xref: /openbmc/linux/arch/arm64/kvm/arm.c (revision d0931f1d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26 
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29 
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_pkvm.h>
41 #include <asm/kvm_emulate.h>
42 #include <asm/sections.h>
43 
44 #include <kvm/arm_hypercalls.h>
45 #include <kvm/arm_pmu.h>
46 #include <kvm/arm_psci.h>
47 
48 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
49 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
50 
51 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
52 
53 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55 
56 static bool vgic_present;
57 
58 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
59 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
60 
61 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
62 {
63 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
64 }
65 
66 int kvm_arch_hardware_setup(void *opaque)
67 {
68 	return 0;
69 }
70 
71 int kvm_arch_check_processor_compat(void *opaque)
72 {
73 	return 0;
74 }
75 
76 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
77 			    struct kvm_enable_cap *cap)
78 {
79 	int r;
80 
81 	if (cap->flags)
82 		return -EINVAL;
83 
84 	switch (cap->cap) {
85 	case KVM_CAP_ARM_NISV_TO_USER:
86 		r = 0;
87 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
88 			&kvm->arch.flags);
89 		break;
90 	case KVM_CAP_ARM_MTE:
91 		mutex_lock(&kvm->lock);
92 		if (!system_supports_mte() || kvm->created_vcpus) {
93 			r = -EINVAL;
94 		} else {
95 			r = 0;
96 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
97 		}
98 		mutex_unlock(&kvm->lock);
99 		break;
100 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
101 		r = 0;
102 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
103 		break;
104 	default:
105 		r = -EINVAL;
106 		break;
107 	}
108 
109 	return r;
110 }
111 
112 static int kvm_arm_default_max_vcpus(void)
113 {
114 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116 
117 static void set_default_spectre(struct kvm *kvm)
118 {
119 	/*
120 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
121 	 * Although this is a per-CPU feature, we make it global because
122 	 * asymmetric systems are just a nuisance.
123 	 *
124 	 * Userspace can override this as long as it doesn't promise
125 	 * the impossible.
126 	 */
127 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128 		kvm->arch.pfr0_csv2 = 1;
129 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130 		kvm->arch.pfr0_csv3 = 1;
131 }
132 
133 /**
134  * kvm_arch_init_vm - initializes a VM data structure
135  * @kvm:	pointer to the KVM struct
136  */
137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139 	int ret;
140 
141 	ret = kvm_share_hyp(kvm, kvm + 1);
142 	if (ret)
143 		return ret;
144 
145 	ret = pkvm_init_host_vm(kvm);
146 	if (ret)
147 		goto err_unshare_kvm;
148 
149 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL)) {
150 		ret = -ENOMEM;
151 		goto err_unshare_kvm;
152 	}
153 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
154 
155 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
156 	if (ret)
157 		goto err_free_cpumask;
158 
159 	kvm_vgic_early_init(kvm);
160 
161 	/* The maximum number of VCPUs is limited by the host's GIC model */
162 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
163 
164 	set_default_spectre(kvm);
165 	kvm_arm_init_hypercalls(kvm);
166 
167 	/*
168 	 * Initialise the default PMUver before there is a chance to
169 	 * create an actual PMU.
170 	 */
171 	kvm->arch.dfr0_pmuver.imp = kvm_arm_pmu_get_pmuver_limit();
172 
173 	return 0;
174 
175 err_free_cpumask:
176 	free_cpumask_var(kvm->arch.supported_cpus);
177 err_unshare_kvm:
178 	kvm_unshare_hyp(kvm, kvm + 1);
179 	return ret;
180 }
181 
182 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
183 {
184 	return VM_FAULT_SIGBUS;
185 }
186 
187 
188 /**
189  * kvm_arch_destroy_vm - destroy the VM data structure
190  * @kvm:	pointer to the KVM struct
191  */
192 void kvm_arch_destroy_vm(struct kvm *kvm)
193 {
194 	bitmap_free(kvm->arch.pmu_filter);
195 	free_cpumask_var(kvm->arch.supported_cpus);
196 
197 	kvm_vgic_destroy(kvm);
198 
199 	if (is_protected_kvm_enabled())
200 		pkvm_destroy_hyp_vm(kvm);
201 
202 	kvm_destroy_vcpus(kvm);
203 
204 	kvm_unshare_hyp(kvm, kvm + 1);
205 }
206 
207 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
208 {
209 	int r;
210 	switch (ext) {
211 	case KVM_CAP_IRQCHIP:
212 		r = vgic_present;
213 		break;
214 	case KVM_CAP_IOEVENTFD:
215 	case KVM_CAP_DEVICE_CTRL:
216 	case KVM_CAP_USER_MEMORY:
217 	case KVM_CAP_SYNC_MMU:
218 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
219 	case KVM_CAP_ONE_REG:
220 	case KVM_CAP_ARM_PSCI:
221 	case KVM_CAP_ARM_PSCI_0_2:
222 	case KVM_CAP_READONLY_MEM:
223 	case KVM_CAP_MP_STATE:
224 	case KVM_CAP_IMMEDIATE_EXIT:
225 	case KVM_CAP_VCPU_EVENTS:
226 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
227 	case KVM_CAP_ARM_NISV_TO_USER:
228 	case KVM_CAP_ARM_INJECT_EXT_DABT:
229 	case KVM_CAP_SET_GUEST_DEBUG:
230 	case KVM_CAP_VCPU_ATTRIBUTES:
231 	case KVM_CAP_PTP_KVM:
232 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
233 		r = 1;
234 		break;
235 	case KVM_CAP_SET_GUEST_DEBUG2:
236 		return KVM_GUESTDBG_VALID_MASK;
237 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
238 		r = 1;
239 		break;
240 	case KVM_CAP_NR_VCPUS:
241 		/*
242 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
243 		 * architectures, as it does not always bound it to
244 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
245 		 * this is just an advisory value.
246 		 */
247 		r = min_t(unsigned int, num_online_cpus(),
248 			  kvm_arm_default_max_vcpus());
249 		break;
250 	case KVM_CAP_MAX_VCPUS:
251 	case KVM_CAP_MAX_VCPU_ID:
252 		if (kvm)
253 			r = kvm->max_vcpus;
254 		else
255 			r = kvm_arm_default_max_vcpus();
256 		break;
257 	case KVM_CAP_MSI_DEVID:
258 		if (!kvm)
259 			r = -EINVAL;
260 		else
261 			r = kvm->arch.vgic.msis_require_devid;
262 		break;
263 	case KVM_CAP_ARM_USER_IRQ:
264 		/*
265 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
266 		 * (bump this number if adding more devices)
267 		 */
268 		r = 1;
269 		break;
270 	case KVM_CAP_ARM_MTE:
271 		r = system_supports_mte();
272 		break;
273 	case KVM_CAP_STEAL_TIME:
274 		r = kvm_arm_pvtime_supported();
275 		break;
276 	case KVM_CAP_ARM_EL1_32BIT:
277 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
278 		break;
279 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
280 		r = get_num_brps();
281 		break;
282 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
283 		r = get_num_wrps();
284 		break;
285 	case KVM_CAP_ARM_PMU_V3:
286 		r = kvm_arm_support_pmu_v3();
287 		break;
288 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
289 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
290 		break;
291 	case KVM_CAP_ARM_VM_IPA_SIZE:
292 		r = get_kvm_ipa_limit();
293 		break;
294 	case KVM_CAP_ARM_SVE:
295 		r = system_supports_sve();
296 		break;
297 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
298 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
299 		r = system_has_full_ptr_auth();
300 		break;
301 	default:
302 		r = 0;
303 	}
304 
305 	return r;
306 }
307 
308 long kvm_arch_dev_ioctl(struct file *filp,
309 			unsigned int ioctl, unsigned long arg)
310 {
311 	return -EINVAL;
312 }
313 
314 struct kvm *kvm_arch_alloc_vm(void)
315 {
316 	size_t sz = sizeof(struct kvm);
317 
318 	if (!has_vhe())
319 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
320 
321 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
322 }
323 
324 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
325 {
326 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
327 		return -EBUSY;
328 
329 	if (id >= kvm->max_vcpus)
330 		return -EINVAL;
331 
332 	return 0;
333 }
334 
335 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
336 {
337 	int err;
338 
339 	/* Force users to call KVM_ARM_VCPU_INIT */
340 	vcpu->arch.target = -1;
341 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
342 
343 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
344 
345 	/*
346 	 * Default value for the FP state, will be overloaded at load
347 	 * time if we support FP (pretty likely)
348 	 */
349 	vcpu->arch.fp_state = FP_STATE_FREE;
350 
351 	/* Set up the timer */
352 	kvm_timer_vcpu_init(vcpu);
353 
354 	kvm_pmu_vcpu_init(vcpu);
355 
356 	kvm_arm_reset_debug_ptr(vcpu);
357 
358 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
359 
360 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
361 
362 	err = kvm_vgic_vcpu_init(vcpu);
363 	if (err)
364 		return err;
365 
366 	return kvm_share_hyp(vcpu, vcpu + 1);
367 }
368 
369 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
370 {
371 }
372 
373 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
374 {
375 	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
376 		static_branch_dec(&userspace_irqchip_in_use);
377 
378 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
379 	kvm_timer_vcpu_terminate(vcpu);
380 	kvm_pmu_vcpu_destroy(vcpu);
381 
382 	kvm_arm_vcpu_destroy(vcpu);
383 }
384 
385 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
386 {
387 
388 }
389 
390 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
391 {
392 
393 }
394 
395 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
396 {
397 	struct kvm_s2_mmu *mmu;
398 	int *last_ran;
399 
400 	mmu = vcpu->arch.hw_mmu;
401 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
402 
403 	/*
404 	 * We guarantee that both TLBs and I-cache are private to each
405 	 * vcpu. If detecting that a vcpu from the same VM has
406 	 * previously run on the same physical CPU, call into the
407 	 * hypervisor code to nuke the relevant contexts.
