xref: /openbmc/linux/arch/arm64/kvm/arm.c (revision b1c8ea3c09db24a55ff84ac047cb2e9d9f644bf9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_pkvm.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42 
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46 
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 
49 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
50 
51 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
53 
54 static bool vgic_present;
55 
56 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
57 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
58 
59 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
60 {
61 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
62 }
63 
64 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
65 			    struct kvm_enable_cap *cap)
66 {
67 	int r;
68 
69 	if (cap->flags)
70 		return -EINVAL;
71 
72 	switch (cap->cap) {
73 	case KVM_CAP_ARM_NISV_TO_USER:
74 		r = 0;
75 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
76 			&kvm->arch.flags);
77 		break;
78 	case KVM_CAP_ARM_MTE:
79 		mutex_lock(&kvm->lock);
80 		if (!system_supports_mte() || kvm->created_vcpus) {
81 			r = -EINVAL;
82 		} else {
83 			r = 0;
84 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
85 		}
86 		mutex_unlock(&kvm->lock);
87 		break;
88 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
89 		r = 0;
90 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
91 		break;
92 	default:
93 		r = -EINVAL;
94 		break;
95 	}
96 
97 	return r;
98 }
99 
100 static int kvm_arm_default_max_vcpus(void)
101 {
102 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
103 }
104 
105 static void set_default_spectre(struct kvm *kvm)
106 {
107 	/*
108 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
109 	 * Although this is a per-CPU feature, we make it global because
110 	 * asymmetric systems are just a nuisance.
111 	 *
112 	 * Userspace can override this as long as it doesn't promise
113 	 * the impossible.
114 	 */
115 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
116 		kvm->arch.pfr0_csv2 = 1;
117 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
118 		kvm->arch.pfr0_csv3 = 1;
119 }
120 
121 /**
122  * kvm_arch_init_vm - initializes a VM data structure
123  * @kvm:	pointer to the KVM struct
124  */
125 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
126 {
127 	int ret;
128 
129 	mutex_init(&kvm->arch.config_lock);
130 
131 #ifdef CONFIG_LOCKDEP
132 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
133 	mutex_lock(&kvm->lock);
134 	mutex_lock(&kvm->arch.config_lock);
135 	mutex_unlock(&kvm->arch.config_lock);
136 	mutex_unlock(&kvm->lock);
137 #endif
138 
139 	ret = kvm_share_hyp(kvm, kvm + 1);
140 	if (ret)
141 		return ret;
142 
143 	ret = pkvm_init_host_vm(kvm);
144 	if (ret)
145 		goto err_unshare_kvm;
146 
147 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
148 		ret = -ENOMEM;
149 		goto err_unshare_kvm;
150 	}
151 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
152 
153 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
154 	if (ret)
155 		goto err_free_cpumask;
156 
157 	kvm_vgic_early_init(kvm);
158 
159 	kvm_timer_init_vm(kvm);
160 
161 	/* The maximum number of VCPUs is limited by the host's GIC model */
162 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
163 
164 	set_default_spectre(kvm);
165 	kvm_arm_init_hypercalls(kvm);
166 
167 	/*
168 	 * Initialise the default PMUver before there is a chance to
169 	 * create an actual PMU.
170 	 */
171 	kvm->arch.dfr0_pmuver.imp = kvm_arm_pmu_get_pmuver_limit();
172 
173 	return 0;
174 
175 err_free_cpumask:
176 	free_cpumask_var(kvm->arch.supported_cpus);
177 err_unshare_kvm:
178 	kvm_unshare_hyp(kvm, kvm + 1);
179 	return ret;
180 }
181 
182 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
183 {
184 	return VM_FAULT_SIGBUS;
185 }
186 
187 
188 /**
189  * kvm_arch_destroy_vm - destroy the VM data structure
190  * @kvm:	pointer to the KVM struct
191  */
192 void kvm_arch_destroy_vm(struct kvm *kvm)
193 {
194 	bitmap_free(kvm->arch.pmu_filter);
195 	free_cpumask_var(kvm->arch.supported_cpus);
196 
197 	kvm_vgic_destroy(kvm);
198 
199 	if (is_protected_kvm_enabled())
200 		pkvm_destroy_hyp_vm(kvm);
201 
202 	kvm_destroy_vcpus(kvm);
203 
204 	kvm_unshare_hyp(kvm, kvm + 1);
205 
206 	kvm_arm_teardown_hypercalls(kvm);
207 }
208 
209 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
210 {
211 	int r;
212 	switch (ext) {
213 	case KVM_CAP_IRQCHIP:
214 		r = vgic_present;
215 		break;
216 	case KVM_CAP_IOEVENTFD:
217 	case KVM_CAP_DEVICE_CTRL:
218 	case KVM_CAP_USER_MEMORY:
219 	case KVM_CAP_SYNC_MMU:
220 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
221 	case KVM_CAP_ONE_REG:
222 	case KVM_CAP_ARM_PSCI:
223 	case KVM_CAP_ARM_PSCI_0_2:
224 	case KVM_CAP_READONLY_MEM:
225 	case KVM_CAP_MP_STATE:
226 	case KVM_CAP_IMMEDIATE_EXIT:
227 	case KVM_CAP_VCPU_EVENTS:
228 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
229 	case KVM_CAP_ARM_NISV_TO_USER:
230 	case KVM_CAP_ARM_INJECT_EXT_DABT:
231 	case KVM_CAP_SET_GUEST_DEBUG:
232 	case KVM_CAP_VCPU_ATTRIBUTES:
233 	case KVM_CAP_PTP_KVM:
234 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
235 	case KVM_CAP_IRQFD_RESAMPLE:
236 	case KVM_CAP_COUNTER_OFFSET:
237 		r = 1;
238 		break;
239 	case KVM_CAP_SET_GUEST_DEBUG2:
240 		return KVM_GUESTDBG_VALID_MASK;
241 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
242 		r = 1;
243 		break;
244 	case KVM_CAP_NR_VCPUS:
245 		/*
246 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
247 		 * architectures, as it does not always bound it to
248 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
249 		 * this is just an advisory value.
250 		 */
251 		r = min_t(unsigned int, num_online_cpus(),
252 			  kvm_arm_default_max_vcpus());
253 		break;
254 	case KVM_CAP_MAX_VCPUS:
255 	case KVM_CAP_MAX_VCPU_ID:
256 		if (kvm)
257 			r = kvm->max_vcpus;
258 		else
259 			r = kvm_arm_default_max_vcpus();
260 		break;
261 	case KVM_CAP_MSI_DEVID:
262 		if (!kvm)
263 			r = -EINVAL;
264 		else
265 			r = kvm->arch.vgic.msis_require_devid;
266 		break;
267 	case KVM_CAP_ARM_USER_IRQ:
268 		/*
269 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
270 		 * (bump this number if adding more devices)
271 		 */
272 		r = 1;
273 		break;
274 	case KVM_CAP_ARM_MTE:
275 		r = system_supports_mte();
276 		break;
277 	case KVM_CAP_STEAL_TIME:
278 		r = kvm_arm_pvtime_supported();
279 		break;
280 	case KVM_CAP_ARM_EL1_32BIT:
281 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
282 		break;
283 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
284 		r = get_num_brps();
285 		break;
286 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
287 		r = get_num_wrps();
288 		break;
289 	case KVM_CAP_ARM_PMU_V3:
290 		r = kvm_arm_support_pmu_v3();
291 		break;
292 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
293 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
294 		break;
295 	case KVM_CAP_ARM_VM_IPA_SIZE:
296 		r = get_kvm_ipa_limit();
297 		break;
298 	case KVM_CAP_ARM_SVE:
299 		r = system_supports_sve();
300 		break;
301 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
302 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
303 		r = system_has_full_ptr_auth();
304 		break;
305 	default:
306 		r = 0;
307 	}
308 
309 	return r;
310 }
311 
312 long kvm_arch_dev_ioctl(struct file *filp,
313 			unsigned int ioctl, unsigned long arg)
314 {
315 	return -EINVAL;
316 }
317 
318 struct kvm *kvm_arch_alloc_vm(void)
319 {
320 	size_t sz = sizeof(struct kvm);
321 
322 	if (!has_vhe())
323 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
324 
325 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
326 }
327 
328 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
329 {
330 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
331 		return -EBUSY;
332 
333 	if (id >= kvm->max_vcpus)
334 		return -EINVAL;
335 
336 	return 0;
337 }
338 
339 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
340 {
341 	int err;
342 
343 	spin_lock_init(&vcpu->arch.mp_state_lock);
344 
345 #ifdef CONFIG_LOCKDEP
346 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
347 	mutex_lock(&vcpu->mutex);
348 	mutex_lock(&vcpu->kvm->arch.config_lock);
349 	mutex_unlock(&vcpu->kvm->arch.config_lock);
350 	mutex_unlock(&vcpu->mutex);
351 #endif
352 
353 	/* Force users to call KVM_ARM_VCPU_INIT */
354 	vcpu->arch.target = -1;
355 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
356 
357 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
358 
359 	/*
360 	 * Default value for the FP state, will be overloaded at load
361 	 * time if we support FP (pretty likely)
362 	 */
363 	vcpu->arch.fp_state = FP_STATE_FREE;
364 
365 	/* Set up the timer */
366 	kvm_timer_vcpu_init(vcpu);
367 
368 	kvm_pmu_vcpu_init(vcpu);
369 
370 	kvm_arm_reset_debug_ptr(vcpu);
371 
372 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
373 
374 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
375 
376 	err = kvm_vgic_vcpu_init(vcpu);
377 	if (err)
378 		return err;
379 
380 	return kvm_share_hyp(vcpu, vcpu + 1);
381 }
382 
383 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
384 {
385 }
386 
387 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
388 {
389 	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
390 		static_branch_dec(&userspace_irqchip_in_use);
391 
392 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
393 	kvm_timer_vcpu_terminate(vcpu);
394 	kvm_pmu_vcpu_destroy(vcpu);
395 
396 	kvm_arm_vcpu_destroy(vcpu);
397 }
398 
399 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
400 {
401 
402 }
403 
404 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
405 {
406 
407 }
408 
409 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
410 {
411 	struct kvm_s2_mmu *mmu;
412 	int *last_ran;
413 
414 	mmu = vcpu->arch.hw_mmu;
415 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
416 
417 	/*
418 	 * We guarantee that both TLBs and I-cache are private to each
419 	 * vcpu. If detecting that a vcpu from the same VM has
420 	 * previously run on the same physical CPU, call into the
421 	 * hypervisor code to nuke the relevant contexts.
