xref: /openbmc/linux/arch/arm64/kvm/arm.c (revision d0c94c49)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <linux/psci.h>
23 #include <trace/events/kvm.h>
24 
25 #define CREATE_TRACE_POINTS
26 #include "trace_arm.h"
27 
28 #include <linux/uaccess.h>
29 #include <asm/ptrace.h>
30 #include <asm/mman.h>
31 #include <asm/tlbflush.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpufeature.h>
34 #include <asm/virt.h>
35 #include <asm/kvm_arm.h>
36 #include <asm/kvm_asm.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
51 
52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
53 
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
57 
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u32 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62 
63 static bool vgic_present;
64 
65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
67 
68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
69 {
70 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
71 }
72 
73 int kvm_arch_hardware_setup(void *opaque)
74 {
75 	return 0;
76 }
77 
78 int kvm_arch_check_processor_compat(void *opaque)
79 {
80 	return 0;
81 }
82 
83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
84 			    struct kvm_enable_cap *cap)
85 {
86 	int r;
87 
88 	if (cap->flags)
89 		return -EINVAL;
90 
91 	switch (cap->cap) {
92 	case KVM_CAP_ARM_NISV_TO_USER:
93 		r = 0;
94 		kvm->arch.return_nisv_io_abort_to_user = true;
95 		break;
96 	default:
97 		r = -EINVAL;
98 		break;
99 	}
100 
101 	return r;
102 }
103 
104 static int kvm_arm_default_max_vcpus(void)
105 {
106 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
107 }
108 
109 static void set_default_spectre(struct kvm *kvm)
110 {
111 	/*
112 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
113 	 * Although this is a per-CPU feature, we make it global because
114 	 * asymmetric systems are just a nuisance.
115 	 *
116 	 * Userspace can override this as long as it doesn't promise
117 	 * the impossible.
118 	 */
119 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
120 		kvm->arch.pfr0_csv2 = 1;
121 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
122 		kvm->arch.pfr0_csv3 = 1;
123 }
124 
125 /**
126  * kvm_arch_init_vm - initializes a VM data structure
127  * @kvm:	pointer to the KVM struct
128  */
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131 	int ret;
132 
133 	ret = kvm_arm_setup_stage2(kvm, type);
134 	if (ret)
135 		return ret;
136 
137 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
138 	if (ret)
139 		return ret;
140 
141 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
142 	if (ret)
143 		goto out_free_stage2_pgd;
144 
145 	kvm_vgic_early_init(kvm);
146 
147 	/* The maximum number of VCPUs is limited by the host's GIC model */
148 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
149 
150 	set_default_spectre(kvm);
151 
152 	return ret;
153 out_free_stage2_pgd:
154 	kvm_free_stage2_pgd(&kvm->arch.mmu);
155 	return ret;
156 }
157 
158 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
159 {
160 	return VM_FAULT_SIGBUS;
161 }
162 
163 
164 /**
165  * kvm_arch_destroy_vm - destroy the VM data structure
166  * @kvm:	pointer to the KVM struct
167  */
168 void kvm_arch_destroy_vm(struct kvm *kvm)
169 {
170 	int i;
171 
172 	bitmap_free(kvm->arch.pmu_filter);
173 
174 	kvm_vgic_destroy(kvm);
175 
176 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
177 		if (kvm->vcpus[i]) {
178 			kvm_vcpu_destroy(kvm->vcpus[i]);
179 			kvm->vcpus[i] = NULL;
180 		}
181 	}
182 	atomic_set(&kvm->online_vcpus, 0);
183 }
184 
185 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 {
187 	int r;
188 	switch (ext) {
189 	case KVM_CAP_IRQCHIP:
190 		r = vgic_present;
191 		break;
192 	case KVM_CAP_IOEVENTFD:
193 	case KVM_CAP_DEVICE_CTRL:
194 	case KVM_CAP_USER_MEMORY:
195 	case KVM_CAP_SYNC_MMU:
196 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197 	case KVM_CAP_ONE_REG:
198 	case KVM_CAP_ARM_PSCI:
199 	case KVM_CAP_ARM_PSCI_0_2:
200 	case KVM_CAP_READONLY_MEM:
201 	case KVM_CAP_MP_STATE:
202 	case KVM_CAP_IMMEDIATE_EXIT:
203 	case KVM_CAP_VCPU_EVENTS:
204 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
205 	case KVM_CAP_ARM_NISV_TO_USER:
206 	case KVM_CAP_ARM_INJECT_EXT_DABT:
207 	case KVM_CAP_SET_GUEST_DEBUG:
208 	case KVM_CAP_VCPU_ATTRIBUTES:
209 	case KVM_CAP_PTP_KVM:
210 		r = 1;
211 		break;
212 	case KVM_CAP_SET_GUEST_DEBUG2:
213 		return KVM_GUESTDBG_VALID_MASK;
214 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
215 		r = 1;
216 		break;
217 	case KVM_CAP_NR_VCPUS:
218 		r = num_online_cpus();
219 		break;
220 	case KVM_CAP_MAX_VCPUS:
221 	case KVM_CAP_MAX_VCPU_ID:
222 		if (kvm)
223 			r = kvm->arch.max_vcpus;
224 		else
225 			r = kvm_arm_default_max_vcpus();
226 		break;
227 	case KVM_CAP_MSI_DEVID:
228 		if (!kvm)
229 			r = -EINVAL;
230 		else
231 			r = kvm->arch.vgic.msis_require_devid;
232 		break;
233 	case KVM_CAP_ARM_USER_IRQ:
234 		/*
235 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
236 		 * (bump this number if adding more devices)
237 		 */
238 		r = 1;
239 		break;
240 	case KVM_CAP_STEAL_TIME:
241 		r = kvm_arm_pvtime_supported();
242 		break;
243 	case KVM_CAP_ARM_EL1_32BIT:
244 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
245 		break;
246 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
247 		r = get_num_brps();
248 		break;
249 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
250 		r = get_num_wrps();
251 		break;
252 	case KVM_CAP_ARM_PMU_V3:
253 		r = kvm_arm_support_pmu_v3();
254 		break;
255 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
256 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
257 		break;
258 	case KVM_CAP_ARM_VM_IPA_SIZE:
259 		r = get_kvm_ipa_limit();
260 		break;
261 	case KVM_CAP_ARM_SVE:
262 		r = system_supports_sve();
263 		break;
264 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
265 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
266 		r = system_has_full_ptr_auth();
267 		break;
268 	default:
269 		r = 0;
270 	}
271 
272 	return r;
273 }
274 
275 long kvm_arch_dev_ioctl(struct file *filp,
276 			unsigned int ioctl, unsigned long arg)
277 {
278 	return -EINVAL;
279 }
280 
281 struct kvm *kvm_arch_alloc_vm(void)
282 {
283 	if (!has_vhe())
284 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
285 
286 	return vzalloc(sizeof(struct kvm));
287 }
288 
289 void kvm_arch_free_vm(struct kvm *kvm)
290 {
291 	if (!has_vhe())
292 		kfree(kvm);
293 	else
294 		vfree(kvm);
295 }
296 
297 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
298 {
299 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
300 		return -EBUSY;
301 
302 	if (id >= kvm->arch.max_vcpus)
303 		return -EINVAL;
304 
305 	return 0;
306 }
307 
308 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
309 {
310 	int err;
311 
312 	/* Force users to call KVM_ARM_VCPU_INIT */
313 	vcpu->arch.target = -1;
314 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
315 
316 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
317 
318 	/* Set up the timer */
319 	kvm_timer_vcpu_init(vcpu);
320 
321 	kvm_pmu_vcpu_init(vcpu);
322 
323 	kvm_arm_reset_debug_ptr(vcpu);
324 
325 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
326 
327 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
328 
329 	err = kvm_vgic_vcpu_init(vcpu);
330 	if (err)
331 		return err;
332 
333 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
334 }
335 
336 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
337 {
338 }
339 
340 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
341 {
342 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
343 		static_branch_dec(&userspace_irqchip_in_use);
344 
345 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
346 	kvm_timer_vcpu_terminate(vcpu);
347 	kvm_pmu_vcpu_destroy(vcpu);
348 
349 	kvm_arm_vcpu_destroy(vcpu);
350 }
351 
352 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
353 {
354 	return kvm_timer_is_pending(vcpu);
355 }
356 
357 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
358 {
359 	/*
360 	 * If we're about to block (most likely because we've just hit a
361 	 * WFI), we need to sync back the state of the GIC CPU interface
362 	 * so that we have the latest PMR and group enables. This ensures
363 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
364 	 * whether we have pending interrupts.