408 	 *
409 	 * We might get preempted before the vCPU actually runs, but
410 	 * over-invalidation doesn't affect correctness.
411 	 */
412 	if (*last_ran != vcpu->vcpu_id) {
413 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
414 		*last_ran = vcpu->vcpu_id;
415 	}
416 
417 	vcpu->cpu = cpu;
418 
419 	kvm_vgic_load(vcpu);
420 	kvm_timer_vcpu_load(vcpu);
421 	if (has_vhe())
422 		kvm_vcpu_load_sysregs_vhe(vcpu);
423 	kvm_arch_vcpu_load_fp(vcpu);
424 	kvm_vcpu_pmu_restore_guest(vcpu);
425 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
426 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
427 
428 	if (single_task_running())
429 		vcpu_clear_wfx_traps(vcpu);
430 	else
431 		vcpu_set_wfx_traps(vcpu);
432 
433 	if (vcpu_has_ptrauth(vcpu))
434 		vcpu_ptrauth_disable(vcpu);
435 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
436 
437 	if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
438 		vcpu_set_on_unsupported_cpu(vcpu);
439 }
440 
441 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
442 {
443 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
444 	kvm_arch_vcpu_put_fp(vcpu);
445 	if (has_vhe())
446 		kvm_vcpu_put_sysregs_vhe(vcpu);
447 	kvm_timer_vcpu_put(vcpu);
448 	kvm_vgic_put(vcpu);
449 	kvm_vcpu_pmu_restore_host(vcpu);
450 	kvm_arm_vmid_clear_active();
451 
452 	vcpu_clear_on_unsupported_cpu(vcpu);
453 	vcpu->cpu = -1;
454 }
455 
456 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
457 {
458 	vcpu->arch.mp_state.mp_state = KVM_MP_STATE_STOPPED;
459 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
460 	kvm_vcpu_kick(vcpu);
461 }
462 
463 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
464 {
465 	return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_STOPPED;
466 }
467 
468 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
469 {
470 	vcpu->arch.mp_state.mp_state = KVM_MP_STATE_SUSPENDED;
471 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
472 	kvm_vcpu_kick(vcpu);
473 }
474 
475 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
476 {
477 	return vcpu->arch.mp_state.mp_state == KVM_MP_STATE_SUSPENDED;
478 }
479 
480 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
481 				    struct kvm_mp_state *mp_state)
482 {
483 	*mp_state = vcpu->arch.mp_state;
484 
485 	return 0;
486 }
487 
488 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
489 				    struct kvm_mp_state *mp_state)
490 {
491 	int ret = 0;
492 
493 	switch (mp_state->mp_state) {
494 	case KVM_MP_STATE_RUNNABLE:
495 		vcpu->arch.mp_state = *mp_state;
496 		break;
497 	case KVM_MP_STATE_STOPPED:
498 		kvm_arm_vcpu_power_off(vcpu);
499 		break;
500 	case KVM_MP_STATE_SUSPENDED:
501 		kvm_arm_vcpu_suspend(vcpu);
502 		break;
503 	default:
504 		ret = -EINVAL;
505 	}
506 
507 	return ret;
508 }
509 
510 /**
511  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
512  * @v:		The VCPU pointer
513  *
514  * If the guest CPU is not waiting for interrupts or an interrupt line is
515  * asserted, the CPU is by definition runnable.
516  */
517 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
518 {
519 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
520 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
521 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
522 }
523 
524 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
525 {
526 	return vcpu_mode_priv(vcpu);
527 }
528 
529 #ifdef CONFIG_GUEST_PERF_EVENTS
530 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
531 {
532 	return *vcpu_pc(vcpu);
533 }
534 #endif
535 
536 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
537 {
538 	return vcpu->arch.target >= 0;
539 }
540 
541 /*
542  * Handle both the initialisation that is being done when the vcpu is
543  * run for the first time, as well as the updates that must be
544  * performed each time we get a new thread dealing with this vcpu.
545  */
546 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
547 {
548 	struct kvm *kvm = vcpu->kvm;
549 	int ret;
550 
551 	if (!kvm_vcpu_initialized(vcpu))
552 		return -ENOEXEC;
553 
554 	if (!kvm_arm_vcpu_is_finalized(vcpu))
555 		return -EPERM;
556 
557 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
558 	if (ret)
559 		return ret;
560 
561 	if (likely(vcpu_has_run_once(vcpu)))
562 		return 0;
563 
564 	kvm_arm_vcpu_init_debug(vcpu);
565 
566 	if (likely(irqchip_in_kernel(kvm))) {
567 		/*
568 		 * Map the VGIC hardware resources before running a vcpu the
569 		 * first time on this VM.
570 		 */
571 		ret = kvm_vgic_map_resources(kvm);
572 		if (ret)
573 			return ret;
574 	}
575 
576 	ret = kvm_timer_enable(vcpu);
577 	if (ret)
578 		return ret;
579 
580 	ret = kvm_arm_pmu_v3_enable(vcpu);
581 	if (ret)
582 		return ret;
583 
584 	if (is_protected_kvm_enabled()) {
585 		ret = pkvm_create_hyp_vm(kvm);
586 		if (ret)
587 			return ret;
588 	}
589 
590 	if (!irqchip_in_kernel(kvm)) {
591 		/*
592 		 * Tell the rest of the code that there are userspace irqchip
593 		 * VMs in the wild.
594 		 */
595 		static_branch_inc(&userspace_irqchip_in_use);
596 	}
597 
598 	/*
599 	 * Initialize traps for protected VMs.
600 	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
601 	 * the code is in place for first run initialization at EL2.