422 	 *
423 	 * We might get preempted before the vCPU actually runs, but
424 	 * over-invalidation doesn't affect correctness.
425 	 */
426 	if (*last_ran != vcpu->vcpu_id) {
427 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
428 		*last_ran = vcpu->vcpu_id;
429 	}
430 
431 	vcpu->cpu = cpu;
432 
433 	kvm_vgic_load(vcpu);
434 	kvm_timer_vcpu_load(vcpu);
435 	if (has_vhe())
436 		kvm_vcpu_load_sysregs_vhe(vcpu);
437 	kvm_arch_vcpu_load_fp(vcpu);
438 	kvm_vcpu_pmu_restore_guest(vcpu);
439 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
440 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
441 
442 	if (single_task_running())
443 		vcpu_clear_wfx_traps(vcpu);
444 	else
445 		vcpu_set_wfx_traps(vcpu);
446 
447 	if (vcpu_has_ptrauth(vcpu))
448 		vcpu_ptrauth_disable(vcpu);
449 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
450 
451 	if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
452 		vcpu_set_on_unsupported_cpu(vcpu);
453 }
454 
455 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
456 {
457 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
458 	kvm_arch_vcpu_put_fp(vcpu);
459 	if (has_vhe())
460 		kvm_vcpu_put_sysregs_vhe(vcpu);
461 	kvm_timer_vcpu_put(vcpu);
462 	kvm_vgic_put(vcpu);
463 	kvm_vcpu_pmu_restore_host(vcpu);
464 	kvm_arm_vmid_clear_active();
465 
466 	vcpu_clear_on_unsupported_cpu(vcpu);
467 	vcpu->cpu = -1;
468 }
469 
470 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
471 {
472 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
473 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
474 	kvm_vcpu_kick(vcpu);
475 }
476 
477 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
478 {
479 	spin_lock(&vcpu->arch.mp_state_lock);
480 	__kvm_arm_vcpu_power_off(vcpu);
481 	spin_unlock(&vcpu->arch.mp_state_lock);
482 }
483 
484 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
485 {
486 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
487 }
488 
489 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
490 {
491 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
492 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
493 	kvm_vcpu_kick(vcpu);
494 }
495 
496 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
497 {
498 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
499 }
500 
501 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
502 				    struct kvm_mp_state *mp_state)
503 {
504 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
505 
506 	return 0;
507 }
508 
509 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
510 				    struct kvm_mp_state *mp_state)
511 {
512 	int ret = 0;
513 
514 	spin_lock(&vcpu->arch.mp_state_lock);
515 
516 	switch (mp_state->mp_state) {
517 	case KVM_MP_STATE_RUNNABLE:
518 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
519 		break;
520 	case KVM_MP_STATE_STOPPED:
521 		__kvm_arm_vcpu_power_off(vcpu);
522 		break;
523 	case KVM_MP_STATE_SUSPENDED:
524 		kvm_arm_vcpu_suspend(vcpu);
525 		break;
526 	default:
527 		ret = -EINVAL;
528 	}
529 
530 	spin_unlock(&vcpu->arch.mp_state_lock);
531 
532 	return ret;
533 }
534 
535 /**
536  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
537  * @v:		The VCPU pointer
538  *
539  * If the guest CPU is not waiting for interrupts or an interrupt line is
540  * asserted, the CPU is by definition runnable.
541  */
542 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
543 {
544 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
545 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
546 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
547 }
548 
549 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
550 {
551 	return vcpu_mode_priv(vcpu);
552 }
553 
554 #ifdef CONFIG_GUEST_PERF_EVENTS
555 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
556 {
557 	return *vcpu_pc(vcpu);
558 }
559 #endif
560 
561 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
562 {
563 	return vcpu->arch.target >= 0;
564 }
565 
566 /*
567  * Handle both the initialisation that is being done when the vcpu is
568  * run for the first time, as well as the updates that must be
569  * performed each time we get a new thread dealing with this vcpu.
570  */
571 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
572 {
573 	struct kvm *kvm = vcpu->kvm;
574 	int ret;
575 
576 	if (!kvm_vcpu_initialized(vcpu))
577 		return -ENOEXEC;
578 
579 	if (!kvm_arm_vcpu_is_finalized(vcpu))
580 		return -EPERM;
581 
582 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
583 	if (ret)
584 		return ret;
585 
586 	if (likely(vcpu_has_run_once(vcpu)))
587 		return 0;
588 
589 	kvm_arm_vcpu_init_debug(vcpu);
590 
591 	if (likely(irqchip_in_kernel(kvm))) {
592 		/*
593 		 * Map the VGIC hardware resources before running a vcpu the
594 		 * first time on this VM.
595 		 */
596 		ret = kvm_vgic_map_resources(kvm);
597 		if (ret)
598 			return ret;
599 	}
600 
601 	ret = kvm_timer_enable(vcpu);
602 	if (ret)
603 		return ret;
604 
605 	ret = kvm_arm_pmu_v3_enable(vcpu);
606 	if (ret)
607 		return ret;
608 
609 	if (is_protected_kvm_enabled()) {
610 		ret = pkvm_create_hyp_vm(kvm);
611 		if (ret)
612 			return ret;
613 	}
614 
615 	if (!irqchip_in_kernel(kvm)) {
616 		/*
617 		 * Tell the rest of the code that there are userspace irqchip
618 		 * VMs in the wild.
619 		 */
620 		static_branch_inc(&userspace_irqchip_in_use);
621 	}
622 
623 	/*
624 	 * Initialize traps for protected VMs.
625 	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
626 	 * the code is in place for first run initialization at EL2.