365 	 *
366 	 * For the same reason, we want to tell GICv4 that we need
367 	 * doorbells to be signalled, should an interrupt become pending.
368 	 */
369 	preempt_disable();
370 	kvm_vgic_vmcr_sync(vcpu);
371 	vgic_v4_put(vcpu, true);
372 	preempt_enable();
373 }
374 
375 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
376 {
377 	preempt_disable();
378 	vgic_v4_load(vcpu);
379 	preempt_enable();
380 }
381 
382 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
383 {
384 	struct kvm_s2_mmu *mmu;
385 	int *last_ran;
386 
387 	mmu = vcpu->arch.hw_mmu;
388 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
389 
390 	/*
391 	 * We guarantee that both TLBs and I-cache are private to each
392 	 * vcpu. If detecting that a vcpu from the same VM has
393 	 * previously run on the same physical CPU, call into the
394 	 * hypervisor code to nuke the relevant contexts.
395 	 *
396 	 * We might get preempted before the vCPU actually runs, but
397 	 * over-invalidation doesn't affect correctness.
398 	 */
399 	if (*last_ran != vcpu->vcpu_id) {
400 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
401 		*last_ran = vcpu->vcpu_id;
402 	}
403 
404 	vcpu->cpu = cpu;
405 
406 	kvm_vgic_load(vcpu);
407 	kvm_timer_vcpu_load(vcpu);
408 	if (has_vhe())
409 		kvm_vcpu_load_sysregs_vhe(vcpu);
410 	kvm_arch_vcpu_load_fp(vcpu);
411 	kvm_vcpu_pmu_restore_guest(vcpu);
412 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
413 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
414 
415 	if (single_task_running())
416 		vcpu_clear_wfx_traps(vcpu);
417 	else
418 		vcpu_set_wfx_traps(vcpu);
419 
420 	if (vcpu_has_ptrauth(vcpu))
421 		vcpu_ptrauth_disable(vcpu);
422 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
423 }
424 
425 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
426 {
427 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
428 	kvm_arch_vcpu_put_fp(vcpu);
429 	if (has_vhe())
430 		kvm_vcpu_put_sysregs_vhe(vcpu);
431 	kvm_timer_vcpu_put(vcpu);
432 	kvm_vgic_put(vcpu);
433 	kvm_vcpu_pmu_restore_host(vcpu);
434 
435 	vcpu->cpu = -1;
436 }
437 
438 static void vcpu_power_off(struct kvm_vcpu *vcpu)
439 {
440 	vcpu->arch.power_off = true;
441 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
442 	kvm_vcpu_kick(vcpu);
443 }
444 
445 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
446 				    struct kvm_mp_state *mp_state)
447 {
448 	if (vcpu->arch.power_off)
449 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
450 	else
451 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
452 
453 	return 0;
454 }
455 
456 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
457 				    struct kvm_mp_state *mp_state)
458 {
459 	int ret = 0;
460 
461 	switch (mp_state->mp_state) {
462 	case KVM_MP_STATE_RUNNABLE:
463 		vcpu->arch.power_off = false;
464 		break;
465 	case KVM_MP_STATE_STOPPED:
466 		vcpu_power_off(vcpu);
467 		break;
468 	default:
469 		ret = -EINVAL;
470 	}
471 
472 	return ret;
473 }
474 
475 /**
476  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
477  * @v:		The VCPU pointer
478  *
479  * If the guest CPU is not waiting for interrupts or an interrupt line is
480  * asserted, the CPU is by definition runnable.
481  */
482 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
483 {
484 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
485 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
486 		&& !v->arch.power_off && !v->arch.pause);
487 }
488 
489 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
490 {
491 	return vcpu_mode_priv(vcpu);
492 }
493 
494 /* Just ensure a guest exit from a particular CPU */
495 static void exit_vm_noop(void *info)
496 {
497 }
498 
499 void force_vm_exit(const cpumask_t *mask)
500 {
501 	preempt_disable();
502 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
503 	preempt_enable();
504 }
505 
506 /**
507  * need_new_vmid_gen - check that the VMID is still valid
508  * @vmid: The VMID to check
509  *
510  * return true if there is a new generation of VMIDs being used
511  *
512  * The hardware supports a limited set of values with the value zero reserved
513  * for the host, so we check if an assigned value belongs to a previous
514  * generation, which requires us to assign a new value. If we're the first to
515  * use a VMID for the new generation, we must flush necessary caches and TLBs
516  * on all CPUs.
517  */
518 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
519 {
520 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
521 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
522 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
523 }
524 
525 /**
526  * update_vmid - Update the vmid with a valid VMID for the current generation
527  * @vmid: The stage-2 VMID information struct
528  */
529 static void update_vmid(struct kvm_vmid *vmid)
530 {
531 	if (!need_new_vmid_gen(vmid))
532 		return;
533 
534 	spin_lock(&kvm_vmid_lock);
535 
536 	/*
537 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
538 	 * already allocated a valid vmid for this vm, then this vcpu should
539 	 * use the same vmid.
540 	 */
541 	if (!need_new_vmid_gen(vmid)) {
542 		spin_unlock(&kvm_vmid_lock);
543 		return;
544 	}
545 
546 	/* First user of a new VMID generation? */
547 	if (unlikely(kvm_next_vmid == 0)) {
548 		atomic64_inc(&kvm_vmid_gen);
549 		kvm_next_vmid = 1;
550 
551 		/*
552 		 * On SMP we know no other CPUs can use this CPU's or each
553 		 * other's VMID after force_vm_exit returns since the
554 		 * kvm_vmid_lock blocks them from reentry to the guest.
555 		 */
556 		force_vm_exit(cpu_all_mask);
557 		/*
558 		 * Now broadcast TLB + ICACHE invalidation over the inner
559 		 * shareable domain to make sure all data structures are
560 		 * clean.
561 		 */
562 		kvm_call_hyp(__kvm_flush_vm_context);
563 	}
564 
565 	vmid->vmid = kvm_next_vmid;
566 	kvm_next_vmid++;
567 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
568 
569 	smp_wmb();
570 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
571 
572 	spin_unlock(&kvm_vmid_lock);
573 }
574 
575 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
576 {
577 	struct kvm *kvm = vcpu->kvm;
578 	int ret = 0;
579 
580 	if (likely(vcpu->arch.has_run_once))
581 		return 0;
582 
583 	if (!kvm_arm_vcpu_is_finalized(vcpu))
584 		return -EPERM;
585 
586 	vcpu->arch.has_run_once = true;
587 
588 	kvm_arm_vcpu_init_debug(vcpu);
589 
590 	if (likely(irqchip_in_kernel(kvm))) {
591 		/*
592 		 * Map the VGIC hardware resources before running a vcpu the
593 		 * first time on this VM.