602 	 */
603 	if (kvm_vm_is_protected(kvm))
604 		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
605 
606 	mutex_lock(&kvm->lock);
607 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
608 	mutex_unlock(&kvm->lock);
609 
610 	return ret;
611 }
612 
613 bool kvm_arch_intc_initialized(struct kvm *kvm)
614 {
615 	return vgic_initialized(kvm);
616 }
617 
618 void kvm_arm_halt_guest(struct kvm *kvm)
619 {
620 	unsigned long i;
621 	struct kvm_vcpu *vcpu;
622 
623 	kvm_for_each_vcpu(i, vcpu, kvm)
624 		vcpu->arch.pause = true;
625 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
626 }
627 
628 void kvm_arm_resume_guest(struct kvm *kvm)
629 {
630 	unsigned long i;
631 	struct kvm_vcpu *vcpu;
632 
633 	kvm_for_each_vcpu(i, vcpu, kvm) {
634 		vcpu->arch.pause = false;
635 		__kvm_vcpu_wake_up(vcpu);
636 	}
637 }
638 
639 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
640 {
641 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
642 
643 	rcuwait_wait_event(wait,
644 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
645 			   TASK_INTERRUPTIBLE);
646 
647 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
648 		/* Awaken to handle a signal, request we sleep again later. */
649 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
650 	}
651 
652 	/*
653 	 * Make sure we will observe a potential reset request if we've
654 	 * observed a change to the power state. Pairs with the smp_wmb() in
655 	 * kvm_psci_vcpu_on().
656 	 */
657 	smp_rmb();
658 }
659 
660 /**
661  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
662  * @vcpu:	The VCPU pointer
663  *
664  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
665  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
666  * on when a wake event arrives, e.g. there may already be a pending wake event.
667  */
668 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
669 {
670 	/*
671 	 * Sync back the state of the GIC CPU interface so that we have
672 	 * the latest PMR and group enables. This ensures that
673 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
674 	 * we have pending interrupts, e.g. when determining if the
675 	 * vCPU should block.
676 	 *
677 	 * For the same reason, we want to tell GICv4 that we need
678 	 * doorbells to be signalled, should an interrupt become pending.
679 	 */
680 	preempt_disable();
681 	kvm_vgic_vmcr_sync(vcpu);
682 	vgic_v4_put(vcpu, true);
683 	preempt_enable();
684 
685 	kvm_vcpu_halt(vcpu);
686 	vcpu_clear_flag(vcpu, IN_WFIT);
687 
688 	preempt_disable();
689 	vgic_v4_load(vcpu);
690 	preempt_enable();
691 }
692 
693 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
694 {
695 	if (!kvm_arm_vcpu_suspended(vcpu))
696 		return 1;
697 
698 	kvm_vcpu_wfi(vcpu);
699 
700 	/*
701 	 * The suspend state is sticky; we do not leave it until userspace
702 	 * explicitly marks the vCPU as runnable. Request that we suspend again
703 	 * later.
704 	 */
705 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
706 
707 	/*
708 	 * Check to make sure the vCPU is actually runnable. If so, exit to
709 	 * userspace informing it of the wakeup condition.
710 	 */
711 	if (kvm_arch_vcpu_runnable(vcpu)) {
712 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
713 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
714 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
715 		return 0;
716 	}
717 
718 	/*
719 	 * Otherwise, we were unblocked to process a different event, such as a
720 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
721 	 * process the event.
722 	 */
723 	return 1;
724 }
725 
726 /**
727  * check_vcpu_requests - check and handle pending vCPU requests
728  * @vcpu:	the VCPU pointer
729  *
730  * Return: 1 if we should enter the guest
731  *	   0 if we should exit to userspace
732  *	   < 0 if we should exit to userspace, where the return value indicates
733  *	   an error
734  */
735 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
736 {
737 	if (kvm_request_pending(vcpu)) {
738 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
739 			kvm_vcpu_sleep(vcpu);
740 
741 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
742 			kvm_reset_vcpu(vcpu);
743 
744 		/*
745 		 * Clear IRQ_PENDING requests that were made to guarantee
746 		 * that a VCPU sees new virtual interrupts.
747 		 */
748 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
749 
750 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
751 			kvm_update_stolen_time(vcpu);
752 
753 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
754 			/* The distributor enable bits were changed */
755 			preempt_disable();
756 			vgic_v4_put(vcpu, false);
757 			vgic_v4_load(vcpu);
758 			preempt_enable();
759 		}
760 
761 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
762 			kvm_pmu_handle_pmcr(vcpu,
763 					    __vcpu_sys_reg(vcpu, PMCR_EL0));
764 
765 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
766 			return kvm_vcpu_suspend(vcpu);
767 
768 		if (kvm_dirty_ring_check_request(vcpu))
769 			return 0;
770 	}
771 
772 	return 1;
773 }
774 
775 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
776 {
777 	if (likely(!vcpu_mode_is_32bit(vcpu)))
778 		return false;
779 
780 	return !kvm_supports_32bit_el0();
781 }
782 
783 /**
784  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
785  * @vcpu:	The VCPU pointer
786  * @ret:	Pointer to write optional return code
787  *
788  * Returns: true if the VCPU needs to return to a preemptible + interruptible
789  *	    and skip guest entry.
790  *
791  * This function disambiguates between two different types of exits: exits to a
792  * preemptible + interruptible kernel context and exits to userspace. For an
793  * exit to userspace, this function will write the return code to ret and return
794  * true. For an exit to preemptible + interruptible kernel context (i.e. check
795  * for pending work and re-enter), return true without writing to ret.
796  */
797 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
798 {
799 	struct kvm_run *run = vcpu->run;
800 
801 	/*
802 	 * If we're using a userspace irqchip, then check if we need
803 	 * to tell a userspace irqchip about timer or PMU level
804 	 * changes and if so, exit to userspace (the actual level
805 	 * state gets updated in kvm_timer_update_run and
806 	 * kvm_pmu_update_run below).
807 	 */
808 	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
809 		if (kvm_timer_should_notify_user(vcpu) ||
810 		    kvm_pmu_should_notify_user(vcpu)) {
811 			*ret = -EINTR;
812 			run->exit_reason = KVM_EXIT_INTR;
813 			return true;
814 		}
815 	}
816 
817 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
818 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
819 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
820 		run->fail_entry.cpu = smp_processor_id();
821 		*ret = 0;
822 		return true;
823 	}
824 
825 	return kvm_request_pending(vcpu) ||
826 			xfer_to_guest_mode_work_pending();
827 }
828 
829 /*
830  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
831  * the vCPU is running.
832  *
833  * This must be noinstr as instrumentation may make use of RCU, and this is not
834  * safe during the EQS.
835  */
836 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
837 {
838 	int ret;
839 
840 	guest_state_enter_irqoff();
841 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
842 	guest_state_exit_irqoff();
843 
844 	return ret;
845 }
846 
847 /**
848  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
849  * @vcpu:	The VCPU pointer
850  *
851  * This function is called through the VCPU_RUN ioctl called from user space. It
852  * will execute VM code in a loop until the time slice for the process is used
853  * or some emulation is needed from user space in which case the function will
854  * return with return value 0 and with the kvm_run structure filled in with the
855  * required data for the requested emulation.
856  */
857 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
858 {
859 	struct kvm_run *run = vcpu->run;
860 	int ret;
861 
862 	if (run->exit_reason == KVM_EXIT_MMIO) {
863 		ret = kvm_handle_mmio_return(vcpu);
864 		if (ret)
865 			return ret;
866 	}
867 
868 	vcpu_load(vcpu);
869 
870 	if (run->immediate_exit) {
871 		ret = -EINTR;
872 		goto out;
873 	}
874 
875 	kvm_sigset_activate(vcpu);
876 
877 	ret = 1;
878 	run->exit_reason = KVM_EXIT_UNKNOWN;
879 	run->flags = 0;
880 	while (ret > 0) {
881 		/*
882 		 * Check conditions before entering the guest
883 		 */
884 		ret = xfer_to_guest_mode_handle_work(vcpu);
885 		if (!ret)
886 			ret = 1;
887 
888 		if (ret > 0)
889 			ret = check_vcpu_requests(vcpu);
890 
891 		/*
892 		 * Preparing the interrupts to be injected also
893 		 * involves poking the GIC, which must be done in a
894 		 * non-preemptible context.
895 		 */
896 		preempt_disable();
897 
898 		/*
899 		 * The VMID allocator only tracks active VMIDs per
900 		 * physical CPU, and therefore the VMID allocated may not be
901 		 * preserved on VMID roll-over if the task was preempted,
902 		 * making a thread's VMID inactive. So we need to call
903 		 * kvm_arm_vmid_update() in non-premptible context.