627 	 */
628 	if (kvm_vm_is_protected(kvm))
629 		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
630 
631 	mutex_lock(&kvm->arch.config_lock);
632 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
633 	mutex_unlock(&kvm->arch.config_lock);
634 
635 	return ret;
636 }
637 
638 bool kvm_arch_intc_initialized(struct kvm *kvm)
639 {
640 	return vgic_initialized(kvm);
641 }
642 
643 void kvm_arm_halt_guest(struct kvm *kvm)
644 {
645 	unsigned long i;
646 	struct kvm_vcpu *vcpu;
647 
648 	kvm_for_each_vcpu(i, vcpu, kvm)
649 		vcpu->arch.pause = true;
650 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
651 }
652 
653 void kvm_arm_resume_guest(struct kvm *kvm)
654 {
655 	unsigned long i;
656 	struct kvm_vcpu *vcpu;
657 
658 	kvm_for_each_vcpu(i, vcpu, kvm) {
659 		vcpu->arch.pause = false;
660 		__kvm_vcpu_wake_up(vcpu);
661 	}
662 }
663 
664 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
665 {
666 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
667 
668 	rcuwait_wait_event(wait,
669 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
670 			   TASK_INTERRUPTIBLE);
671 
672 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
673 		/* Awaken to handle a signal, request we sleep again later. */
674 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
675 	}
676 
677 	/*
678 	 * Make sure we will observe a potential reset request if we've
679 	 * observed a change to the power state. Pairs with the smp_wmb() in
680 	 * kvm_psci_vcpu_on().
681 	 */
682 	smp_rmb();
683 }
684 
685 /**
686  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
687  * @vcpu:	The VCPU pointer
688  *
689  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
690  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
691  * on when a wake event arrives, e.g. there may already be a pending wake event.
692  */
693 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
694 {
695 	/*
696 	 * Sync back the state of the GIC CPU interface so that we have
697 	 * the latest PMR and group enables. This ensures that
698 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
699 	 * we have pending interrupts, e.g. when determining if the
700 	 * vCPU should block.
701 	 *
702 	 * For the same reason, we want to tell GICv4 that we need
703 	 * doorbells to be signalled, should an interrupt become pending.
704 	 */
705 	preempt_disable();
706 	kvm_vgic_vmcr_sync(vcpu);
707 	vgic_v4_put(vcpu, true);
708 	preempt_enable();
709 
710 	kvm_vcpu_halt(vcpu);
711 	vcpu_clear_flag(vcpu, IN_WFIT);
712 
713 	preempt_disable();
714 	vgic_v4_load(vcpu);
715 	preempt_enable();
716 }
717 
718 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
719 {
720 	if (!kvm_arm_vcpu_suspended(vcpu))
721 		return 1;
722 
723 	kvm_vcpu_wfi(vcpu);
724 
725 	/*
726 	 * The suspend state is sticky; we do not leave it until userspace
727 	 * explicitly marks the vCPU as runnable. Request that we suspend again
728 	 * later.
729 	 */
730 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
731 
732 	/*
733 	 * Check to make sure the vCPU is actually runnable. If so, exit to
734 	 * userspace informing it of the wakeup condition.
735 	 */
736 	if (kvm_arch_vcpu_runnable(vcpu)) {
737 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
738 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
739 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
740 		return 0;
741 	}
742 
743 	/*
744 	 * Otherwise, we were unblocked to process a different event, such as a
745 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
746 	 * process the event.
747 	 */
748 	return 1;
749 }
750 
751 /**
752  * check_vcpu_requests - check and handle pending vCPU requests
753  * @vcpu:	the VCPU pointer
754  *
755  * Return: 1 if we should enter the guest
756  *	   0 if we should exit to userspace
757  *	   < 0 if we should exit to userspace, where the return value indicates
758  *	   an error
759  */
760 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
761 {
762 	if (kvm_request_pending(vcpu)) {
763 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
764 			kvm_vcpu_sleep(vcpu);
765 
766 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
767 			kvm_reset_vcpu(vcpu);
768 
769 		/*
770 		 * Clear IRQ_PENDING requests that were made to guarantee
771 		 * that a VCPU sees new virtual interrupts.
772 		 */
773 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
774 
775 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
776 			kvm_update_stolen_time(vcpu);
777 
778 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
779 			/* The distributor enable bits were changed */
780 			preempt_disable();
781 			vgic_v4_put(vcpu, false);
782 			vgic_v4_load(vcpu);
783 			preempt_enable();
784 		}
785 
786 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
787 			kvm_pmu_handle_pmcr(vcpu,
788 					    __vcpu_sys_reg(vcpu, PMCR_EL0));
789 
790 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
791 			return kvm_vcpu_suspend(vcpu);
792 
793 		if (kvm_dirty_ring_check_request(vcpu))
794 			return 0;
795 	}
796 
797 	return 1;
798 }
799 
800 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
801 {
802 	if (likely(!vcpu_mode_is_32bit(vcpu)))
803 		return false;
804 
805 	return !kvm_supports_32bit_el0();
806 }
807 
808 /**
809  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
810  * @vcpu:	The VCPU pointer
811  * @ret:	Pointer to write optional return code
812  *
813  * Returns: true if the VCPU needs to return to a preemptible + interruptible
814  *	    and skip guest entry.
815  *
816  * This function disambiguates between two different types of exits: exits to a
817  * preemptible + interruptible kernel context and exits to userspace. For an
818  * exit to userspace, this function will write the return code to ret and return
819  * true. For an exit to preemptible + interruptible kernel context (i.e. check
820  * for pending work and re-enter), return true without writing to ret.
821  */
822 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
823 {
824 	struct kvm_run *run = vcpu->run;
825 
826 	/*
827 	 * If we're using a userspace irqchip, then check if we need
828 	 * to tell a userspace irqchip about timer or PMU level
829 	 * changes and if so, exit to userspace (the actual level
830 	 * state gets updated in kvm_timer_update_run and
831 	 * kvm_pmu_update_run below).
832 	 */
833 	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
834 		if (kvm_timer_should_notify_user(vcpu) ||
835 		    kvm_pmu_should_notify_user(vcpu)) {
836 			*ret = -EINTR;
837 			run->exit_reason = KVM_EXIT_INTR;
838 			return true;
839 		}
840 	}
841 
842 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
843 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
844 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
845 		run->fail_entry.cpu = smp_processor_id();
846 		*ret = 0;
847 		return true;
848 	}
849 
850 	return kvm_request_pending(vcpu) ||
851 			xfer_to_guest_mode_work_pending();
852 }
853 
854 /*
855  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
856  * the vCPU is running.
857  *
858  * This must be noinstr as instrumentation may make use of RCU, and this is not
859  * safe during the EQS.
860  */
861 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
862 {
863 	int ret;
864 
865 	guest_state_enter_irqoff();
866 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
867 	guest_state_exit_irqoff();
868 
869 	return ret;
870 }
871 
872 /**
873  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
874  * @vcpu:	The VCPU pointer
875  *
876  * This function is called through the VCPU_RUN ioctl called from user space. It
877  * will execute VM code in a loop until the time slice for the process is used
878  * or some emulation is needed from user space in which case the function will
879  * return with return value 0 and with the kvm_run structure filled in with the
880  * required data for the requested emulation.
881  */
882 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
883 {
884 	struct kvm_run *run = vcpu->run;
885 	int ret;
886 
887 	if (run->exit_reason == KVM_EXIT_MMIO) {
888 		ret = kvm_handle_mmio_return(vcpu);
889 		if (ret)
890 			return ret;
891 	}
892 
893 	vcpu_load(vcpu);
894 
895 	if (run->immediate_exit) {
896 		ret = -EINTR;
897 		goto out;
898 	}
899 
900 	kvm_sigset_activate(vcpu);
901 
902 	ret = 1;
903 	run->exit_reason = KVM_EXIT_UNKNOWN;
904 	run->flags = 0;
905 	while (ret > 0) {
906 		/*
907 		 * Check conditions before entering the guest
908 		 */
909 		ret = xfer_to_guest_mode_handle_work(vcpu);
910 		if (!ret)
911 			ret = 1;
912 
913 		if (ret > 0)
914 			ret = check_vcpu_requests(vcpu);
915 
916 		/*
917 		 * Preparing the interrupts to be injected also
918 		 * involves poking the GIC, which must be done in a
919 		 * non-preemptible context.
920 		 */
921 		preempt_disable();
922 
923 		/*
924 		 * The VMID allocator only tracks active VMIDs per
925 		 * physical CPU, and therefore the VMID allocated may not be
926 		 * preserved on VMID roll-over if the task was preempted,
927 		 * making a thread's VMID inactive. So we need to call
928 		 * kvm_arm_vmid_update() in non-premptible context.
929 		 */
930 		kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
931 
932 		kvm_pmu_flush_hwstate(vcpu);
933 
934 		local_irq_disable();
935 
936 		kvm_vgic_flush_hwstate(vcpu);
937 
938 		kvm_pmu_update_vcpu_events(vcpu);
939 
940 		/*
941 		 * Ensure we set mode to IN_GUEST_MODE after we disable
942 		 * interrupts and before the final VCPU requests check.