594 		 */
595 		ret = kvm_vgic_map_resources(kvm);
596 		if (ret)
597 			return ret;
598 	} else {
599 		/*
600 		 * Tell the rest of the code that there are userspace irqchip
601 		 * VMs in the wild.
602 		 */
603 		static_branch_inc(&userspace_irqchip_in_use);
604 	}
605 
606 	ret = kvm_timer_enable(vcpu);
607 	if (ret)
608 		return ret;
609 
610 	ret = kvm_arm_pmu_v3_enable(vcpu);
611 
612 	return ret;
613 }
614 
615 bool kvm_arch_intc_initialized(struct kvm *kvm)
616 {
617 	return vgic_initialized(kvm);
618 }
619 
620 void kvm_arm_halt_guest(struct kvm *kvm)
621 {
622 	int i;
623 	struct kvm_vcpu *vcpu;
624 
625 	kvm_for_each_vcpu(i, vcpu, kvm)
626 		vcpu->arch.pause = true;
627 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
628 }
629 
630 void kvm_arm_resume_guest(struct kvm *kvm)
631 {
632 	int i;
633 	struct kvm_vcpu *vcpu;
634 
635 	kvm_for_each_vcpu(i, vcpu, kvm) {
636 		vcpu->arch.pause = false;
637 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
638 	}
639 }
640 
641 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
642 {
643 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
644 
645 	rcuwait_wait_event(wait,
646 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
647 			   TASK_INTERRUPTIBLE);
648 
649 	if (vcpu->arch.power_off || vcpu->arch.pause) {
650 		/* Awaken to handle a signal, request we sleep again later. */
651 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
652 	}
653 
654 	/*
655 	 * Make sure we will observe a potential reset request if we've
656 	 * observed a change to the power state. Pairs with the smp_wmb() in
657 	 * kvm_psci_vcpu_on().
658 	 */
659 	smp_rmb();
660 }
661 
662 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
663 {
664 	return vcpu->arch.target >= 0;
665 }
666 
667 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
668 {
669 	if (kvm_request_pending(vcpu)) {
670 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
671 			vcpu_req_sleep(vcpu);
672 
673 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
674 			kvm_reset_vcpu(vcpu);
675 
676 		/*
677 		 * Clear IRQ_PENDING requests that were made to guarantee
678 		 * that a VCPU sees new virtual interrupts.
679 		 */
680 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
681 
682 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
683 			kvm_update_stolen_time(vcpu);
684 
685 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
686 			/* The distributor enable bits were changed */
687 			preempt_disable();
688 			vgic_v4_put(vcpu, false);
689 			vgic_v4_load(vcpu);
690 			preempt_enable();
691 		}
692 
693 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
694 			kvm_pmu_handle_pmcr(vcpu,
695 					    __vcpu_sys_reg(vcpu, PMCR_EL0));
696 	}
697 }
698 
699 /**
700  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
701  * @vcpu:	The VCPU pointer
702  *
703  * This function is called through the VCPU_RUN ioctl called from user space. It
704  * will execute VM code in a loop until the time slice for the process is used
705  * or some emulation is needed from user space in which case the function will
706  * return with return value 0 and with the kvm_run structure filled in with the
707  * required data for the requested emulation.
708  */
709 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
710 {
711 	struct kvm_run *run = vcpu->run;
712 	int ret;
713 
714 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
715 		return -ENOEXEC;
716 
717 	ret = kvm_vcpu_first_run_init(vcpu);
718 	if (ret)
719 		return ret;
720 
721 	if (run->exit_reason == KVM_EXIT_MMIO) {
722 		ret = kvm_handle_mmio_return(vcpu);
723 		if (ret)
724 			return ret;
725 	}
726 
727 	vcpu_load(vcpu);
728 
729 	if (run->immediate_exit) {
730 		ret = -EINTR;
731 		goto out;
732 	}
733 
734 	kvm_sigset_activate(vcpu);
735 
736 	ret = 1;
737 	run->exit_reason = KVM_EXIT_UNKNOWN;
738 	while (ret > 0) {
739 		/*
740 		 * Check conditions before entering the guest
741 		 */
742 		cond_resched();
743 
744 		update_vmid(&vcpu->arch.hw_mmu->vmid);
745 
746 		check_vcpu_requests(vcpu);
747 
748 		/*
749 		 * Preparing the interrupts to be injected also
750 		 * involves poking the GIC, which must be done in a
751 		 * non-preemptible context.
752 		 */
753 		preempt_disable();
754 
755 		kvm_pmu_flush_hwstate(vcpu);
756 
757 		local_irq_disable();
758 
759 		kvm_vgic_flush_hwstate(vcpu);
760 
761 		/*
762 		 * Exit if we have a signal pending so that we can deliver the
763 		 * signal to user space.
764 		 */
765 		if (signal_pending(current)) {
766 			ret = -EINTR;
767 			run->exit_reason = KVM_EXIT_INTR;
768 		}
769 
770 		/*
771 		 * If we're using a userspace irqchip, then check if we need
772 		 * to tell a userspace irqchip about timer or PMU level
773 		 * changes and if so, exit to userspace (the actual level
774 		 * state gets updated in kvm_timer_update_run and
775 		 * kvm_pmu_update_run below).
776 		 */
777 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
778 			if (kvm_timer_should_notify_user(vcpu) ||
779 			    kvm_pmu_should_notify_user(vcpu)) {
780 				ret = -EINTR;
781 				run->exit_reason = KVM_EXIT_INTR;
782 			}
783 		}
784 
785 		/*
786 		 * Ensure we set mode to IN_GUEST_MODE after we disable
787 		 * interrupts and before the final VCPU requests check.
788 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
789 		 * Documentation/virt/kvm/vcpu-requests.rst
790 		 */
791 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
792 
793 		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
794 		    kvm_request_pending(vcpu)) {
795 			vcpu->mode = OUTSIDE_GUEST_MODE;
796 			isb(); /* Ensure work in x_flush_hwstate is committed */
797 			kvm_pmu_sync_hwstate(vcpu);
798 			if (static_branch_unlikely(&userspace_irqchip_in_use))
799 				kvm_timer_sync_user(vcpu);
800 			kvm_vgic_sync_hwstate(vcpu);
801 			local_irq_enable();
802 			preempt_enable();
803 			continue;
804 		}
805 
806 		kvm_arm_setup_debug(vcpu);
807 
808 		/**************************************************************
809 		 * Enter the guest
810 		 */
811 		trace_kvm_entry(*vcpu_pc(vcpu));
812 		guest_enter_irqoff();
813 
814 		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
815 
816 		vcpu->mode = OUTSIDE_GUEST_MODE;
817 		vcpu->stat.exits++;
818 		/*
819 		 * Back from guest
820 		 *************************************************************/
821 
822 		kvm_arm_clear_debug(vcpu);
823 
824 		/*
825 		 * We must sync the PMU state before the vgic state so
826 		 * that the vgic can properly sample the updated state of the
827 		 * interrupt line.
828 		 */
829 		kvm_pmu_sync_hwstate(vcpu);
830 
831 		/*
832 		 * Sync the vgic state before syncing the timer state because
833 		 * the timer code needs to know if the virtual timer
834 		 * interrupts are active.