904 		 */
905 		kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
906 
907 		kvm_pmu_flush_hwstate(vcpu);
908 
909 		local_irq_disable();
910 
911 		kvm_vgic_flush_hwstate(vcpu);
912 
913 		kvm_pmu_update_vcpu_events(vcpu);
914 
915 		/*
916 		 * Ensure we set mode to IN_GUEST_MODE after we disable
917 		 * interrupts and before the final VCPU requests check.
918 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
919 		 * Documentation/virt/kvm/vcpu-requests.rst
920 		 */
921 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
922 
923 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
924 			vcpu->mode = OUTSIDE_GUEST_MODE;
925 			isb(); /* Ensure work in x_flush_hwstate is committed */
926 			kvm_pmu_sync_hwstate(vcpu);
927 			if (static_branch_unlikely(&userspace_irqchip_in_use))
928 				kvm_timer_sync_user(vcpu);
929 			kvm_vgic_sync_hwstate(vcpu);
930 			local_irq_enable();
931 			preempt_enable();
932 			continue;
933 		}
934 
935 		kvm_arm_setup_debug(vcpu);
936 		kvm_arch_vcpu_ctxflush_fp(vcpu);
937 
938 		/**************************************************************
939 		 * Enter the guest
940 		 */
941 		trace_kvm_entry(*vcpu_pc(vcpu));
942 		guest_timing_enter_irqoff();
943 
944 		ret = kvm_arm_vcpu_enter_exit(vcpu);
945 
946 		vcpu->mode = OUTSIDE_GUEST_MODE;
947 		vcpu->stat.exits++;
948 		/*
949 		 * Back from guest
950 		 *************************************************************/
951 
952 		kvm_arm_clear_debug(vcpu);
953 
954 		/*
955 		 * We must sync the PMU state before the vgic state so
956 		 * that the vgic can properly sample the updated state of the
957 		 * interrupt line.
958 		 */
959 		kvm_pmu_sync_hwstate(vcpu);
960 
961 		/*
962 		 * Sync the vgic state before syncing the timer state because
963 		 * the timer code needs to know if the virtual timer
964 		 * interrupts are active.
965 		 */
966 		kvm_vgic_sync_hwstate(vcpu);
967 
968 		/*
969 		 * Sync the timer hardware state before enabling interrupts as
970 		 * we don't want vtimer interrupts to race with syncing the
971 		 * timer virtual interrupt state.
972 		 */
973 		if (static_branch_unlikely(&userspace_irqchip_in_use))
974 			kvm_timer_sync_user(vcpu);
975 
976 		kvm_arch_vcpu_ctxsync_fp(vcpu);
977 
978 		/*
979 		 * We must ensure that any pending interrupts are taken before
980 		 * we exit guest timing so that timer ticks are accounted as
981 		 * guest time. Transiently unmask interrupts so that any
982 		 * pending interrupts are taken.
983 		 *
984 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
985 		 * context synchronization event) is necessary to ensure that
986 		 * pending interrupts are taken.
987 		 */
988 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
989 			local_irq_enable();
990 			isb();
991 			local_irq_disable();
992 		}
993 
994 		guest_timing_exit_irqoff();
995 
996 		local_irq_enable();
997 
998 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
999 
1000 		/* Exit types that need handling before we can be preempted */
1001 		handle_exit_early(vcpu, ret);
1002 
1003 		preempt_enable();
1004 
1005 		/*
1006 		 * The ARMv8 architecture doesn't give the hypervisor
1007 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1008 		 * if implemented by the CPU. If we spot the guest in such
1009 		 * state and that we decided it wasn't supposed to do so (like
1010 		 * with the asymmetric AArch32 case), return to userspace with
1011 		 * a fatal error.
1012 		 */
1013 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1014 			/*
1015 			 * As we have caught the guest red-handed, decide that
1016 			 * it isn't fit for purpose anymore by making the vcpu
1017 			 * invalid. The VMM can try and fix it by issuing  a
1018 			 * KVM_ARM_VCPU_INIT if it really wants to.
1019 			 */
1020 			vcpu->arch.target = -1;
1021 			ret = ARM_EXCEPTION_IL;
1022 		}
1023 
1024 		ret = handle_exit(vcpu, ret);
1025 	}
1026 
1027 	/* Tell userspace about in-kernel device output levels */
1028 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1029 		kvm_timer_update_run(vcpu);
1030 		kvm_pmu_update_run(vcpu);
1031 	}
1032 
1033 	kvm_sigset_deactivate(vcpu);
1034 
1035 out:
1036 	/*
1037 	 * In the unlikely event that we are returning to userspace
1038 	 * with pending exceptions or PC adjustment, commit these
1039 	 * adjustments in order to give userspace a consistent view of
1040 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1041 	 * being preempt-safe on VHE.
1042 	 */
1043 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1044 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1045 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1046 
1047 	vcpu_put(vcpu);
1048 	return ret;
1049 }
1050 
1051 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1052 {
1053 	int bit_index;
1054 	bool set;
1055 	unsigned long *hcr;
1056 
1057 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1058 		bit_index = __ffs(HCR_VI);
1059 	else /* KVM_ARM_IRQ_CPU_FIQ */
1060 		bit_index = __ffs(HCR_VF);
1061 
1062 	hcr = vcpu_hcr(vcpu);
1063 	if (level)
1064 		set = test_and_set_bit(bit_index, hcr);
1065 	else
1066 		set = test_and_clear_bit(bit_index, hcr);
1067 
1068 	/*
1069 	 * If we didn't change anything, no need to wake up or kick other CPUs
1070 	 */
1071 	if (set == level)
1072 		return 0;
1073 
1074 	/*
1075 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1076 	 * trigger a world-switch round on the running physical CPU to set the
1077 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1078 	 */
1079 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1080 	kvm_vcpu_kick(vcpu);
1081 
1082 	return 0;
1083 }
1084 
1085 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1086 			  bool line_status)
1087 {
1088 	u32 irq = irq_level->irq;
1089 	unsigned int irq_type, vcpu_idx, irq_num;
1090 	int nrcpus = atomic_read(&kvm->online_vcpus);
1091 	struct kvm_vcpu *vcpu = NULL;
1092 	bool level = irq_level->level;
1093 
1094 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1095 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1096 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1097 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1098 
1099 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1100 
1101 	switch (irq_type) {
1102 	case KVM_ARM_IRQ_TYPE_CPU:
1103 		if (irqchip_in_kernel(kvm))
1104 			return -ENXIO;
1105 
1106 		if (vcpu_idx >= nrcpus)
1107 			return -EINVAL;
1108 
1109 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1110 		if (!vcpu)
1111 			return -EINVAL;
1112 
1113 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1114 			return -EINVAL;
1115 
1116 		return vcpu_interrupt_line(vcpu, irq_num, level);
1117 	case KVM_ARM_IRQ_TYPE_PPI:
1118 		if (!irqchip_in_kernel(kvm))
1119 			return -ENXIO;
1120 
1121 		if (vcpu_idx >= nrcpus)
1122 			return -EINVAL;
1123 
1124 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1125 		if (!vcpu)
1126 			return -EINVAL;
1127 
1128 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1129 			return -EINVAL;
1130 
1131 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1132 	case KVM_ARM_IRQ_TYPE_SPI:
1133 		if (!irqchip_in_kernel(kvm))
1134 			return -ENXIO;
1135 
1136 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1137 			return -EINVAL;
1138 
1139 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1140 	}
1141 
1142 	return -EINVAL;
1143 }
1144 
1145 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1146 			       const struct kvm_vcpu_init *init)
1147 {
1148 	unsigned int i, ret;
1149 	u32 phys_target = kvm_target_cpu();
1150 
1151 	if (init->target != phys_target)
1152 		return -EINVAL;
1153 
1154 	/*
1155 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1156 	 * use the same target.