943 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
944 		 * Documentation/virt/kvm/vcpu-requests.rst
945 		 */
946 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
947 
948 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
949 			vcpu->mode = OUTSIDE_GUEST_MODE;
950 			isb(); /* Ensure work in x_flush_hwstate is committed */
951 			kvm_pmu_sync_hwstate(vcpu);
952 			if (static_branch_unlikely(&userspace_irqchip_in_use))
953 				kvm_timer_sync_user(vcpu);
954 			kvm_vgic_sync_hwstate(vcpu);
955 			local_irq_enable();
956 			preempt_enable();
957 			continue;
958 		}
959 
960 		kvm_arm_setup_debug(vcpu);
961 		kvm_arch_vcpu_ctxflush_fp(vcpu);
962 
963 		/**************************************************************
964 		 * Enter the guest
965 		 */
966 		trace_kvm_entry(*vcpu_pc(vcpu));
967 		guest_timing_enter_irqoff();
968 
969 		ret = kvm_arm_vcpu_enter_exit(vcpu);
970 
971 		vcpu->mode = OUTSIDE_GUEST_MODE;
972 		vcpu->stat.exits++;
973 		/*
974 		 * Back from guest
975 		 *************************************************************/
976 
977 		kvm_arm_clear_debug(vcpu);
978 
979 		/*
980 		 * We must sync the PMU state before the vgic state so
981 		 * that the vgic can properly sample the updated state of the
982 		 * interrupt line.
983 		 */
984 		kvm_pmu_sync_hwstate(vcpu);
985 
986 		/*
987 		 * Sync the vgic state before syncing the timer state because
988 		 * the timer code needs to know if the virtual timer
989 		 * interrupts are active.
990 		 */
991 		kvm_vgic_sync_hwstate(vcpu);
992 
993 		/*
994 		 * Sync the timer hardware state before enabling interrupts as
995 		 * we don't want vtimer interrupts to race with syncing the
996 		 * timer virtual interrupt state.
997 		 */
998 		if (static_branch_unlikely(&userspace_irqchip_in_use))
999 			kvm_timer_sync_user(vcpu);
1000 
1001 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1002 
1003 		/*
1004 		 * We must ensure that any pending interrupts are taken before
1005 		 * we exit guest timing so that timer ticks are accounted as
1006 		 * guest time. Transiently unmask interrupts so that any
1007 		 * pending interrupts are taken.
1008 		 *
1009 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1010 		 * context synchronization event) is necessary to ensure that
1011 		 * pending interrupts are taken.
1012 		 */
1013 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1014 			local_irq_enable();
1015 			isb();
1016 			local_irq_disable();
1017 		}
1018 
1019 		guest_timing_exit_irqoff();
1020 
1021 		local_irq_enable();
1022 
1023 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1024 
1025 		/* Exit types that need handling before we can be preempted */
1026 		handle_exit_early(vcpu, ret);
1027 
1028 		preempt_enable();
1029 
1030 		/*
1031 		 * The ARMv8 architecture doesn't give the hypervisor
1032 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1033 		 * if implemented by the CPU. If we spot the guest in such
1034 		 * state and that we decided it wasn't supposed to do so (like
1035 		 * with the asymmetric AArch32 case), return to userspace with
1036 		 * a fatal error.
1037 		 */
1038 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1039 			/*
1040 			 * As we have caught the guest red-handed, decide that
1041 			 * it isn't fit for purpose anymore by making the vcpu
1042 			 * invalid. The VMM can try and fix it by issuing  a
1043 			 * KVM_ARM_VCPU_INIT if it really wants to.
1044 			 */
1045 			vcpu->arch.target = -1;
1046 			ret = ARM_EXCEPTION_IL;
1047 		}
1048 
1049 		ret = handle_exit(vcpu, ret);
1050 	}
1051 
1052 	/* Tell userspace about in-kernel device output levels */
1053 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1054 		kvm_timer_update_run(vcpu);
1055 		kvm_pmu_update_run(vcpu);
1056 	}
1057 
1058 	kvm_sigset_deactivate(vcpu);
1059 
1060 out:
1061 	/*
1062 	 * In the unlikely event that we are returning to userspace
1063 	 * with pending exceptions or PC adjustment, commit these
1064 	 * adjustments in order to give userspace a consistent view of
1065 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1066 	 * being preempt-safe on VHE.
1067 	 */
1068 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1069 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1070 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1071 
1072 	vcpu_put(vcpu);
1073 	return ret;
1074 }
1075 
1076 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1077 {
1078 	int bit_index;
1079 	bool set;
1080 	unsigned long *hcr;
1081 
1082 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1083 		bit_index = __ffs(HCR_VI);
1084 	else /* KVM_ARM_IRQ_CPU_FIQ */
1085 		bit_index = __ffs(HCR_VF);
1086 
1087 	hcr = vcpu_hcr(vcpu);
1088 	if (level)
1089 		set = test_and_set_bit(bit_index, hcr);
1090 	else
1091 		set = test_and_clear_bit(bit_index, hcr);
1092 
1093 	/*
1094 	 * If we didn't change anything, no need to wake up or kick other CPUs
1095 	 */
1096 	if (set == level)
1097 		return 0;
1098 
1099 	/*
1100 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1101 	 * trigger a world-switch round on the running physical CPU to set the
1102 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1103 	 */
1104 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1105 	kvm_vcpu_kick(vcpu);
1106 
1107 	return 0;
1108 }
1109 
1110 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1111 			  bool line_status)
1112 {
1113 	u32 irq = irq_level->irq;
1114 	unsigned int irq_type, vcpu_idx, irq_num;
1115 	int nrcpus = atomic_read(&kvm->online_vcpus);
1116 	struct kvm_vcpu *vcpu = NULL;
1117 	bool level = irq_level->level;
1118 
1119 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1120 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1121 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1122 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1123 
1124 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1125 
1126 	switch (irq_type) {
1127 	case KVM_ARM_IRQ_TYPE_CPU:
1128 		if (irqchip_in_kernel(kvm))
1129 			return -ENXIO;
1130 
1131 		if (vcpu_idx >= nrcpus)
1132 			return -EINVAL;
1133 
1134 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1135 		if (!vcpu)
1136 			return -EINVAL;
1137 
1138 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1139 			return -EINVAL;
1140 
1141 		return vcpu_interrupt_line(vcpu, irq_num, level);
1142 	case KVM_ARM_IRQ_TYPE_PPI:
1143 		if (!irqchip_in_kernel(kvm))
1144 			return -ENXIO;
1145 
1146 		if (vcpu_idx >= nrcpus)
1147 			return -EINVAL;
1148 
1149 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1150 		if (!vcpu)
1151 			return -EINVAL;
1152 
1153 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1154 			return -EINVAL;
1155 
1156 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1157 	case KVM_ARM_IRQ_TYPE_SPI:
1158 		if (!irqchip_in_kernel(kvm))
1159 			return -ENXIO;
1160 
1161 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1162 			return -EINVAL;
1163 
1164 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1165 	}
1166 
1167 	return -EINVAL;
1168 }
1169 
1170 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1171 			       const struct kvm_vcpu_init *init)
1172 {
1173 	unsigned int i, ret;
1174 	u32 phys_target = kvm_target_cpu();
1175 
1176 	if (init->target != phys_target)
1177 		return -EINVAL;
1178 
1179 	/*
1180 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1181 	 * use the same target.
1182 	 */
1183 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1184 		return -EINVAL;
1185 
1186 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1187 	for (i = 0; i < sizeof(init->features) * 8; i++) {
1188 		bool set = (init->features[i / 32] & (1 << (i % 32)));
1189 
1190 		if (set && i >= KVM_VCPU_MAX_FEATURES)
1191 			return -ENOENT;
1192 
1193 		/*
1194 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1195 		 * use the same feature set.
1196 		 */
1197 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1198 		    test_bit(i, vcpu->arch.features) != set)
1199 			return -EINVAL;
1200 
1201 		if (set)
1202 			set_bit(i, vcpu->arch.features);
1203 	}
1204 
1205 	vcpu->arch.target = phys_target;
1206 
1207 	/* Now we know what it is, we can reset it. */
1208 	ret = kvm_reset_vcpu(vcpu);
1209 	if (ret) {
1210 		vcpu->arch.target = -1;
1211 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1212 	}
1213 
1214 	return ret;
1215 }
1216 
1217 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1218 					 struct kvm_vcpu_init *init)
1219 {
1220 	int ret;
1221 
1222 	ret = kvm_vcpu_set_target(vcpu, init);
1223 	if (ret)
1224 		return ret;
1225 
1226 	/*
1227 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1228 	 * guest MMU is turned off and flush the caches as needed.