835 		 */
836 		kvm_vgic_sync_hwstate(vcpu);
837 
838 		/*
839 		 * Sync the timer hardware state before enabling interrupts as
840 		 * we don't want vtimer interrupts to race with syncing the
841 		 * timer virtual interrupt state.
842 		 */
843 		if (static_branch_unlikely(&userspace_irqchip_in_use))
844 			kvm_timer_sync_user(vcpu);
845 
846 		kvm_arch_vcpu_ctxsync_fp(vcpu);
847 
848 		/*
849 		 * We may have taken a host interrupt in HYP mode (ie
850 		 * while executing the guest). This interrupt is still
851 		 * pending, as we haven't serviced it yet!
852 		 *
853 		 * We're now back in SVC mode, with interrupts
854 		 * disabled.  Enabling the interrupts now will have
855 		 * the effect of taking the interrupt again, in SVC
856 		 * mode this time.
857 		 */
858 		local_irq_enable();
859 
860 		/*
861 		 * We do local_irq_enable() before calling guest_exit() so
862 		 * that if a timer interrupt hits while running the guest we
863 		 * account that tick as being spent in the guest.  We enable
864 		 * preemption after calling guest_exit() so that if we get
865 		 * preempted we make sure ticks after that is not counted as
866 		 * guest time.
867 		 */
868 		guest_exit();
869 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
870 
871 		/* Exit types that need handling before we can be preempted */
872 		handle_exit_early(vcpu, ret);
873 
874 		preempt_enable();
875 
876 		/*
877 		 * The ARMv8 architecture doesn't give the hypervisor
878 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
879 		 * if implemented by the CPU. If we spot the guest in such
880 		 * state and that we decided it wasn't supposed to do so (like
881 		 * with the asymmetric AArch32 case), return to userspace with
882 		 * a fatal error.
883 		 */
884 		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
885 			/*
886 			 * As we have caught the guest red-handed, decide that
887 			 * it isn't fit for purpose anymore by making the vcpu
888 			 * invalid. The VMM can try and fix it by issuing  a
889 			 * KVM_ARM_VCPU_INIT if it really wants to.
890 			 */
891 			vcpu->arch.target = -1;
892 			ret = ARM_EXCEPTION_IL;
893 		}
894 
895 		ret = handle_exit(vcpu, ret);
896 	}
897 
898 	/* Tell userspace about in-kernel device output levels */
899 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
900 		kvm_timer_update_run(vcpu);
901 		kvm_pmu_update_run(vcpu);
902 	}
903 
904 	kvm_sigset_deactivate(vcpu);
905 
906 out:
907 	/*
908 	 * In the unlikely event that we are returning to userspace
909 	 * with pending exceptions or PC adjustment, commit these
910 	 * adjustments in order to give userspace a consistent view of
911 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
912 	 * being preempt-safe on VHE.
913 	 */
914 	if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
915 					 KVM_ARM64_INCREMENT_PC)))
916 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
917 
918 	vcpu_put(vcpu);
919 	return ret;
920 }
921 
922 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
923 {
924 	int bit_index;
925 	bool set;
926 	unsigned long *hcr;
927 
928 	if (number == KVM_ARM_IRQ_CPU_IRQ)
929 		bit_index = __ffs(HCR_VI);
930 	else /* KVM_ARM_IRQ_CPU_FIQ */
931 		bit_index = __ffs(HCR_VF);
932 
933 	hcr = vcpu_hcr(vcpu);
934 	if (level)
935 		set = test_and_set_bit(bit_index, hcr);
936 	else
937 		set = test_and_clear_bit(bit_index, hcr);
938 
939 	/*
940 	 * If we didn't change anything, no need to wake up or kick other CPUs
941 	 */
942 	if (set == level)
943 		return 0;
944 
945 	/*
946 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
947 	 * trigger a world-switch round on the running physical CPU to set the
948 	 * virtual IRQ/FIQ fields in the HCR appropriately.
949 	 */
950 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
951 	kvm_vcpu_kick(vcpu);
952 
953 	return 0;
954 }
955 
956 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
957 			  bool line_status)
958 {
959 	u32 irq = irq_level->irq;
960 	unsigned int irq_type, vcpu_idx, irq_num;
961 	int nrcpus = atomic_read(&kvm->online_vcpus);
962 	struct kvm_vcpu *vcpu = NULL;
963 	bool level = irq_level->level;
964 
965 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
966 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
967 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
968 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
969 
970 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
971 
972 	switch (irq_type) {
973 	case KVM_ARM_IRQ_TYPE_CPU:
974 		if (irqchip_in_kernel(kvm))
975 			return -ENXIO;
976 
977 		if (vcpu_idx >= nrcpus)
978 			return -EINVAL;
979 
980 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
981 		if (!vcpu)
982 			return -EINVAL;
983 
984 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
985 			return -EINVAL;
986 
987 		return vcpu_interrupt_line(vcpu, irq_num, level);
988 	case KVM_ARM_IRQ_TYPE_PPI:
989 		if (!irqchip_in_kernel(kvm))
990 			return -ENXIO;
991 
992 		if (vcpu_idx >= nrcpus)
993 			return -EINVAL;
994 
995 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
996 		if (!vcpu)
997 			return -EINVAL;
998 
999 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1000 			return -EINVAL;
1001 
1002 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1003 	case KVM_ARM_IRQ_TYPE_SPI:
1004 		if (!irqchip_in_kernel(kvm))
1005 			return -ENXIO;
1006 
1007 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1008 			return -EINVAL;
1009 
1010 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1011 	}
1012 
1013 	return -EINVAL;
1014 }
1015 
1016 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1017 			       const struct kvm_vcpu_init *init)
1018 {
1019 	unsigned int i, ret;
1020 	int phys_target = kvm_target_cpu();
1021 
1022 	if (init->target != phys_target)
1023 		return -EINVAL;
1024 
1025 	/*
1026 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1027 	 * use the same target.
1028 	 */
1029 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1030 		return -EINVAL;
1031 
1032 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1033 	for (i = 0; i < sizeof(init->features) * 8; i++) {
1034 		bool set = (init->features[i / 32] & (1 << (i % 32)));
1035 
1036 		if (set && i >= KVM_VCPU_MAX_FEATURES)
1037 			return -ENOENT;
1038 
1039 		/*
1040 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1041 		 * use the same feature set.
1042 		 */
1043 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1044 		    test_bit(i, vcpu->arch.features) != set)
1045 			return -EINVAL;
1046 
1047 		if (set)
1048 			set_bit(i, vcpu->arch.features);
1049 	}
1050 
1051 	vcpu->arch.target = phys_target;
1052 
1053 	/* Now we know what it is, we can reset it. */
1054 	ret = kvm_reset_vcpu(vcpu);
1055 	if (ret) {
1056 		vcpu->arch.target = -1;
1057 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1058 	}
1059 
1060 	return ret;
1061 }
1062 
1063 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1064 					 struct kvm_vcpu_init *init)
1065 {
1066 	int ret;
1067 
1068 	ret = kvm_vcpu_set_target(vcpu, init);
1069 	if (ret)
1070 		return ret;
1071 
1072 	/*
1073 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1074 	 * guest MMU is turned off and flush the caches as needed.
1075 	 *
1076 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1077 	 * ensuring that the data side is always coherent. We still
1078 	 * need to invalidate the I-cache though, as FWB does *not*
1079 	 * imply CTR_EL0.DIC.