1157 	 */
1158 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1159 		return -EINVAL;
1160 
1161 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1162 	for (i = 0; i < sizeof(init->features) * 8; i++) {
1163 		bool set = (init->features[i / 32] & (1 << (i % 32)));
1164 
1165 		if (set && i >= KVM_VCPU_MAX_FEATURES)
1166 			return -ENOENT;
1167 
1168 		/*
1169 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1170 		 * use the same feature set.
1171 		 */
1172 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1173 		    test_bit(i, vcpu->arch.features) != set)
1174 			return -EINVAL;
1175 
1176 		if (set)
1177 			set_bit(i, vcpu->arch.features);
1178 	}
1179 
1180 	vcpu->arch.target = phys_target;
1181 
1182 	/* Now we know what it is, we can reset it. */
1183 	ret = kvm_reset_vcpu(vcpu);
1184 	if (ret) {
1185 		vcpu->arch.target = -1;
1186 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1187 	}
1188 
1189 	return ret;
1190 }
1191 
1192 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1193 					 struct kvm_vcpu_init *init)
1194 {
1195 	int ret;
1196 
1197 	ret = kvm_vcpu_set_target(vcpu, init);
1198 	if (ret)
1199 		return ret;
1200 
1201 	/*
1202 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1203 	 * guest MMU is turned off and flush the caches as needed.
1204 	 *
1205 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1206 	 * ensuring that the data side is always coherent. We still
1207 	 * need to invalidate the I-cache though, as FWB does *not*
1208 	 * imply CTR_EL0.DIC.
1209 	 */
1210 	if (vcpu_has_run_once(vcpu)) {
1211 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1212 			stage2_unmap_vm(vcpu->kvm);
1213 		else
1214 			icache_inval_all_pou();
1215 	}
1216 
1217 	vcpu_reset_hcr(vcpu);
1218 	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1219 
1220 	/*
1221 	 * Handle the "start in power-off" case.
1222 	 */
1223 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1224 		kvm_arm_vcpu_power_off(vcpu);
1225 	else
1226 		vcpu->arch.mp_state.mp_state = KVM_MP_STATE_RUNNABLE;
1227 
1228 	return 0;
1229 }
1230 
1231 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1232 				 struct kvm_device_attr *attr)
1233 {
1234 	int ret = -ENXIO;
1235 
1236 	switch (attr->group) {
1237 	default:
1238 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1239 		break;
1240 	}
1241 
1242 	return ret;
1243 }
1244 
1245 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1246 				 struct kvm_device_attr *attr)
1247 {
1248 	int ret = -ENXIO;
1249 
1250 	switch (attr->group) {
1251 	default:
1252 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1253 		break;
1254 	}
1255 
1256 	return ret;
1257 }
1258 
1259 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1260 				 struct kvm_device_attr *attr)
1261 {
1262 	int ret = -ENXIO;
1263 
1264 	switch (attr->group) {
1265 	default:
1266 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1267 		break;
1268 	}
1269 
1270 	return ret;
1271 }
1272 
1273 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1274 				   struct kvm_vcpu_events *events)
1275 {
1276 	memset(events, 0, sizeof(*events));
1277 
1278 	return __kvm_arm_vcpu_get_events(vcpu, events);
1279 }
1280 
1281 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1282 				   struct kvm_vcpu_events *events)
1283 {
1284 	int i;
1285 
1286 	/* check whether the reserved field is zero */
1287 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1288 		if (events->reserved[i])
1289 			return -EINVAL;
1290 
1291 	/* check whether the pad field is zero */
1292 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1293 		if (events->exception.pad[i])
1294 			return -EINVAL;
1295 
1296 	return __kvm_arm_vcpu_set_events(vcpu, events);
1297 }
1298 
1299 long kvm_arch_vcpu_ioctl(struct file *filp,
1300 			 unsigned int ioctl, unsigned long arg)
1301 {
1302 	struct kvm_vcpu *vcpu = filp->private_data;
1303 	void __user *argp = (void __user *)arg;
1304 	struct kvm_device_attr attr;
1305 	long r;
1306 
1307 	switch (ioctl) {
1308 	case KVM_ARM_VCPU_INIT: {
1309 		struct kvm_vcpu_init init;
1310 
1311 		r = -EFAULT;
1312 		if (copy_from_user(&init, argp, sizeof(init)))
1313 			break;
1314 
1315 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1316 		break;
1317 	}
1318 	case KVM_SET_ONE_REG:
1319 	case KVM_GET_ONE_REG: {
1320 		struct kvm_one_reg reg;
1321 
1322 		r = -ENOEXEC;
1323 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1324 			break;
1325 
1326 		r = -EFAULT;
1327 		if (copy_from_user(&reg, argp, sizeof(reg)))
1328 			break;
1329 
1330 		/*
1331 		 * We could owe a reset due to PSCI. Handle the pending reset
1332 		 * here to ensure userspace register accesses are ordered after
1333 		 * the reset.
1334 		 */
1335 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1336 			kvm_reset_vcpu(vcpu);
1337 
1338 		if (ioctl == KVM_SET_ONE_REG)
1339 			r = kvm_arm_set_reg(vcpu, &reg);
1340 		else
1341 			r = kvm_arm_get_reg(vcpu, &reg);
1342 		break;
1343 	}
1344 	case KVM_GET_REG_LIST: {
1345 		struct kvm_reg_list __user *user_list = argp;
1346 		struct kvm_reg_list reg_list;
1347 		unsigned n;
1348 
1349 		r = -ENOEXEC;
1350 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1351 			break;
1352 
1353 		r = -EPERM;
1354 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1355 			break;
1356 
1357 		r = -EFAULT;
1358 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1359 			break;
1360 		n = reg_list.n;
1361 		reg_list.n = kvm_arm_num_regs(vcpu);
1362 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1363 			break;
1364 		r = -E2BIG;
1365 		if (n < reg_list.n)
1366 			break;
1367 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1368 		break;
1369 	}
1370 	case KVM_SET_DEVICE_ATTR: {
1371 		r = -EFAULT;
1372 		if (copy_from_user(&attr, argp, sizeof(attr)))
1373 			break;
1374 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1375 		break;
1376 	}
1377 	case KVM_GET_DEVICE_ATTR: {
1378 		r = -EFAULT;
1379 		if (copy_from_user(&attr, argp, sizeof(attr)))
1380 			break;
1381 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1382 		break;
1383 	}
1384 	case KVM_HAS_DEVICE_ATTR: {
1385 		r = -EFAULT;
1386 		if (copy_from_user(&attr, argp, sizeof(attr)))
1387 			break;
1388 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1389 		break;
1390 	}
1391 	case KVM_GET_VCPU_EVENTS: {
1392 		struct kvm_vcpu_events events;
1393 
1394 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1395 			return -EINVAL;
1396 
1397 		if (copy_to_user(argp, &events, sizeof(events)))
1398 			return -EFAULT;
1399 
1400 		return 0;
1401 	}
1402 	case KVM_SET_VCPU_EVENTS: {
1403 		struct kvm_vcpu_events events;
1404 
1405 		if (copy_from_user(&events, argp, sizeof(events)))
1406 			return -EFAULT;
1407 
1408 		return kvm_arm_vcpu_set_events(vcpu, &events);
1409 	}
1410 	case KVM_ARM_VCPU_FINALIZE: {
1411 		int what;
1412 
1413 		if (!kvm_vcpu_initialized(vcpu))
1414 			return -ENOEXEC;
1415 
1416 		if (get_user(what, (const int __user *)argp))
1417 			return -EFAULT;
1418 
1419 		return kvm_arm_vcpu_finalize(vcpu, what);
1420 	}
1421 	default:
1422 		r = -EINVAL;
1423 	}
1424 
1425 	return r;
1426 }
1427 
1428 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1429 {
1430 
1431 }
1432 
1433 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1434 					const struct kvm_memory_slot *memslot)
1435 {
1436 	kvm_flush_remote_tlbs(kvm);
1437 }
1438 
1439 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1440 					struct kvm_arm_device_addr *dev_addr)
1441 {
1442 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1443 	case KVM_ARM_DEVICE_VGIC_V2:
1444 		if (!vgic_present)
1445 			return -ENXIO;
1446 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1447 	default:
1448 		return -ENODEV;
1449 	}
1450 }
1451 
1452 long kvm_arch_vm_ioctl(struct file *filp,
1453 		       unsigned int ioctl, unsigned long arg)
1454 {
1455 	struct kvm *kvm = filp->private_data;
1456 	void __user *argp = (void __user *)arg;
1457 
1458 	switch (ioctl) {