1229 	 *
1230 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1231 	 * ensuring that the data side is always coherent. We still
1232 	 * need to invalidate the I-cache though, as FWB does *not*
1233 	 * imply CTR_EL0.DIC.
1234 	 */
1235 	if (vcpu_has_run_once(vcpu)) {
1236 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1237 			stage2_unmap_vm(vcpu->kvm);
1238 		else
1239 			icache_inval_all_pou();
1240 	}
1241 
1242 	vcpu_reset_hcr(vcpu);
1243 	vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1244 
1245 	/*
1246 	 * Handle the "start in power-off" case.
1247 	 */
1248 	spin_lock(&vcpu->arch.mp_state_lock);
1249 
1250 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1251 		__kvm_arm_vcpu_power_off(vcpu);
1252 	else
1253 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1254 
1255 	spin_unlock(&vcpu->arch.mp_state_lock);
1256 
1257 	return 0;
1258 }
1259 
1260 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1261 				 struct kvm_device_attr *attr)
1262 {
1263 	int ret = -ENXIO;
1264 
1265 	switch (attr->group) {
1266 	default:
1267 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1268 		break;
1269 	}
1270 
1271 	return ret;
1272 }
1273 
1274 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1275 				 struct kvm_device_attr *attr)
1276 {
1277 	int ret = -ENXIO;
1278 
1279 	switch (attr->group) {
1280 	default:
1281 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1282 		break;
1283 	}
1284 
1285 	return ret;
1286 }
1287 
1288 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1289 				 struct kvm_device_attr *attr)
1290 {
1291 	int ret = -ENXIO;
1292 
1293 	switch (attr->group) {
1294 	default:
1295 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1296 		break;
1297 	}
1298 
1299 	return ret;
1300 }
1301 
1302 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1303 				   struct kvm_vcpu_events *events)
1304 {
1305 	memset(events, 0, sizeof(*events));
1306 
1307 	return __kvm_arm_vcpu_get_events(vcpu, events);
1308 }
1309 
1310 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1311 				   struct kvm_vcpu_events *events)
1312 {
1313 	int i;
1314 
1315 	/* check whether the reserved field is zero */
1316 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1317 		if (events->reserved[i])
1318 			return -EINVAL;
1319 
1320 	/* check whether the pad field is zero */
1321 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1322 		if (events->exception.pad[i])
1323 			return -EINVAL;
1324 
1325 	return __kvm_arm_vcpu_set_events(vcpu, events);
1326 }
1327 
1328 long kvm_arch_vcpu_ioctl(struct file *filp,
1329 			 unsigned int ioctl, unsigned long arg)
1330 {
1331 	struct kvm_vcpu *vcpu = filp->private_data;
1332 	void __user *argp = (void __user *)arg;
1333 	struct kvm_device_attr attr;
1334 	long r;
1335 
1336 	switch (ioctl) {
1337 	case KVM_ARM_VCPU_INIT: {
1338 		struct kvm_vcpu_init init;
1339 
1340 		r = -EFAULT;
1341 		if (copy_from_user(&init, argp, sizeof(init)))
1342 			break;
1343 
1344 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1345 		break;
1346 	}
1347 	case KVM_SET_ONE_REG:
1348 	case KVM_GET_ONE_REG: {
1349 		struct kvm_one_reg reg;
1350 
1351 		r = -ENOEXEC;
1352 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1353 			break;
1354 
1355 		r = -EFAULT;
1356 		if (copy_from_user(&reg, argp, sizeof(reg)))
1357 			break;
1358 
1359 		/*
1360 		 * We could owe a reset due to PSCI. Handle the pending reset
1361 		 * here to ensure userspace register accesses are ordered after
1362 		 * the reset.
1363 		 */
1364 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1365 			kvm_reset_vcpu(vcpu);
1366 
1367 		if (ioctl == KVM_SET_ONE_REG)
1368 			r = kvm_arm_set_reg(vcpu, &reg);
1369 		else
1370 			r = kvm_arm_get_reg(vcpu, &reg);
1371 		break;
1372 	}
1373 	case KVM_GET_REG_LIST: {
1374 		struct kvm_reg_list __user *user_list = argp;
1375 		struct kvm_reg_list reg_list;
1376 		unsigned n;
1377 
1378 		r = -ENOEXEC;
1379 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1380 			break;
1381 
1382 		r = -EPERM;
1383 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1384 			break;
1385 
1386 		r = -EFAULT;
1387 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1388 			break;
1389 		n = reg_list.n;
1390 		reg_list.n = kvm_arm_num_regs(vcpu);
1391 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1392 			break;
1393 		r = -E2BIG;
1394 		if (n < reg_list.n)
1395 			break;
1396 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1397 		break;
1398 	}
1399 	case KVM_SET_DEVICE_ATTR: {
1400 		r = -EFAULT;
1401 		if (copy_from_user(&attr, argp, sizeof(attr)))
1402 			break;
1403 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1404 		break;
1405 	}
1406 	case KVM_GET_DEVICE_ATTR: {
1407 		r = -EFAULT;
1408 		if (copy_from_user(&attr, argp, sizeof(attr)))
1409 			break;
1410 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1411 		break;
1412 	}
1413 	case KVM_HAS_DEVICE_ATTR: {
1414 		r = -EFAULT;
1415 		if (copy_from_user(&attr, argp, sizeof(attr)))
1416 			break;
1417 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1418 		break;
1419 	}
1420 	case KVM_GET_VCPU_EVENTS: {
1421 		struct kvm_vcpu_events events;
1422 
1423 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1424 			return -EINVAL;
1425 
1426 		if (copy_to_user(argp, &events, sizeof(events)))
1427 			return -EFAULT;
1428 
1429 		return 0;
1430 	}
1431 	case KVM_SET_VCPU_EVENTS: {
1432 		struct kvm_vcpu_events events;
1433 
1434 		if (copy_from_user(&events, argp, sizeof(events)))
1435 			return -EFAULT;
1436 
1437 		return kvm_arm_vcpu_set_events(vcpu, &events);
1438 	}
1439 	case KVM_ARM_VCPU_FINALIZE: {
1440 		int what;
1441 
1442 		if (!kvm_vcpu_initialized(vcpu))
1443 			return -ENOEXEC;
1444 
1445 		if (get_user(what, (const int __user *)argp))
1446 			return -EFAULT;
1447 
1448 		return kvm_arm_vcpu_finalize(vcpu, what);
1449 	}
1450 	default:
1451 		r = -EINVAL;
1452 	}
1453 
1454 	return r;
1455 }
1456 
1457 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1458 {
1459 
1460 }
1461 
1462 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1463 					const struct kvm_memory_slot *memslot)
1464 {
1465 	kvm_flush_remote_tlbs(kvm);
1466 }
1467 
1468 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1469 					struct kvm_arm_device_addr *dev_addr)
1470 {
1471 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1472 	case KVM_ARM_DEVICE_VGIC_V2:
1473 		if (!vgic_present)
1474 			return -ENXIO;
1475 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1476 	default:
1477 		return -ENODEV;
1478 	}
1479 }
1480 
1481 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1482 {
1483 	switch (attr->group) {
1484 	case KVM_ARM_VM_SMCCC_CTRL:
1485 		return kvm_vm_smccc_has_attr(kvm, attr);
1486 	default:
1487 		return -ENXIO;
1488 	}
1489 }
1490 
1491 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1492 {
1493 	switch (attr->group) {
1494 	case KVM_ARM_VM_SMCCC_CTRL:
1495 		return kvm_vm_smccc_set_attr(kvm, attr);
1496 	default:
1497 		return -ENXIO;
1498 	}
1499 }
1500 
1501 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1502 {
1503 	struct kvm *kvm = filp->private_data;
1504 	void __user *argp = (void __user *)arg;
1505 	struct kvm_device_attr attr;
1506 
1507 	switch (ioctl) {
1508 	case KVM_CREATE_IRQCHIP: {
1509 		int ret;
1510 		if (!vgic_present)
1511 			return -ENXIO;
1512 		mutex_lock(&kvm->lock);
1513 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1514 		mutex_unlock(&kvm->lock);
1515 		return ret;
1516 	}
1517 	case KVM_ARM_SET_DEVICE_ADDR: {
1518 		struct kvm_arm_device_addr dev_addr;
1519 
1520 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1521 			return -EFAULT;
1522 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1523 	}
1524 	case KVM_ARM_PREFERRED_TARGET: {
1525 		struct kvm_vcpu_init init;
1526 
1527 		kvm_vcpu_preferred_target(&init);
1528 
1529 		if (copy_to_user(argp, &init, sizeof(init)))
1530 			return -EFAULT;
1531 
1532 		return 0;
1533 	}
1534 	case KVM_ARM_MTE_COPY_TAGS: {
1535 		struct kvm_arm_copy_mte_tags copy_tags;
1536 
1537 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1538 			return -EFAULT;
1539 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1540 	}
1541 	case KVM_ARM_SET_COUNTER_OFFSET: {
1542 		struct kvm_arm_counter_offset offset;
1543 
1544 		if (copy_from_user(&offset, argp, sizeof(offset)))
1545 			return -EFAULT;
1546 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1547 	}
1548 	case KVM_HAS_DEVICE_ATTR: {
1549 		if (copy_from_user(&attr, argp, sizeof(attr)))
1550 			return -EFAULT;
1551 
1552 		return kvm_vm_has_attr(kvm, &attr);
1553 	}
1554 	case KVM_SET_DEVICE_ATTR: {
1555 		if (copy_from_user(&attr, argp, sizeof(attr)))
1556 			return -EFAULT;
1557 
1558 		return kvm_vm_set_attr(kvm, &attr);
1559 	}
1560 	default:
1561 		return -EINVAL;
1562 	}
1563 }
1564 
1565 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1566 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1567 {
1568 	struct kvm_vcpu *tmp_vcpu;
1569 
1570 	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1571 		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1572 		mutex_unlock(&tmp_vcpu->mutex);
1573 	}
1574 }
1575 
1576 void unlock_all_vcpus(struct kvm *kvm)
1577 {
1578 	lockdep_assert_held(&kvm->lock);
1579 
1580 	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1581 }
1582 
1583 /* Returns true if all vcpus were locked, false otherwise */
1584 bool lock_all_vcpus(struct kvm *kvm)
1585 {
1586 	struct kvm_vcpu *tmp_vcpu;
1587 	unsigned long c;
1588 
1589 	lockdep_assert_held(&kvm->lock);
1590 
1591 	/*
1592 	 * Any time a vcpu is in an ioctl (including running), the
1593 	 * core KVM code tries to grab the vcpu->mutex.