1080 	 */
1081 	if (vcpu->arch.has_run_once) {
1082 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1083 			stage2_unmap_vm(vcpu->kvm);
1084 		else
1085 			__flush_icache_all();
1086 	}
1087 
1088 	vcpu_reset_hcr(vcpu);
1089 
1090 	/*
1091 	 * Handle the "start in power-off" case.
1092 	 */
1093 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1094 		vcpu_power_off(vcpu);
1095 	else
1096 		vcpu->arch.power_off = false;
1097 
1098 	return 0;
1099 }
1100 
1101 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1102 				 struct kvm_device_attr *attr)
1103 {
1104 	int ret = -ENXIO;
1105 
1106 	switch (attr->group) {
1107 	default:
1108 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1109 		break;
1110 	}
1111 
1112 	return ret;
1113 }
1114 
1115 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1116 				 struct kvm_device_attr *attr)
1117 {
1118 	int ret = -ENXIO;
1119 
1120 	switch (attr->group) {
1121 	default:
1122 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1123 		break;
1124 	}
1125 
1126 	return ret;
1127 }
1128 
1129 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1130 				 struct kvm_device_attr *attr)
1131 {
1132 	int ret = -ENXIO;
1133 
1134 	switch (attr->group) {
1135 	default:
1136 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1137 		break;
1138 	}
1139 
1140 	return ret;
1141 }
1142 
1143 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1144 				   struct kvm_vcpu_events *events)
1145 {
1146 	memset(events, 0, sizeof(*events));
1147 
1148 	return __kvm_arm_vcpu_get_events(vcpu, events);
1149 }
1150 
1151 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1152 				   struct kvm_vcpu_events *events)
1153 {
1154 	int i;
1155 
1156 	/* check whether the reserved field is zero */
1157 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1158 		if (events->reserved[i])
1159 			return -EINVAL;
1160 
1161 	/* check whether the pad field is zero */
1162 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1163 		if (events->exception.pad[i])
1164 			return -EINVAL;
1165 
1166 	return __kvm_arm_vcpu_set_events(vcpu, events);
1167 }
1168 
1169 long kvm_arch_vcpu_ioctl(struct file *filp,
1170 			 unsigned int ioctl, unsigned long arg)
1171 {
1172 	struct kvm_vcpu *vcpu = filp->private_data;
1173 	void __user *argp = (void __user *)arg;
1174 	struct kvm_device_attr attr;
1175 	long r;
1176 
1177 	switch (ioctl) {
1178 	case KVM_ARM_VCPU_INIT: {
1179 		struct kvm_vcpu_init init;
1180 
1181 		r = -EFAULT;
1182 		if (copy_from_user(&init, argp, sizeof(init)))
1183 			break;
1184 
1185 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1186 		break;
1187 	}
1188 	case KVM_SET_ONE_REG:
1189 	case KVM_GET_ONE_REG: {
1190 		struct kvm_one_reg reg;
1191 
1192 		r = -ENOEXEC;
1193 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1194 			break;
1195 
1196 		r = -EFAULT;
1197 		if (copy_from_user(&reg, argp, sizeof(reg)))
1198 			break;
1199 
1200 		if (ioctl == KVM_SET_ONE_REG)
1201 			r = kvm_arm_set_reg(vcpu, &reg);
1202 		else
1203 			r = kvm_arm_get_reg(vcpu, &reg);
1204 		break;
1205 	}
1206 	case KVM_GET_REG_LIST: {
1207 		struct kvm_reg_list __user *user_list = argp;
1208 		struct kvm_reg_list reg_list;
1209 		unsigned n;
1210 
1211 		r = -ENOEXEC;
1212 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1213 			break;
1214 
1215 		r = -EPERM;
1216 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1217 			break;
1218 
1219 		r = -EFAULT;
1220 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1221 			break;
1222 		n = reg_list.n;
1223 		reg_list.n = kvm_arm_num_regs(vcpu);
1224 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1225 			break;
1226 		r = -E2BIG;
1227 		if (n < reg_list.n)
1228 			break;
1229 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1230 		break;
1231 	}
1232 	case KVM_SET_DEVICE_ATTR: {
1233 		r = -EFAULT;
1234 		if (copy_from_user(&attr, argp, sizeof(attr)))
1235 			break;
1236 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1237 		break;
1238 	}
1239 	case KVM_GET_DEVICE_ATTR: {
1240 		r = -EFAULT;
1241 		if (copy_from_user(&attr, argp, sizeof(attr)))
1242 			break;
1243 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1244 		break;
1245 	}
1246 	case KVM_HAS_DEVICE_ATTR: {
1247 		r = -EFAULT;
1248 		if (copy_from_user(&attr, argp, sizeof(attr)))
1249 			break;
1250 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1251 		break;
1252 	}
1253 	case KVM_GET_VCPU_EVENTS: {
1254 		struct kvm_vcpu_events events;
1255 
1256 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1257 			return -EINVAL;
1258 
1259 		if (copy_to_user(argp, &events, sizeof(events)))
1260 			return -EFAULT;
1261 
1262 		return 0;
1263 	}
1264 	case KVM_SET_VCPU_EVENTS: {
1265 		struct kvm_vcpu_events events;
1266 
1267 		if (copy_from_user(&events, argp, sizeof(events)))
1268 			return -EFAULT;
1269 
1270 		return kvm_arm_vcpu_set_events(vcpu, &events);
1271 	}
1272 	case KVM_ARM_VCPU_FINALIZE: {
1273 		int what;
1274 
1275 		if (!kvm_vcpu_initialized(vcpu))
1276 			return -ENOEXEC;
1277 
1278 		if (get_user(what, (const int __user *)argp))
1279 			return -EFAULT;
1280 
1281 		return kvm_arm_vcpu_finalize(vcpu, what);
1282 	}
1283 	default:
1284 		r = -EINVAL;
1285 	}
1286 
1287 	return r;
1288 }
1289 
1290 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1291 {
1292 
1293 }
1294 
1295 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1296 					const struct kvm_memory_slot *memslot)
1297 {
1298 	kvm_flush_remote_tlbs(kvm);
1299 }
1300 
1301 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1302 					struct kvm_arm_device_addr *dev_addr)
1303 {
1304 	unsigned long dev_id, type;
1305 
1306 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1307 		KVM_ARM_DEVICE_ID_SHIFT;
1308 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1309 		KVM_ARM_DEVICE_TYPE_SHIFT;
1310 
1311 	switch (dev_id) {
1312 	case KVM_ARM_DEVICE_VGIC_V2:
1313 		if (!vgic_present)
1314 			return -ENXIO;
1315 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1316 	default:
1317 		return -ENODEV;
1318 	}
1319 }
1320 
1321 long kvm_arch_vm_ioctl(struct file *filp,
1322 		       unsigned int ioctl, unsigned long arg)
1323 {
1324 	struct kvm *kvm = filp->private_data;
1325 	void __user *argp = (void __user *)arg;
1326 
1327 	switch (ioctl) {
1328 	case KVM_CREATE_IRQCHIP: {
1329 		int ret;
1330 		if (!vgic_present)
1331 			return -ENXIO;
1332 		mutex_lock(&kvm->lock);
1333 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1334 		mutex_unlock(&kvm->lock);
1335 		return ret;
1336 	}
1337 	case KVM_ARM_SET_DEVICE_ADDR: {
1338 		struct kvm_arm_device_addr dev_addr;
1339 
1340 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1341 			return -EFAULT;
1342 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1343 	}
1344 	case KVM_ARM_PREFERRED_TARGET: {
1345 		int err;
1346 		struct kvm_vcpu_init init;
1347 
1348 		err = kvm_vcpu_preferred_target(&init);
1349 		if (err)
1350 			return err;
1351 
1352 		if (copy_to_user(argp, &init, sizeof(init)))
1353 			return -EFAULT;
1354 
1355 		return 0;
1356 	}
1357 	default:
1358 		return -EINVAL;
1359 	}
1360 }
1361 
1362 static unsigned long nvhe_percpu_size(void)
1363 {
1364 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1365 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1366 }
1367 
1368 static unsigned long nvhe_percpu_order(void)
1369 {
1370 	unsigned long size = nvhe_percpu_size();
1371 
1372 	return size ? get_order(size) : 0;
1373 }
1374 
1375 /* A lookup table holding the hypervisor VA for each vector slot */
1376 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1377 
1378 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1379 {
1380 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1381 }
1382 
1383 static int kvm_init_vector_slots(void)
1384 {
1385 	int err;
1386 	void *base;
1387 
1388 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1389 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1390 
1391 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1392 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1393 
1394 	if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1395 		return 0;
1396 
1397 	if (!has_vhe()) {
1398 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1399 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1400 		if (err)
1401 			return err;
1402 	}
1403 
1404 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1405 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1406 	return 0;
1407 }
1408 
1409 static void cpu_prepare_hyp_mode(int cpu)
1410 {
1411 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1412 	unsigned long tcr;
1413 
1414 	/*
1415 	 * Calculate the raw per-cpu offset without a translation from the
1416 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1417 	 * so that we can use adr_l to access per-cpu variables in EL2.