1459 	case KVM_CREATE_IRQCHIP: {
1460 		int ret;
1461 		if (!vgic_present)
1462 			return -ENXIO;
1463 		mutex_lock(&kvm->lock);
1464 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1465 		mutex_unlock(&kvm->lock);
1466 		return ret;
1467 	}
1468 	case KVM_ARM_SET_DEVICE_ADDR: {
1469 		struct kvm_arm_device_addr dev_addr;
1470 
1471 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1472 			return -EFAULT;
1473 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1474 	}
1475 	case KVM_ARM_PREFERRED_TARGET: {
1476 		struct kvm_vcpu_init init;
1477 
1478 		kvm_vcpu_preferred_target(&init);
1479 
1480 		if (copy_to_user(argp, &init, sizeof(init)))
1481 			return -EFAULT;
1482 
1483 		return 0;
1484 	}
1485 	case KVM_ARM_MTE_COPY_TAGS: {
1486 		struct kvm_arm_copy_mte_tags copy_tags;
1487 
1488 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1489 			return -EFAULT;
1490 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1491 	}
1492 	default:
1493 		return -EINVAL;
1494 	}
1495 }
1496 
1497 static unsigned long nvhe_percpu_size(void)
1498 {
1499 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1500 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1501 }
1502 
1503 static unsigned long nvhe_percpu_order(void)
1504 {
1505 	unsigned long size = nvhe_percpu_size();
1506 
1507 	return size ? get_order(size) : 0;
1508 }
1509 
1510 /* A lookup table holding the hypervisor VA for each vector slot */
1511 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1512 
1513 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1514 {
1515 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1516 }
1517 
1518 static int kvm_init_vector_slots(void)
1519 {
1520 	int err;
1521 	void *base;
1522 
1523 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1524 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1525 
1526 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1527 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1528 
1529 	if (kvm_system_needs_idmapped_vectors() &&
1530 	    !is_protected_kvm_enabled()) {
1531 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1532 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1533 		if (err)
1534 			return err;
1535 	}
1536 
1537 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1538 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1539 	return 0;
1540 }
1541 
1542 static void cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1543 {
1544 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1545 	unsigned long tcr;
1546 
1547 	/*
1548 	 * Calculate the raw per-cpu offset without a translation from the
1549 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1550 	 * so that we can use adr_l to access per-cpu variables in EL2.
1551 	 * Also drop the KASAN tag which gets in the way...
1552 	 */
1553 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1554 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1555 
1556 	params->mair_el2 = read_sysreg(mair_el1);
1557 
1558 	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1559 	tcr &= ~TCR_T0SZ_MASK;
1560 	tcr |= TCR_T0SZ(hyp_va_bits);
1561 	params->tcr_el2 = tcr;
1562 
1563 	params->pgd_pa = kvm_mmu_get_httbr();
1564 	if (is_protected_kvm_enabled())
1565 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1566 	else
1567 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1568 	params->vttbr = params->vtcr = 0;
1569 
1570 	/*
1571 	 * Flush the init params from the data cache because the struct will
1572 	 * be read while the MMU is off.
1573 	 */
1574 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1575 }
1576 
1577 static void hyp_install_host_vector(void)
1578 {
1579 	struct kvm_nvhe_init_params *params;
1580 	struct arm_smccc_res res;
1581 
1582 	/* Switch from the HYP stub to our own HYP init vector */
1583 	__hyp_set_vectors(kvm_get_idmap_vector());
1584 
1585 	/*
1586 	 * Call initialization code, and switch to the full blown HYP code.
1587 	 * If the cpucaps haven't been finalized yet, something has gone very
1588 	 * wrong, and hyp will crash and burn when it uses any
1589 	 * cpus_have_const_cap() wrapper.
1590 	 */
1591 	BUG_ON(!system_capabilities_finalized());
1592 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1593 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1594 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1595 }
1596 
1597 static void cpu_init_hyp_mode(void)
1598 {
1599 	hyp_install_host_vector();
1600 
1601 	/*
1602 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1603 	 * at EL2.
1604 	 */
1605 	if (this_cpu_has_cap(ARM64_SSBS) &&
1606 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1607 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1608 	}
1609 }
1610 
1611 static void cpu_hyp_reset(void)
1612 {
1613 	if (!is_kernel_in_hyp_mode())
1614 		__hyp_reset_vectors();
1615 }
1616 
1617 /*
1618  * EL2 vectors can be mapped and rerouted in a number of ways,
1619  * depending on the kernel configuration and CPU present:
1620  *
1621  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1622  *   placed in one of the vector slots, which is executed before jumping
1623  *   to the real vectors.
1624  *
1625  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1626  *   containing the hardening sequence is mapped next to the idmap page,
1627  *   and executed before jumping to the real vectors.
1628  *
1629  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1630  *   empty slot is selected, mapped next to the idmap page, and
1631  *   executed before jumping to the real vectors.
1632  *
1633  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1634  * VHE, as we don't have hypervisor-specific mappings. If the system
1635  * is VHE and yet selects this capability, it will be ignored.
1636  */
1637 static void cpu_set_hyp_vector(void)
1638 {
1639 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1640 	void *vector = hyp_spectre_vector_selector[data->slot];
1641 
1642 	if (!is_protected_kvm_enabled())
1643 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1644 	else
1645 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1646 }
1647 
1648 static void cpu_hyp_init_context(void)
1649 {
1650 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1651 
1652 	if (!is_kernel_in_hyp_mode())
1653 		cpu_init_hyp_mode();
1654 }
1655 
1656 static void cpu_hyp_init_features(void)
1657 {
1658 	cpu_set_hyp_vector();
1659 	kvm_arm_init_debug();
1660 
1661 	if (is_kernel_in_hyp_mode())
1662 		kvm_timer_init_vhe();
1663 
1664 	if (vgic_present)
1665 		kvm_vgic_init_cpu_hardware();
1666 }
1667 
1668 static void cpu_hyp_reinit(void)
1669 {
1670 	cpu_hyp_reset();
1671 	cpu_hyp_init_context();
1672 	cpu_hyp_init_features();
1673 }
1674 
1675 static void _kvm_arch_hardware_enable(void *discard)
1676 {
1677 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1678 		cpu_hyp_reinit();
1679 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1680 	}
1681 }
1682 
1683 int kvm_arch_hardware_enable(void)
1684 {
1685 	_kvm_arch_hardware_enable(NULL);
1686 	return 0;
1687 }
1688 
1689 static void _kvm_arch_hardware_disable(void *discard)
1690 {
1691 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1692 		cpu_hyp_reset();
1693 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1694 	}
1695 }
1696 
1697 void kvm_arch_hardware_disable(void)
1698 {
1699 	if (!is_protected_kvm_enabled())
1700 		_kvm_arch_hardware_disable(NULL);
1701 }
1702 
1703 #ifdef CONFIG_CPU_PM
1704 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1705 				    unsigned long cmd,
1706 				    void *v)
1707 {
1708 	/*
1709 	 * kvm_arm_hardware_enabled is left with its old value over
1710 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1711 	 * re-enable hyp.
1712 	 */
1713 	switch (cmd) {
1714 	case CPU_PM_ENTER:
1715 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1716 			/*
1717 			 * don't update kvm_arm_hardware_enabled here
1718 			 * so that the hardware will be re-enabled
1719 			 * when we resume. See below.