1594 	 *
1595 	 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1596 	 * other VCPUs can fiddle with the state while we access it.
1597 	 */
1598 	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1599 		if (!mutex_trylock(&tmp_vcpu->mutex)) {
1600 			unlock_vcpus(kvm, c - 1);
1601 			return false;
1602 		}
1603 	}
1604 
1605 	return true;
1606 }
1607 
1608 static unsigned long nvhe_percpu_size(void)
1609 {
1610 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1611 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1612 }
1613 
1614 static unsigned long nvhe_percpu_order(void)
1615 {
1616 	unsigned long size = nvhe_percpu_size();
1617 
1618 	return size ? get_order(size) : 0;
1619 }
1620 
1621 /* A lookup table holding the hypervisor VA for each vector slot */
1622 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1623 
1624 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1625 {
1626 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1627 }
1628 
1629 static int kvm_init_vector_slots(void)
1630 {
1631 	int err;
1632 	void *base;
1633 
1634 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1635 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1636 
1637 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1638 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1639 
1640 	if (kvm_system_needs_idmapped_vectors() &&
1641 	    !is_protected_kvm_enabled()) {
1642 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1643 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1644 		if (err)
1645 			return err;
1646 	}
1647 
1648 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1649 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1650 	return 0;
1651 }
1652 
1653 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1654 {
1655 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1656 	unsigned long tcr;
1657 
1658 	/*
1659 	 * Calculate the raw per-cpu offset without a translation from the
1660 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1661 	 * so that we can use adr_l to access per-cpu variables in EL2.
1662 	 * Also drop the KASAN tag which gets in the way...
1663 	 */
1664 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1665 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1666 
1667 	params->mair_el2 = read_sysreg(mair_el1);
1668 
1669 	tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1670 	tcr &= ~TCR_T0SZ_MASK;
1671 	tcr |= TCR_T0SZ(hyp_va_bits);
1672 	params->tcr_el2 = tcr;
1673 
1674 	params->pgd_pa = kvm_mmu_get_httbr();
1675 	if (is_protected_kvm_enabled())
1676 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1677 	else
1678 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1679 	params->vttbr = params->vtcr = 0;
1680 
1681 	/*
1682 	 * Flush the init params from the data cache because the struct will
1683 	 * be read while the MMU is off.
1684 	 */
1685 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1686 }
1687 
1688 static void hyp_install_host_vector(void)
1689 {
1690 	struct kvm_nvhe_init_params *params;
1691 	struct arm_smccc_res res;
1692 
1693 	/* Switch from the HYP stub to our own HYP init vector */
1694 	__hyp_set_vectors(kvm_get_idmap_vector());
1695 
1696 	/*
1697 	 * Call initialization code, and switch to the full blown HYP code.
1698 	 * If the cpucaps haven't been finalized yet, something has gone very
1699 	 * wrong, and hyp will crash and burn when it uses any
1700 	 * cpus_have_const_cap() wrapper.
1701 	 */
1702 	BUG_ON(!system_capabilities_finalized());
1703 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1704 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1705 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1706 }
1707 
1708 static void cpu_init_hyp_mode(void)
1709 {
1710 	hyp_install_host_vector();
1711 
1712 	/*
1713 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1714 	 * at EL2.
1715 	 */
1716 	if (this_cpu_has_cap(ARM64_SSBS) &&
1717 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1718 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1719 	}
1720 }
1721 
1722 static void cpu_hyp_reset(void)
1723 {
1724 	if (!is_kernel_in_hyp_mode())
1725 		__hyp_reset_vectors();
1726 }
1727 
1728 /*
1729  * EL2 vectors can be mapped and rerouted in a number of ways,
1730  * depending on the kernel configuration and CPU present:
1731  *
1732  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1733  *   placed in one of the vector slots, which is executed before jumping
1734  *   to the real vectors.
1735  *
1736  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1737  *   containing the hardening sequence is mapped next to the idmap page,
1738  *   and executed before jumping to the real vectors.
1739  *
1740  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1741  *   empty slot is selected, mapped next to the idmap page, and
1742  *   executed before jumping to the real vectors.
1743  *
1744  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1745  * VHE, as we don't have hypervisor-specific mappings. If the system
1746  * is VHE and yet selects this capability, it will be ignored.
1747  */
1748 static void cpu_set_hyp_vector(void)
1749 {
1750 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1751 	void *vector = hyp_spectre_vector_selector[data->slot];
1752 
1753 	if (!is_protected_kvm_enabled())
1754 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1755 	else
1756 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1757 }
1758 
1759 static void cpu_hyp_init_context(void)
1760 {
1761 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1762 
1763 	if (!is_kernel_in_hyp_mode())
1764 		cpu_init_hyp_mode();
1765 }
1766 
1767 static void cpu_hyp_init_features(void)
1768 {
1769 	cpu_set_hyp_vector();
1770 	kvm_arm_init_debug();
1771 
1772 	if (is_kernel_in_hyp_mode())
1773 		kvm_timer_init_vhe();
1774 
1775 	if (vgic_present)
1776 		kvm_vgic_init_cpu_hardware();
1777 }
1778 
1779 static void cpu_hyp_reinit(void)
1780 {
1781 	cpu_hyp_reset();
1782 	cpu_hyp_init_context();
1783 	cpu_hyp_init_features();
1784 }
1785 
1786 static void _kvm_arch_hardware_enable(void *discard)
1787 {
1788 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1789 		cpu_hyp_reinit();
1790 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1791 	}
1792 }
1793 
1794 int kvm_arch_hardware_enable(void)
1795 {
1796 	int was_enabled = __this_cpu_read(kvm_arm_hardware_enabled);
1797 
1798 	_kvm_arch_hardware_enable(NULL);
1799 
1800 	if (!was_enabled) {
1801 		kvm_vgic_cpu_up();
1802 		kvm_timer_cpu_up();
1803 	}
1804 
1805 	return 0;
1806 }
1807 
1808 static void _kvm_arch_hardware_disable(void *discard)
1809 {
1810 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1811 		cpu_hyp_reset();
1812 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1813 	}
1814 }
1815 
1816 void kvm_arch_hardware_disable(void)
1817 {
1818 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1819 		kvm_timer_cpu_down();
1820 		kvm_vgic_cpu_down();
1821 	}
1822 
1823 	if (!is_protected_kvm_enabled())
1824 		_kvm_arch_hardware_disable(NULL);
1825 }
1826 
1827 #ifdef CONFIG_CPU_PM
1828 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1829 				    unsigned long cmd,
1830 				    void *v)
1831 {
1832 	/*
1833 	 * kvm_arm_hardware_enabled is left with its old value over
1834 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1835 	 * re-enable hyp.