1418 	 * Also drop the KASAN tag which gets in the way...
1419 	 */
1420 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1421 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1422 
1423 	params->mair_el2 = read_sysreg(mair_el1);
1424 
1425 	/*
1426 	 * The ID map may be configured to use an extended virtual address
1427 	 * range. This is only the case if system RAM is out of range for the
1428 	 * currently configured page size and VA_BITS, in which case we will
1429 	 * also need the extended virtual range for the HYP ID map, or we won't
1430 	 * be able to enable the EL2 MMU.
1431 	 *
1432 	 * However, at EL2, there is only one TTBR register, and we can't switch
1433 	 * between translation tables *and* update TCR_EL2.T0SZ at the same
1434 	 * time. Bottom line: we need to use the extended range with *both* our
1435 	 * translation tables.
1436 	 *
1437 	 * So use the same T0SZ value we use for the ID map.
1438 	 */
1439 	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1440 	tcr &= ~TCR_T0SZ_MASK;
1441 	tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1442 	params->tcr_el2 = tcr;
1443 
1444 	params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1445 	params->pgd_pa = kvm_mmu_get_httbr();
1446 	if (is_protected_kvm_enabled())
1447 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1448 	else
1449 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1450 	params->vttbr = params->vtcr = 0;
1451 
1452 	/*
1453 	 * Flush the init params from the data cache because the struct will
1454 	 * be read while the MMU is off.
1455 	 */
1456 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1457 }
1458 
1459 static void hyp_install_host_vector(void)
1460 {
1461 	struct kvm_nvhe_init_params *params;
1462 	struct arm_smccc_res res;
1463 
1464 	/* Switch from the HYP stub to our own HYP init vector */
1465 	__hyp_set_vectors(kvm_get_idmap_vector());
1466 
1467 	/*
1468 	 * Call initialization code, and switch to the full blown HYP code.
1469 	 * If the cpucaps haven't been finalized yet, something has gone very
1470 	 * wrong, and hyp will crash and burn when it uses any
1471 	 * cpus_have_const_cap() wrapper.
1472 	 */
1473 	BUG_ON(!system_capabilities_finalized());
1474 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1475 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1476 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1477 }
1478 
1479 static void cpu_init_hyp_mode(void)
1480 {
1481 	hyp_install_host_vector();
1482 
1483 	/*
1484 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1485 	 * at EL2.
1486 	 */
1487 	if (this_cpu_has_cap(ARM64_SSBS) &&
1488 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1489 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1490 	}
1491 }
1492 
1493 static void cpu_hyp_reset(void)
1494 {
1495 	if (!is_kernel_in_hyp_mode())
1496 		__hyp_reset_vectors();
1497 }
1498 
1499 /*
1500  * EL2 vectors can be mapped and rerouted in a number of ways,
1501  * depending on the kernel configuration and CPU present:
1502  *
1503  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1504  *   placed in one of the vector slots, which is executed before jumping
1505  *   to the real vectors.
1506  *
1507  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1508  *   containing the hardening sequence is mapped next to the idmap page,
1509  *   and executed before jumping to the real vectors.
1510  *
1511  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1512  *   empty slot is selected, mapped next to the idmap page, and
1513  *   executed before jumping to the real vectors.
1514  *
1515  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1516  * VHE, as we don't have hypervisor-specific mappings. If the system
1517  * is VHE and yet selects this capability, it will be ignored.
1518  */
1519 static void cpu_set_hyp_vector(void)
1520 {
1521 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1522 	void *vector = hyp_spectre_vector_selector[data->slot];
1523 
1524 	if (!is_protected_kvm_enabled())
1525 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1526 	else
1527 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1528 }
1529 
1530 static void cpu_hyp_reinit(void)
1531 {
1532 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1533 
1534 	cpu_hyp_reset();
1535 
1536 	if (is_kernel_in_hyp_mode())
1537 		kvm_timer_init_vhe();
1538 	else
1539 		cpu_init_hyp_mode();
1540 
1541 	cpu_set_hyp_vector();
1542 
1543 	kvm_arm_init_debug();
1544 
1545 	if (vgic_present)
1546 		kvm_vgic_init_cpu_hardware();
1547 }
1548 
1549 static void _kvm_arch_hardware_enable(void *discard)
1550 {
1551 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1552 		cpu_hyp_reinit();
1553 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1554 	}
1555 }
1556 
1557 int kvm_arch_hardware_enable(void)
1558 {
1559 	_kvm_arch_hardware_enable(NULL);
1560 	return 0;
1561 }
1562 
1563 static void _kvm_arch_hardware_disable(void *discard)
1564 {
1565 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1566 		cpu_hyp_reset();
1567 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1568 	}
1569 }
1570 
1571 void kvm_arch_hardware_disable(void)
1572 {
1573 	if (!is_protected_kvm_enabled())
1574 		_kvm_arch_hardware_disable(NULL);
1575 }
1576 
1577 #ifdef CONFIG_CPU_PM
1578 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1579 				    unsigned long cmd,
1580 				    void *v)
1581 {
1582 	/*
1583 	 * kvm_arm_hardware_enabled is left with its old value over
1584 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1585 	 * re-enable hyp.
1586 	 */
1587 	switch (cmd) {
1588 	case CPU_PM_ENTER:
1589 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1590 			/*
1591 			 * don't update kvm_arm_hardware_enabled here
1592 			 * so that the hardware will be re-enabled
1593 			 * when we resume. See below.