1720 			 */
1721 			cpu_hyp_reset();
1722 
1723 		return NOTIFY_OK;
1724 	case CPU_PM_ENTER_FAILED:
1725 	case CPU_PM_EXIT:
1726 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1727 			/* The hardware was enabled before suspend. */
1728 			cpu_hyp_reinit();
1729 
1730 		return NOTIFY_OK;
1731 
1732 	default:
1733 		return NOTIFY_DONE;
1734 	}
1735 }
1736 
1737 static struct notifier_block hyp_init_cpu_pm_nb = {
1738 	.notifier_call = hyp_init_cpu_pm_notifier,
1739 };
1740 
1741 static void hyp_cpu_pm_init(void)
1742 {
1743 	if (!is_protected_kvm_enabled())
1744 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1745 }
1746 static void hyp_cpu_pm_exit(void)
1747 {
1748 	if (!is_protected_kvm_enabled())
1749 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1750 }
1751 #else
1752 static inline void hyp_cpu_pm_init(void)
1753 {
1754 }
1755 static inline void hyp_cpu_pm_exit(void)
1756 {
1757 }
1758 #endif
1759 
1760 static void init_cpu_logical_map(void)
1761 {
1762 	unsigned int cpu;
1763 
1764 	/*
1765 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1766 	 * Only copy the set of online CPUs whose features have been checked
1767 	 * against the finalized system capabilities. The hypervisor will not
1768 	 * allow any other CPUs from the `possible` set to boot.
1769 	 */
1770 	for_each_online_cpu(cpu)
1771 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1772 }
1773 
1774 #define init_psci_0_1_impl_state(config, what)	\
1775 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1776 
1777 static bool init_psci_relay(void)
1778 {
1779 	/*
1780 	 * If PSCI has not been initialized, protected KVM cannot install
1781 	 * itself on newly booted CPUs.
1782 	 */
1783 	if (!psci_ops.get_version) {
1784 		kvm_err("Cannot initialize protected mode without PSCI\n");
1785 		return false;
1786 	}
1787 
1788 	kvm_host_psci_config.version = psci_ops.get_version();
1789 
1790 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1791 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1792 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1793 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1794 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1795 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1796 	}
1797 	return true;
1798 }
1799 
1800 static int init_subsystems(void)
1801 {
1802 	int err = 0;
1803 
1804 	/*
1805 	 * Enable hardware so that subsystem initialisation can access EL2.
1806 	 */
1807 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1808 
1809 	/*
1810 	 * Register CPU lower-power notifier
1811 	 */
1812 	hyp_cpu_pm_init();
1813 
1814 	/*
1815 	 * Init HYP view of VGIC
1816 	 */
1817 	err = kvm_vgic_hyp_init();
1818 	switch (err) {
1819 	case 0:
1820 		vgic_present = true;
1821 		break;
1822 	case -ENODEV:
1823 	case -ENXIO:
1824 		vgic_present = false;
1825 		err = 0;
1826 		break;
1827 	default:
1828 		goto out;
1829 	}
1830 
1831 	/*
1832 	 * Init HYP architected timer support
1833 	 */
1834 	err = kvm_timer_hyp_init(vgic_present);
1835 	if (err)
1836 		goto out;
1837 
1838 	kvm_register_perf_callbacks(NULL);
1839 
1840 out:
1841 	if (err || !is_protected_kvm_enabled())
1842 		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1843 
1844 	return err;
1845 }
1846 
1847 static void teardown_hyp_mode(void)
1848 {
1849 	int cpu;
1850 
1851 	free_hyp_pgds();
1852 	for_each_possible_cpu(cpu) {
1853 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1854 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
1855 	}
1856 }
1857 
1858 static int do_pkvm_init(u32 hyp_va_bits)
1859 {
1860 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
1861 	int ret;
1862 
1863 	preempt_disable();
1864 	cpu_hyp_init_context();
1865 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1866 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
1867 				hyp_va_bits);
1868 	cpu_hyp_init_features();
1869 
1870 	/*
1871 	 * The stub hypercalls are now disabled, so set our local flag to
1872 	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
1873 	 */
1874 	__this_cpu_write(kvm_arm_hardware_enabled, 1);
1875 	preempt_enable();
1876 
1877 	return ret;
1878 }
1879 
1880 static void kvm_hyp_init_symbols(void)
1881 {
1882 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1883 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1884 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1885 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1886 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
1887 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1888 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1889 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1890 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
1891 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
1892 }
1893 
1894 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1895 {
1896 	void *addr = phys_to_virt(hyp_mem_base);
1897 	int ret;
1898 
1899 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1900 	if (ret)
1901 		return ret;
1902 
1903 	ret = do_pkvm_init(hyp_va_bits);
1904 	if (ret)
1905 		return ret;
1906 
1907 	free_hyp_pgds();
1908 
1909 	return 0;
1910 }
1911 
1912 /**
1913  * Inits Hyp-mode on all online CPUs
1914  */
1915 static int init_hyp_mode(void)
1916 {
1917 	u32 hyp_va_bits;
1918 	int cpu;
1919 	int err = -ENOMEM;
1920 
1921 	/*
1922 	 * The protected Hyp-mode cannot be initialized if the memory pool
1923 	 * allocation has failed.
1924 	 */
1925 	if (is_protected_kvm_enabled() && !hyp_mem_base)
1926 		goto out_err;
1927 
1928 	/*
1929 	 * Allocate Hyp PGD and setup Hyp identity mapping
1930 	 */
1931 	err = kvm_mmu_init(&hyp_va_bits);
1932 	if (err)
1933 		goto out_err;
1934 
1935 	/*
1936 	 * Allocate stack pages for Hypervisor-mode
1937 	 */
1938 	for_each_possible_cpu(cpu) {
1939 		unsigned long stack_page;
1940 
1941 		stack_page = __get_free_page(GFP_KERNEL);
1942 		if (!stack_page) {
1943 			err = -ENOMEM;
1944 			goto out_err;
1945 		}
1946 
1947 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1948 	}
1949 
1950 	/*
1951 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1952 	 */
1953 	for_each_possible_cpu(cpu) {
1954 		struct page *page;
1955 		void *page_addr;
1956 
1957 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1958 		if (!page) {
1959 			err = -ENOMEM;
1960 			goto out_err;
1961 		}
1962 
1963 		page_addr = page_address(page);
1964 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1965 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
1966 	}
1967 
1968 	/*
1969 	 * Map the Hyp-code called directly from the host
1970 	 */
1971 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1972 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1973 	if (err) {
1974 		kvm_err("Cannot map world-switch code\n");
1975 		goto out_err;
1976 	}
1977 
1978 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1979 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1980 	if (err) {
1981 		kvm_err("Cannot map .hyp.rodata section\n");
1982 		goto out_err;
1983 	}
1984 
1985 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1986 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1987 	if (err) {
1988 		kvm_err("Cannot map rodata section\n");
1989 		goto out_err;
1990 	}
1991 
1992 	/*
1993 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1994 	 * section thanks to an assertion in the linker script. Map it RW and
1995 	 * the rest of .bss RO.
1996 	 */
1997 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1998 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1999 	if (err) {
2000 		kvm_err("Cannot map hyp bss section: %d\n", err);
2001 		goto out_err;
2002 	}
2003 
2004 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2005 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2006 	if (err) {
2007 		kvm_err("Cannot map bss section\n");
2008 		goto out_err;
2009 	}
2010 
2011 	/*
2012 	 * Map the Hyp stack pages
2013 	 */
2014 	for_each_possible_cpu(cpu) {
2015 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2016 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2017 		unsigned long hyp_addr;
2018 
2019 		/*
2020 		 * Allocate a contiguous HYP private VA range for the stack
2021 		 * and guard page. The allocation is also aligned based on
2022 		 * the order of its size.
2023 		 */
2024 		err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2025 		if (err) {
2026 			kvm_err("Cannot allocate hyp stack guard page\n");
2027 			goto out_err;
2028 		}
2029 
2030 		/*
2031 		 * Since the stack grows downwards, map the stack to the page
2032 		 * at the higher address and leave the lower guard page
2033 		 * unbacked.
2034 		 *
2035 		 * Any valid stack address now has the PAGE_SHIFT bit as 1
2036 		 * and addresses corresponding to the guard page have the
2037 		 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2038 		 */
2039 		err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2040 					    __pa(stack_page), PAGE_HYP);
2041 		if (err) {
2042 			kvm_err("Cannot map hyp stack\n");
2043 			goto out_err;
2044 		}
2045 
2046 		/*
2047 		 * Save the stack PA in nvhe_init_params. This will be needed
2048 		 * to recreate the stack mapping in protected nVHE mode.