1836 	 */
1837 	switch (cmd) {
1838 	case CPU_PM_ENTER:
1839 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1840 			/*
1841 			 * don't update kvm_arm_hardware_enabled here
1842 			 * so that the hardware will be re-enabled
1843 			 * when we resume. See below.
1844 			 */
1845 			cpu_hyp_reset();
1846 
1847 		return NOTIFY_OK;
1848 	case CPU_PM_ENTER_FAILED:
1849 	case CPU_PM_EXIT:
1850 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1851 			/* The hardware was enabled before suspend. */
1852 			cpu_hyp_reinit();
1853 
1854 		return NOTIFY_OK;
1855 
1856 	default:
1857 		return NOTIFY_DONE;
1858 	}
1859 }
1860 
1861 static struct notifier_block hyp_init_cpu_pm_nb = {
1862 	.notifier_call = hyp_init_cpu_pm_notifier,
1863 };
1864 
1865 static void __init hyp_cpu_pm_init(void)
1866 {
1867 	if (!is_protected_kvm_enabled())
1868 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1869 }
1870 static void __init hyp_cpu_pm_exit(void)
1871 {
1872 	if (!is_protected_kvm_enabled())
1873 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1874 }
1875 #else
1876 static inline void __init hyp_cpu_pm_init(void)
1877 {
1878 }
1879 static inline void __init hyp_cpu_pm_exit(void)
1880 {
1881 }
1882 #endif
1883 
1884 static void __init init_cpu_logical_map(void)
1885 {
1886 	unsigned int cpu;
1887 
1888 	/*
1889 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1890 	 * Only copy the set of online CPUs whose features have been checked
1891 	 * against the finalized system capabilities. The hypervisor will not
1892 	 * allow any other CPUs from the `possible` set to boot.
1893 	 */
1894 	for_each_online_cpu(cpu)
1895 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1896 }
1897 
1898 #define init_psci_0_1_impl_state(config, what)	\
1899 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1900 
1901 static bool __init init_psci_relay(void)
1902 {
1903 	/*
1904 	 * If PSCI has not been initialized, protected KVM cannot install
1905 	 * itself on newly booted CPUs.
1906 	 */
1907 	if (!psci_ops.get_version) {
1908 		kvm_err("Cannot initialize protected mode without PSCI\n");
1909 		return false;
1910 	}
1911 
1912 	kvm_host_psci_config.version = psci_ops.get_version();
1913 
1914 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1915 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1916 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1917 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1918 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1919 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1920 	}
1921 	return true;
1922 }
1923 
1924 static int __init init_subsystems(void)
1925 {
1926 	int err = 0;
1927 
1928 	/*
1929 	 * Enable hardware so that subsystem initialisation can access EL2.
1930 	 */
1931 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1932 
1933 	/*
1934 	 * Register CPU lower-power notifier
1935 	 */
1936 	hyp_cpu_pm_init();
1937 
1938 	/*
1939 	 * Init HYP view of VGIC
1940 	 */
1941 	err = kvm_vgic_hyp_init();
1942 	switch (err) {
1943 	case 0:
1944 		vgic_present = true;
1945 		break;
1946 	case -ENODEV:
1947 	case -ENXIO:
1948 		vgic_present = false;
1949 		err = 0;
1950 		break;
1951 	default:
1952 		goto out;
1953 	}
1954 
1955 	/*
1956 	 * Init HYP architected timer support
1957 	 */
1958 	err = kvm_timer_hyp_init(vgic_present);
1959 	if (err)
1960 		goto out;
1961 
1962 	kvm_register_perf_callbacks(NULL);
1963 
1964 out:
1965 	if (err)
1966 		hyp_cpu_pm_exit();
1967 
1968 	if (err || !is_protected_kvm_enabled())
1969 		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1970 
1971 	return err;
1972 }
1973 
1974 static void __init teardown_subsystems(void)
1975 {
1976 	kvm_unregister_perf_callbacks();
1977 	hyp_cpu_pm_exit();
1978 }
1979 
1980 static void __init teardown_hyp_mode(void)
1981 {
1982 	int cpu;
1983 
1984 	free_hyp_pgds();
1985 	for_each_possible_cpu(cpu) {
1986 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1987 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
1988 	}
1989 }
1990 
1991 static int __init do_pkvm_init(u32 hyp_va_bits)
1992 {
1993 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
1994 	int ret;
1995 
1996 	preempt_disable();
1997 	cpu_hyp_init_context();
1998 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1999 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2000 				hyp_va_bits);
2001 	cpu_hyp_init_features();
2002 
2003 	/*
2004 	 * The stub hypercalls are now disabled, so set our local flag to
2005 	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2006 	 */
2007 	__this_cpu_write(kvm_arm_hardware_enabled, 1);
2008 	preempt_enable();
2009 
2010 	return ret;
2011 }
2012 
2013 static u64 get_hyp_id_aa64pfr0_el1(void)
2014 {
2015 	/*
2016 	 * Track whether the system isn't affected by spectre/meltdown in the
2017 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2018 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2019 	 * to have to worry about vcpu migration.
2020 	 *
2021 	 * Unlike for non-protected VMs, userspace cannot override this for
2022 	 * protected VMs.
2023 	 */
2024 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2025 
2026 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2027 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2028 
2029 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2030 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2031 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2032 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2033 
2034 	return val;
2035 }
2036 
2037 static void kvm_hyp_init_symbols(void)
2038 {
2039 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2040 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2041 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2042 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2043 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2044 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2045 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2046 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2047 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2048 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2049 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2050 }
2051 
2052 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2053 {
2054 	void *addr = phys_to_virt(hyp_mem_base);
2055 	int ret;
2056 
2057 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2058 	if (ret)
2059 		return ret;
2060 
2061 	ret = do_pkvm_init(hyp_va_bits);
2062 	if (ret)
2063 		return ret;
2064 
2065 	free_hyp_pgds();
2066 
2067 	return 0;
2068 }
2069 
2070 /* Inits Hyp-mode on all online CPUs */
2071 static int __init init_hyp_mode(void)
2072 {
2073 	u32 hyp_va_bits;
2074 	int cpu;
2075 	int err = -ENOMEM;
2076 
2077 	/*
2078 	 * The protected Hyp-mode cannot be initialized if the memory pool
2079 	 * allocation has failed.
2080 	 */
2081 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2082 		goto out_err;
2083 
2084 	/*
2085 	 * Allocate Hyp PGD and setup Hyp identity mapping
2086 	 */
2087 	err = kvm_mmu_init(&hyp_va_bits);
2088 	if (err)
2089 		goto out_err;
2090 
2091 	/*
2092 	 * Allocate stack pages for Hypervisor-mode
2093 	 */
2094 	for_each_possible_cpu(cpu) {
2095 		unsigned long stack_page;
2096 
2097 		stack_page = __get_free_page(GFP_KERNEL);
2098 		if (!stack_page) {
2099 			err = -ENOMEM;
2100 			goto out_err;
2101 		}
2102 
2103 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2104 	}
2105 
2106 	/*
2107 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2108 	 */
2109 	for_each_possible_cpu(cpu) {
2110 		struct page *page;
2111 		void *page_addr;
2112 
2113 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2114 		if (!page) {
2115 			err = -ENOMEM;
2116 			goto out_err;
2117 		}
2118 
2119 		page_addr = page_address(page);
2120 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2121 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2122 	}
2123 
2124 	/*
2125 	 * Map the Hyp-code called directly from the host
2126 	 */
2127 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2128 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2129 	if (err) {
2130 		kvm_err("Cannot map world-switch code\n");
2131 		goto out_err;
2132 	}
2133 
2134 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2135 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2136 	if (err) {
2137 		kvm_err("Cannot map .hyp.rodata section\n");
2138 		goto out_err;
2139 	}
2140 
2141 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2142 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2143 	if (err) {
2144 		kvm_err("Cannot map rodata section\n");
2145 		goto out_err;
2146 	}
2147 
2148 	/*
2149 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2150 	 * section thanks to an assertion in the linker script. Map it RW and
2151 	 * the rest of .bss RO.