1594 			 */
1595 			cpu_hyp_reset();
1596 
1597 		return NOTIFY_OK;
1598 	case CPU_PM_ENTER_FAILED:
1599 	case CPU_PM_EXIT:
1600 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1601 			/* The hardware was enabled before suspend. */
1602 			cpu_hyp_reinit();
1603 
1604 		return NOTIFY_OK;
1605 
1606 	default:
1607 		return NOTIFY_DONE;
1608 	}
1609 }
1610 
1611 static struct notifier_block hyp_init_cpu_pm_nb = {
1612 	.notifier_call = hyp_init_cpu_pm_notifier,
1613 };
1614 
1615 static void hyp_cpu_pm_init(void)
1616 {
1617 	if (!is_protected_kvm_enabled())
1618 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1619 }
1620 static void hyp_cpu_pm_exit(void)
1621 {
1622 	if (!is_protected_kvm_enabled())
1623 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1624 }
1625 #else
1626 static inline void hyp_cpu_pm_init(void)
1627 {
1628 }
1629 static inline void hyp_cpu_pm_exit(void)
1630 {
1631 }
1632 #endif
1633 
1634 static void init_cpu_logical_map(void)
1635 {
1636 	unsigned int cpu;
1637 
1638 	/*
1639 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1640 	 * Only copy the set of online CPUs whose features have been chacked
1641 	 * against the finalized system capabilities. The hypervisor will not
1642 	 * allow any other CPUs from the `possible` set to boot.
1643 	 */
1644 	for_each_online_cpu(cpu)
1645 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1646 }
1647 
1648 #define init_psci_0_1_impl_state(config, what)	\
1649 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1650 
1651 static bool init_psci_relay(void)
1652 {
1653 	/*
1654 	 * If PSCI has not been initialized, protected KVM cannot install
1655 	 * itself on newly booted CPUs.
1656 	 */
1657 	if (!psci_ops.get_version) {
1658 		kvm_err("Cannot initialize protected mode without PSCI\n");
1659 		return false;
1660 	}
1661 
1662 	kvm_host_psci_config.version = psci_ops.get_version();
1663 
1664 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1665 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1666 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1667 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1668 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1669 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1670 	}
1671 	return true;
1672 }
1673 
1674 static int init_common_resources(void)
1675 {
1676 	return kvm_set_ipa_limit();
1677 }
1678 
1679 static int init_subsystems(void)
1680 {
1681 	int err = 0;
1682 
1683 	/*
1684 	 * Enable hardware so that subsystem initialisation can access EL2.
1685 	 */
1686 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1687 
1688 	/*
1689 	 * Register CPU lower-power notifier
1690 	 */
1691 	hyp_cpu_pm_init();
1692 
1693 	/*
1694 	 * Init HYP view of VGIC
1695 	 */
1696 	err = kvm_vgic_hyp_init();
1697 	switch (err) {
1698 	case 0:
1699 		vgic_present = true;
1700 		break;
1701 	case -ENODEV:
1702 	case -ENXIO:
1703 		vgic_present = false;
1704 		err = 0;
1705 		break;
1706 	default:
1707 		goto out;
1708 	}
1709 
1710 	/*
1711 	 * Init HYP architected timer support
1712 	 */
1713 	err = kvm_timer_hyp_init(vgic_present);
1714 	if (err)
1715 		goto out;
1716 
1717 	kvm_perf_init();
1718 	kvm_sys_reg_table_init();
1719 
1720 out:
1721 	if (err || !is_protected_kvm_enabled())
1722 		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1723 
1724 	return err;
1725 }
1726 
1727 static void teardown_hyp_mode(void)
1728 {
1729 	int cpu;
1730 
1731 	free_hyp_pgds();
1732 	for_each_possible_cpu(cpu) {
1733 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1734 		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1735 	}
1736 }
1737 
1738 static int do_pkvm_init(u32 hyp_va_bits)
1739 {
1740 	void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1741 	int ret;
1742 
1743 	preempt_disable();
1744 	hyp_install_host_vector();
1745 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1746 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
1747 				hyp_va_bits);
1748 	preempt_enable();
1749 
1750 	return ret;
1751 }
1752 
1753 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1754 {
1755 	void *addr = phys_to_virt(hyp_mem_base);
1756 	int ret;
1757 
1758 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1759 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1760 
1761 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1762 	if (ret)
1763 		return ret;
1764 
1765 	ret = do_pkvm_init(hyp_va_bits);
1766 	if (ret)
1767 		return ret;
1768 
1769 	free_hyp_pgds();
1770 
1771 	return 0;
1772 }
1773 
1774 /**
1775  * Inits Hyp-mode on all online CPUs
1776  */
1777 static int init_hyp_mode(void)
1778 {
1779 	u32 hyp_va_bits;
1780 	int cpu;
1781 	int err = -ENOMEM;
1782 
1783 	/*
1784 	 * The protected Hyp-mode cannot be initialized if the memory pool
1785 	 * allocation has failed.
1786 	 */
1787 	if (is_protected_kvm_enabled() && !hyp_mem_base)
1788 		goto out_err;
1789 
1790 	/*
1791 	 * Allocate Hyp PGD and setup Hyp identity mapping
1792 	 */
1793 	err = kvm_mmu_init(&hyp_va_bits);
1794 	if (err)
1795 		goto out_err;
1796 
1797 	/*
1798 	 * Allocate stack pages for Hypervisor-mode
1799 	 */
1800 	for_each_possible_cpu(cpu) {
1801 		unsigned long stack_page;
1802 
1803 		stack_page = __get_free_page(GFP_KERNEL);
1804 		if (!stack_page) {
1805 			err = -ENOMEM;
1806 			goto out_err;
1807 		}
1808 
1809 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1810 	}
1811 
1812 	/*
1813 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1814 	 */
1815 	for_each_possible_cpu(cpu) {
1816 		struct page *page;
1817 		void *page_addr;
1818 
1819 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1820 		if (!page) {
1821 			err = -ENOMEM;
1822 			goto out_err;
1823 		}
1824 
1825 		page_addr = page_address(page);
1826 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1827 		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1828 	}
1829 
1830 	/*
1831 	 * Map the Hyp-code called directly from the host
1832 	 */
1833 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1834 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1835 	if (err) {
1836 		kvm_err("Cannot map world-switch code\n");
1837 		goto out_err;
1838 	}
1839 
1840 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1841 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1842 	if (err) {
1843 		kvm_err("Cannot map .hyp.rodata section\n");
1844 		goto out_err;
1845 	}
1846 
1847 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1848 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1849 	if (err) {
1850 		kvm_err("Cannot map rodata section\n");
1851 		goto out_err;
1852 	}
1853 
1854 	/*
1855 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1856 	 * section thanks to an assertion in the linker script. Map it RW and
1857 	 * the rest of .bss RO.