2049 		 * __hyp_pa() won't do the right thing there, since the stack
2050 		 * has been mapped in the flexible private VA space.
2051 		 */
2052 		params->stack_pa = __pa(stack_page);
2053 
2054 		params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2055 	}
2056 
2057 	for_each_possible_cpu(cpu) {
2058 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2059 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2060 
2061 		/* Map Hyp percpu pages */
2062 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2063 		if (err) {
2064 			kvm_err("Cannot map hyp percpu region\n");
2065 			goto out_err;
2066 		}
2067 
2068 		/* Prepare the CPU initialization parameters */
2069 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2070 	}
2071 
2072 	kvm_hyp_init_symbols();
2073 
2074 	if (is_protected_kvm_enabled()) {
2075 		init_cpu_logical_map();
2076 
2077 		if (!init_psci_relay()) {
2078 			err = -ENODEV;
2079 			goto out_err;
2080 		}
2081 
2082 		err = kvm_hyp_init_protection(hyp_va_bits);
2083 		if (err) {
2084 			kvm_err("Failed to init hyp memory protection\n");
2085 			goto out_err;
2086 		}
2087 	}
2088 
2089 	return 0;
2090 
2091 out_err:
2092 	teardown_hyp_mode();
2093 	kvm_err("error initializing Hyp mode: %d\n", err);
2094 	return err;
2095 }
2096 
2097 static void _kvm_host_prot_finalize(void *arg)
2098 {
2099 	int *err = arg;
2100 
2101 	if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2102 		WRITE_ONCE(*err, -EINVAL);
2103 }
2104 
2105 static int pkvm_drop_host_privileges(void)
2106 {
2107 	int ret = 0;
2108 
2109 	/*
2110 	 * Flip the static key upfront as that may no longer be possible
2111 	 * once the host stage 2 is installed.
2112 	 */
2113 	static_branch_enable(&kvm_protected_mode_initialized);
2114 	on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2115 	return ret;
2116 }
2117 
2118 static int finalize_hyp_mode(void)
2119 {
2120 	if (!is_protected_kvm_enabled())
2121 		return 0;
2122 
2123 	/*
2124 	 * Exclude HYP sections from kmemleak so that they don't get peeked
2125 	 * at, which would end badly once inaccessible.
2126 	 */
2127 	kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2128 	kmemleak_free_part_phys(hyp_mem_base, hyp_mem_size);
2129 	return pkvm_drop_host_privileges();
2130 }
2131 
2132 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2133 {
2134 	struct kvm_vcpu *vcpu;
2135 	unsigned long i;
2136 
2137 	mpidr &= MPIDR_HWID_BITMASK;
2138 	kvm_for_each_vcpu(i, vcpu, kvm) {
2139 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2140 			return vcpu;
2141 	}
2142 	return NULL;
2143 }
2144 
2145 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2146 {
2147 	return irqchip_in_kernel(kvm);
2148 }
2149 
2150 bool kvm_arch_has_irq_bypass(void)
2151 {
2152 	return true;
2153 }
2154 
2155 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2156 				      struct irq_bypass_producer *prod)
2157 {
2158 	struct kvm_kernel_irqfd *irqfd =
2159 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2160 
2161 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2162 					  &irqfd->irq_entry);
2163 }
2164 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2165 				      struct irq_bypass_producer *prod)
2166 {
2167 	struct kvm_kernel_irqfd *irqfd =
2168 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2169 
2170 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2171 				     &irqfd->irq_entry);
2172 }
2173 
2174 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2175 {
2176 	struct kvm_kernel_irqfd *irqfd =
2177 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2178 
2179 	kvm_arm_halt_guest(irqfd->kvm);
2180 }
2181 
2182 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2183 {
2184 	struct kvm_kernel_irqfd *irqfd =
2185 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2186 
2187 	kvm_arm_resume_guest(irqfd->kvm);
2188 }
2189 
2190 /**
2191  * Initialize Hyp-mode and memory mappings on all CPUs.
2192  */
2193 int kvm_arch_init(void *opaque)
2194 {
2195 	int err;
2196 	bool in_hyp_mode;
2197 
2198 	if (!is_hyp_mode_available()) {
2199 		kvm_info("HYP mode not available\n");
2200 		return -ENODEV;
2201 	}
2202 
2203 	if (kvm_get_mode() == KVM_MODE_NONE) {
2204 		kvm_info("KVM disabled from command line\n");
2205 		return -ENODEV;
2206 	}
2207 
2208 	err = kvm_sys_reg_table_init();
2209 	if (err) {
2210 		kvm_info("Error initializing system register tables");
2211 		return err;
2212 	}
2213 
2214 	in_hyp_mode = is_kernel_in_hyp_mode();
2215 
2216 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2217 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2218 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2219 			 "Only trusted guests should be used on this system.\n");
2220 
2221 	err = kvm_set_ipa_limit();
2222 	if (err)
2223 		return err;
2224 
2225 	err = kvm_arm_init_sve();
2226 	if (err)
2227 		return err;
2228 
2229 	err = kvm_arm_vmid_alloc_init();
2230 	if (err) {
2231 		kvm_err("Failed to initialize VMID allocator.\n");
2232 		return err;
2233 	}
2234 
2235 	if (!in_hyp_mode) {
2236 		err = init_hyp_mode();
2237 		if (err)
2238 			goto out_err;
2239 	}
2240 
2241 	err = kvm_init_vector_slots();
2242 	if (err) {
2243 		kvm_err("Cannot initialise vector slots\n");
2244 		goto out_err;
2245 	}
2246 
2247 	err = init_subsystems();
2248 	if (err)
2249 		goto out_hyp;
2250 
2251 	if (!in_hyp_mode) {
2252 		err = finalize_hyp_mode();
2253 		if (err) {
2254 			kvm_err("Failed to finalize Hyp protection\n");
2255 			goto out_hyp;
2256 		}
2257 	}
2258 
2259 	if (is_protected_kvm_enabled()) {
2260 		kvm_info("Protected nVHE mode initialized successfully\n");
2261 	} else if (in_hyp_mode) {
2262 		kvm_info("VHE mode initialized successfully\n");
2263 	} else {
2264 		kvm_info("Hyp mode initialized successfully\n");
2265 	}
2266 
2267 	return 0;
2268 
2269 out_hyp:
2270 	hyp_cpu_pm_exit();
2271 	if (!in_hyp_mode)
2272 		teardown_hyp_mode();
2273 out_err:
2274 	kvm_arm_vmid_alloc_free();
2275 	return err;
2276 }
2277 
2278 /* NOP: Compiling as a module not supported */
2279 void kvm_arch_exit(void)
2280 {
2281 	kvm_unregister_perf_callbacks();
2282 }
2283 
2284 static int __init early_kvm_mode_cfg(char *arg)
2285 {
2286 	if (!arg)
2287 		return -EINVAL;
2288 
2289 	if (strcmp(arg, "none") == 0) {
2290 		kvm_mode = KVM_MODE_NONE;
2291 		return 0;
2292 	}
2293 
2294 	if (!is_hyp_mode_available()) {
2295 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2296 		return 0;
2297 	}
2298 
2299 	if (strcmp(arg, "protected") == 0) {
2300 		if (!is_kernel_in_hyp_mode())
2301 			kvm_mode = KVM_MODE_PROTECTED;
2302 		else
2303 			pr_warn_once("Protected KVM not available with VHE\n");
2304 
2305 		return 0;
2306 	}
2307 
2308 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2309 		kvm_mode = KVM_MODE_DEFAULT;
2310 		return 0;
2311 	}
2312 
2313 	return -EINVAL;
2314 }
2315 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2316 
2317 enum kvm_mode kvm_get_mode(void)
2318 {
2319 	return kvm_mode;
2320 }
2321 
2322 static int arm_init(void)
2323 {
2324 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2325 	return rc;
2326 }
2327 
2328 module_init(arm_init);
2329