2152 	 */
2153 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2154 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2155 	if (err) {
2156 		kvm_err("Cannot map hyp bss section: %d\n", err);
2157 		goto out_err;
2158 	}
2159 
2160 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2161 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2162 	if (err) {
2163 		kvm_err("Cannot map bss section\n");
2164 		goto out_err;
2165 	}
2166 
2167 	/*
2168 	 * Map the Hyp stack pages
2169 	 */
2170 	for_each_possible_cpu(cpu) {
2171 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2172 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2173 		unsigned long hyp_addr;
2174 
2175 		/*
2176 		 * Allocate a contiguous HYP private VA range for the stack
2177 		 * and guard page. The allocation is also aligned based on
2178 		 * the order of its size.
2179 		 */
2180 		err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2181 		if (err) {
2182 			kvm_err("Cannot allocate hyp stack guard page\n");
2183 			goto out_err;
2184 		}
2185 
2186 		/*
2187 		 * Since the stack grows downwards, map the stack to the page
2188 		 * at the higher address and leave the lower guard page
2189 		 * unbacked.
2190 		 *
2191 		 * Any valid stack address now has the PAGE_SHIFT bit as 1
2192 		 * and addresses corresponding to the guard page have the
2193 		 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2194 		 */
2195 		err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2196 					    __pa(stack_page), PAGE_HYP);
2197 		if (err) {
2198 			kvm_err("Cannot map hyp stack\n");
2199 			goto out_err;
2200 		}
2201 
2202 		/*
2203 		 * Save the stack PA in nvhe_init_params. This will be needed
2204 		 * to recreate the stack mapping in protected nVHE mode.
2205 		 * __hyp_pa() won't do the right thing there, since the stack
2206 		 * has been mapped in the flexible private VA space.
2207 		 */
2208 		params->stack_pa = __pa(stack_page);
2209 
2210 		params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2211 	}
2212 
2213 	for_each_possible_cpu(cpu) {
2214 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2215 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2216 
2217 		/* Map Hyp percpu pages */
2218 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2219 		if (err) {
2220 			kvm_err("Cannot map hyp percpu region\n");
2221 			goto out_err;
2222 		}
2223 
2224 		/* Prepare the CPU initialization parameters */
2225 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2226 	}
2227 
2228 	kvm_hyp_init_symbols();
2229 
2230 	if (is_protected_kvm_enabled()) {
2231 		init_cpu_logical_map();
2232 
2233 		if (!init_psci_relay()) {
2234 			err = -ENODEV;
2235 			goto out_err;
2236 		}
2237 
2238 		err = kvm_hyp_init_protection(hyp_va_bits);
2239 		if (err) {
2240 			kvm_err("Failed to init hyp memory protection\n");
2241 			goto out_err;
2242 		}
2243 	}
2244 
2245 	return 0;
2246 
2247 out_err:
2248 	teardown_hyp_mode();
2249 	kvm_err("error initializing Hyp mode: %d\n", err);
2250 	return err;
2251 }
2252 
2253 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2254 {
2255 	struct kvm_vcpu *vcpu;
2256 	unsigned long i;
2257 
2258 	mpidr &= MPIDR_HWID_BITMASK;
2259 	kvm_for_each_vcpu(i, vcpu, kvm) {
2260 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2261 			return vcpu;
2262 	}
2263 	return NULL;
2264 }
2265 
2266 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2267 {
2268 	return irqchip_in_kernel(kvm);
2269 }
2270 
2271 bool kvm_arch_has_irq_bypass(void)
2272 {
2273 	return true;
2274 }
2275 
2276 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2277 				      struct irq_bypass_producer *prod)
2278 {
2279 	struct kvm_kernel_irqfd *irqfd =
2280 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2281 
2282 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2283 					  &irqfd->irq_entry);
2284 }
2285 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2286 				      struct irq_bypass_producer *prod)
2287 {
2288 	struct kvm_kernel_irqfd *irqfd =
2289 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2290 
2291 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2292 				     &irqfd->irq_entry);
2293 }
2294 
2295 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2296 {
2297 	struct kvm_kernel_irqfd *irqfd =
2298 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2299 
2300 	kvm_arm_halt_guest(irqfd->kvm);
2301 }
2302 
2303 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2304 {
2305 	struct kvm_kernel_irqfd *irqfd =
2306 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2307 
2308 	kvm_arm_resume_guest(irqfd->kvm);
2309 }
2310 
2311 /* Initialize Hyp-mode and memory mappings on all CPUs */
2312 static __init int kvm_arm_init(void)
2313 {
2314 	int err;
2315 	bool in_hyp_mode;
2316 
2317 	if (!is_hyp_mode_available()) {
2318 		kvm_info("HYP mode not available\n");
2319 		return -ENODEV;
2320 	}
2321 
2322 	if (kvm_get_mode() == KVM_MODE_NONE) {
2323 		kvm_info("KVM disabled from command line\n");
2324 		return -ENODEV;
2325 	}
2326 
2327 	err = kvm_sys_reg_table_init();
2328 	if (err) {
2329 		kvm_info("Error initializing system register tables");
2330 		return err;
2331 	}
2332 
2333 	in_hyp_mode = is_kernel_in_hyp_mode();
2334 
2335 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2336 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2337 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2338 			 "Only trusted guests should be used on this system.\n");
2339 
2340 	err = kvm_set_ipa_limit();
2341 	if (err)
2342 		return err;
2343 
2344 	err = kvm_arm_init_sve();
2345 	if (err)
2346 		return err;
2347 
2348 	err = kvm_arm_vmid_alloc_init();
2349 	if (err) {
2350 		kvm_err("Failed to initialize VMID allocator.\n");
2351 		return err;
2352 	}
2353 
2354 	if (!in_hyp_mode) {
2355 		err = init_hyp_mode();
2356 		if (err)
2357 			goto out_err;
2358 	}
2359 
2360 	err = kvm_init_vector_slots();
2361 	if (err) {
2362 		kvm_err("Cannot initialise vector slots\n");
2363 		goto out_hyp;
2364 	}
2365 
2366 	err = init_subsystems();
2367 	if (err)
2368 		goto out_hyp;
2369 
2370 	if (is_protected_kvm_enabled()) {
2371 		kvm_info("Protected nVHE mode initialized successfully\n");
2372 	} else if (in_hyp_mode) {
2373 		kvm_info("VHE mode initialized successfully\n");
2374 	} else {
2375 		kvm_info("Hyp mode initialized successfully\n");
2376 	}
2377 
2378 	/*
2379 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2380 	 * hypervisor protection is finalized.
2381 	 */
2382 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2383 	if (err)
2384 		goto out_subs;
2385 
2386 	return 0;
2387 
2388 out_subs:
2389 	teardown_subsystems();
2390 out_hyp:
2391 	if (!in_hyp_mode)
2392 		teardown_hyp_mode();
2393 out_err:
2394 	kvm_arm_vmid_alloc_free();
2395 	return err;
2396 }
2397 
2398 static int __init early_kvm_mode_cfg(char *arg)
2399 {
2400 	if (!arg)
2401 		return -EINVAL;
2402 
2403 	if (strcmp(arg, "none") == 0) {
2404 		kvm_mode = KVM_MODE_NONE;
2405 		return 0;
2406 	}
2407 
2408 	if (!is_hyp_mode_available()) {
2409 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2410 		return 0;
2411 	}
2412 
2413 	if (strcmp(arg, "protected") == 0) {
2414 		if (!is_kernel_in_hyp_mode())
2415 			kvm_mode = KVM_MODE_PROTECTED;
2416 		else
2417 			pr_warn_once("Protected KVM not available with VHE\n");
2418 
2419 		return 0;
2420 	}
2421 
2422 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2423 		kvm_mode = KVM_MODE_DEFAULT;
2424 		return 0;
2425 	}
2426 
2427 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2428 		kvm_mode = KVM_MODE_NV;
2429 		return 0;
2430 	}
2431 
2432 	return -EINVAL;
2433 }
2434 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2435 
2436 enum kvm_mode kvm_get_mode(void)
2437 {
2438 	return kvm_mode;
2439 }
2440 
2441 module_init(kvm_arm_init);
2442