg(vcpu, reg);
670 
671 	return kvm_arm_sys_reg_get_reg(vcpu, reg);
672 }
673 
674 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
675 {
676 	/* We currently use nothing arch-specific in upper 32 bits */
677 	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
678 		return -EINVAL;
679 
680 	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
681 	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
682 	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
683 	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
684 	}
685 
686 	if (is_timer_reg(reg->id))
687 		return set_timer_reg(vcpu, reg);
688 
689 	return kvm_arm_sys_reg_set_reg(vcpu, reg);
690 }
691 
692 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
693 				  struct kvm_sregs *sregs)
694 {
695 	return -EINVAL;
696 }
697 
698 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
699 				  struct kvm_sregs *sregs)
700 {
701 	return -EINVAL;
702 }
703 
704 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
705 			      struct kvm_vcpu_events *events)
706 {
707 	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
708 	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
709 
710 	if (events->exception.serror_pending && events->exception.serror_has_esr)
711 		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
712 
713 	/*
714 	 * We never return a pending ext_dabt here because we deliver it to
715 	 * the virtual CPU directly when setting the event and it's no longer
716 	 * 'pending' at this point.
717 	 */
718 
719 	return 0;
720 }
721 
722 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
723 			      struct kvm_vcpu_events *events)
724 {
725 	bool serror_pending = events->exception.serror_pending;
726 	bool has_esr = events->exception.serror_has_esr;
727 	bool ext_dabt_pending = events->exception.ext_dabt_pending;
728 
729 	if (serror_pending && has_esr) {
730 		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
731 			return -EINVAL;
732 
733 		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
734 			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
735 		else
736 			return -EINVAL;
737 	} else if (serror_pending) {
738 		kvm_inject_vabt(vcpu);
739 	}
740 
741 	if (ext_dabt_pending)
742 		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
743 
744 	return 0;
745 }
746 
747 int __attribute_const__ kvm_target_cpu(void)
748 {
749 	unsigned long implementor = read_cpuid_implementor();
750 	unsigned long part_number = read_cpuid_part_number();
751 
752 	switch (implementor) {
753 	case ARM_CPU_IMP_ARM:
754 		switch (part_number) {
755 		case ARM_CPU_PART_AEM_V8:
756 			return KVM_ARM_TARGET_AEM_V8;
757 		case ARM_CPU_PART_FOUNDATION:
758 			return KVM_ARM_TARGET_FOUNDATION_V8;
759 		case ARM_CPU_PART_CORTEX_A53:
760 			return KVM_ARM_TARGET_CORTEX_A53;
761 		case ARM_CPU_PART_CORTEX_A57:
762 			return KVM_ARM_TARGET_CORTEX_A57;
763 		}
764 		break;
765 	case ARM_CPU_IMP_APM:
766 		switch (part_number) {
767 		case APM_CPU_PART_POTENZA:
768 			return KVM_ARM_TARGET_XGENE_POTENZA;
769 		}
770 		break;
771 	}
772 
773 	/* Return a default generic target */
774 	return KVM_ARM_TARGET_GENERIC_V8;
775 }
776 
777 int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
778 {
779 	int target = kvm_target_cpu();
780 
781 	if (target < 0)
782 		return -ENODEV;
783 
784 	memset(init, 0, sizeof(*init));
785 
786 	/*
787 	 * For now, we don't return any features.
788 	 * In future, we might use features to return target
789 	 * specific features available for the preferred
790 	 * target type.
791 	 */
792 	init->target = (__u32)target;
793 
794 	return 0;
795 }
796 
797 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
798 {
799 	return -EINVAL;
800 }
801 
802 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
803 {
804 	return -EINVAL;
805 }
806 
807 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
808 				  struct kvm_translation *tr)
809 {
810 	return -EINVAL;
811 }
812 
813 #define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
814 			    KVM_GUESTDBG_USE_SW_BP | \
815 			    KVM_GUESTDBG_USE_HW | \
816 			    KVM_GUESTDBG_SINGLESTEP)
817 
818 /**
819  * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
820  * @kvm:	pointer to the KVM struct
821  * @kvm_guest_debug: the ioctl data buffer
822  *
823  * This sets up and enables the VM for guest debugging. Userspace
824  * passes in a control flag to enable different debug types and
825  * potentially other architecture specific information in the rest of
826  * the structure.
827  */
828 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
829 					struct kvm_guest_debug *dbg)
830 {
831 	int ret = 0;
832 
833 	trace_kvm_set_guest_debug(vcpu, dbg->control);
834 
835 	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
836 		ret = -EINVAL;
837 		goto out;
838 	}
839 
840 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
841 		vcpu->guest_debug = dbg->control;
842 
843 		/* Hardware assisted Break and Watch points */
844 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
845 			vcpu->arch.external_debug_state = dbg->arch;
846 		}
847 
848 	} else {
849 		/* If not enabled clear all flags */
850 		vcpu->guest_debug = 0;
851 	}
852 
853 out:
854 	return ret;
855 }
856 
857 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
858 			       struct kvm_device_attr *attr)
859 {
860 	int ret;
861 
862 	switch (attr->group) {
863 	case KVM_ARM_VCPU_PMU_V3_CTRL:
864 		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
865 		break;
866 	case KVM_ARM_VCPU_TIMER_CTRL:
867 		ret = kvm_arm_timer_set_attr(vcpu, attr);
868 		break;
869 	case KVM_ARM_VCPU_PVTIME_CTRL:
870 		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
871 		break;
872 	default:
873 		ret = -ENXIO;
874 		break;
875 	}
876 
877 	return ret;
878 }
879 
880 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
881 			       struct kvm_device_attr *attr)
882 {
883 	int ret;
884 
885 	switch (attr->group) {
886 	case KVM_ARM_VCPU_PMU_V3_CTRL:
887 		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
888 		break;
889 	case KVM_ARM_VCPU_TIMER_CTRL:
890 		ret = kvm_arm_timer_get_attr(vcpu, attr);
891 		break;
892 	case KVM_ARM_VCPU_PVTIME_CTRL:
893 		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
894 		break;
895 	default:
896 		ret = -ENXIO;
897 		break;
898 	}
899 
900 	return ret;
901 }
902 
903 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
904 			       struct kvm_device_attr *attr)
905 {
906 	int ret;
907 
908 	switch (attr->group) {
909 	case KVM_ARM_VCPU_PMU_V3_CTRL:
910 		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
911 		break;
912 	case KVM_ARM_VCPU_TIMER_CTRL:
913 		ret = kvm_arm_timer_has_attr(vcpu, attr);
914 		break;
915 	case KVM_ARM_VCPU_PVTIME_CTRL:
916 		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
917 		break;
918 	default:
919 		ret = -ENXIO;
920 		break;
921 	}
922 
923 	return ret;
924 }
925