1858 	 */
1859 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1860 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1861 	if (err) {
1862 		kvm_err("Cannot map hyp bss section: %d\n", err);
1863 		goto out_err;
1864 	}
1865 
1866 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1867 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1868 	if (err) {
1869 		kvm_err("Cannot map bss section\n");
1870 		goto out_err;
1871 	}
1872 
1873 	/*
1874 	 * Map the Hyp stack pages
1875 	 */
1876 	for_each_possible_cpu(cpu) {
1877 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1878 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1879 					  PAGE_HYP);
1880 
1881 		if (err) {
1882 			kvm_err("Cannot map hyp stack\n");
1883 			goto out_err;
1884 		}
1885 	}
1886 
1887 	for_each_possible_cpu(cpu) {
1888 		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1889 		char *percpu_end = percpu_begin + nvhe_percpu_size();
1890 
1891 		/* Map Hyp percpu pages */
1892 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1893 		if (err) {
1894 			kvm_err("Cannot map hyp percpu region\n");
1895 			goto out_err;
1896 		}
1897 
1898 		/* Prepare the CPU initialization parameters */
1899 		cpu_prepare_hyp_mode(cpu);
1900 	}
1901 
1902 	if (is_protected_kvm_enabled()) {
1903 		init_cpu_logical_map();
1904 
1905 		if (!init_psci_relay()) {
1906 			err = -ENODEV;
1907 			goto out_err;
1908 		}
1909 	}
1910 
1911 	if (is_protected_kvm_enabled()) {
1912 		err = kvm_hyp_init_protection(hyp_va_bits);
1913 		if (err) {
1914 			kvm_err("Failed to init hyp memory protection\n");
1915 			goto out_err;
1916 		}
1917 	}
1918 
1919 	return 0;
1920 
1921 out_err:
1922 	teardown_hyp_mode();
1923 	kvm_err("error initializing Hyp mode: %d\n", err);
1924 	return err;
1925 }
1926 
1927 static void _kvm_host_prot_finalize(void *discard)
1928 {
1929 	WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize));
1930 }
1931 
1932 static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end)
1933 {
1934 	return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end);
1935 }
1936 
1937 #define pkvm_mark_hyp_section(__section)		\
1938 	pkvm_mark_hyp(__pa_symbol(__section##_start),	\
1939 			__pa_symbol(__section##_end))
1940 
1941 static int finalize_hyp_mode(void)
1942 {
1943 	int cpu, ret;
1944 
1945 	if (!is_protected_kvm_enabled())
1946 		return 0;
1947 
1948 	ret = pkvm_mark_hyp_section(__hyp_idmap_text);
1949 	if (ret)
1950 		return ret;
1951 
1952 	ret = pkvm_mark_hyp_section(__hyp_text);
1953 	if (ret)
1954 		return ret;
1955 
1956 	ret = pkvm_mark_hyp_section(__hyp_rodata);
1957 	if (ret)
1958 		return ret;
1959 
1960 	ret = pkvm_mark_hyp_section(__hyp_bss);
1961 	if (ret)
1962 		return ret;
1963 
1964 	ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size);
1965 	if (ret)
1966 		return ret;
1967 
1968 	for_each_possible_cpu(cpu) {
1969 		phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]);
1970 		phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order());
1971 
1972 		ret = pkvm_mark_hyp(start, end);
1973 		if (ret)
1974 			return ret;
1975 
1976 		start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu));
1977 		end = start + PAGE_SIZE;
1978 		ret = pkvm_mark_hyp(start, end);
1979 		if (ret)
1980 			return ret;
1981 	}
1982 
1983 	/*
1984 	 * Flip the static key upfront as that may no longer be possible
1985 	 * once the host stage 2 is installed.
1986 	 */
1987 	static_branch_enable(&kvm_protected_mode_initialized);
1988 	on_each_cpu(_kvm_host_prot_finalize, NULL, 1);
1989 
1990 	return 0;
1991 }
1992 
1993 static void check_kvm_target_cpu(void *ret)
1994 {
1995 	*(int *)ret = kvm_target_cpu();
1996 }
1997 
1998 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1999 {
2000 	struct kvm_vcpu *vcpu;
2001 	int i;
2002 
2003 	mpidr &= MPIDR_HWID_BITMASK;
2004 	kvm_for_each_vcpu(i, vcpu, kvm) {
2005 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2006 			return vcpu;
2007 	}
2008 	return NULL;
2009 }
2010 
2011 bool kvm_arch_has_irq_bypass(void)
2012 {
2013 	return true;
2014 }
2015 
2016 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2017 				      struct irq_bypass_producer *prod)
2018 {
2019 	struct kvm_kernel_irqfd *irqfd =
2020 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2021 
2022 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2023 					  &irqfd->irq_entry);
2024 }
2025 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2026 				      struct irq_bypass_producer *prod)
2027 {
2028 	struct kvm_kernel_irqfd *irqfd =
2029 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2030 
2031 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2032 				     &irqfd->irq_entry);
2033 }
2034 
2035 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2036 {
2037 	struct kvm_kernel_irqfd *irqfd =
2038 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2039 
2040 	kvm_arm_halt_guest(irqfd->kvm);
2041 }
2042 
2043 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2044 {
2045 	struct kvm_kernel_irqfd *irqfd =
2046 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2047 
2048 	kvm_arm_resume_guest(irqfd->kvm);
2049 }
2050 
2051 /**
2052  * Initialize Hyp-mode and memory mappings on all CPUs.
2053  */
2054 int kvm_arch_init(void *opaque)
2055 {
2056 	int err;
2057 	int ret, cpu;
2058 	bool in_hyp_mode;
2059 
2060 	if (!is_hyp_mode_available()) {
2061 		kvm_info("HYP mode not available\n");
2062 		return -ENODEV;
2063 	}
2064 
2065 	in_hyp_mode = is_kernel_in_hyp_mode();
2066 
2067 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2068 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2069 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2070 			 "Only trusted guests should be used on this system.\n");
2071 
2072 	for_each_online_cpu(cpu) {
2073 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
2074 		if (ret < 0) {
2075 			kvm_err("Error, CPU %d not supported!\n", cpu);
2076 			return -ENODEV;
2077 		}
2078 	}
2079 
2080 	err = init_common_resources();
2081 	if (err)
2082 		return err;
2083 
2084 	err = kvm_arm_init_sve();
2085 	if (err)
2086 		return err;
2087 
2088 	if (!in_hyp_mode) {
2089 		err = init_hyp_mode();
2090 		if (err)
2091 			goto out_err;
2092 	}
2093 
2094 	err = kvm_init_vector_slots();
2095 	if (err) {
2096 		kvm_err("Cannot initialise vector slots\n");
2097 		goto out_err;
2098 	}
2099 
2100 	err = init_subsystems();
2101 	if (err)
2102 		goto out_hyp;
2103 
2104 	if (!in_hyp_mode) {
2105 		err = finalize_hyp_mode();
2106 		if (err) {
2107 			kvm_err("Failed to finalize Hyp protection\n");
2108 			goto out_hyp;
2109 		}
2110 	}
2111 
2112 	if (is_protected_kvm_enabled()) {
2113 		kvm_info("Protected nVHE mode initialized successfully\n");
2114 	} else if (in_hyp_mode) {
2115 		kvm_info("VHE mode initialized successfully\n");
2116 	} else {
2117 		kvm_info("Hyp mode initialized successfully\n");
2118 	}
2119 
2120 	return 0;
2121 
2122 out_hyp:
2123 	hyp_cpu_pm_exit();
2124 	if (!in_hyp_mode)
2125 		teardown_hyp_mode();
2126 out_err:
2127 	return err;
2128 }
2129 
2130 /* NOP: Compiling as a module not supported */
2131 void kvm_arch_exit(void)
2132 {
2133 	kvm_perf_teardown();
2134 }
2135 
2136 static int __init early_kvm_mode_cfg(char *arg)
2137 {
2138 	if (!arg)
2139 		return -EINVAL;
2140 
2141 	if (strcmp(arg, "protected") == 0) {
2142 		kvm_mode = KVM_MODE_PROTECTED;
2143 		return 0;
2144 	}
2145 
2146 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode()))
2147 		return 0;
2148 
2149 	return -EINVAL;
2150 }
2151 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2152 
2153 enum kvm_mode kvm_get_mode(void)
2154 {
2155 	return kvm_mode;
2156 }
2157 
2158 static int arm_init(void)
2159 {
2160 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2161 	return rc;
2162 }
2163 
2164 module_init(arm_init);
2165