xref: /openbmc/linux/arch/arm64/kvm/arm.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/errno.h>
10 #include <linux/err.h>
11 #include <linux/kvm_host.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/vmalloc.h>
15 #include <linux/fs.h>
16 #include <linux/mman.h>
17 #include <linux/sched.h>
18 #include <linux/kvm.h>
19 #include <linux/kvm_irqfd.h>
20 #include <linux/irqbypass.h>
21 #include <linux/sched/stat.h>
22 #include <trace/events/kvm.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace_arm.h"
26 
27 #include <linux/uaccess.h>
28 #include <asm/ptrace.h>
29 #include <asm/mman.h>
30 #include <asm/tlbflush.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpufeature.h>
33 #include <asm/virt.h>
34 #include <asm/kvm_arm.h>
35 #include <asm/kvm_asm.h>
36 #include <asm/kvm_mmu.h>
37 #include <asm/kvm_emulate.h>
38 #include <asm/kvm_coproc.h>
39 #include <asm/sections.h>
40 
41 #include <kvm/arm_hypercalls.h>
42 #include <kvm/arm_pmu.h>
43 #include <kvm/arm_psci.h>
44 
45 #ifdef REQUIRES_VIRT
46 __asm__(".arch_extension	virt");
47 #endif
48 
49 DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
50 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
51 
52 /* The VMID used in the VTTBR */
53 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
54 static u32 kvm_next_vmid;
55 static DEFINE_SPINLOCK(kvm_vmid_lock);
56 
57 static bool vgic_present;
58 
59 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
60 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
61 
62 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
63 {
64 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
65 }
66 
67 int kvm_arch_hardware_setup(void *opaque)
68 {
69 	return 0;
70 }
71 
72 int kvm_arch_check_processor_compat(void *opaque)
73 {
74 	return 0;
75 }
76 
77 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
78 			    struct kvm_enable_cap *cap)
79 {
80 	int r;
81 
82 	if (cap->flags)
83 		return -EINVAL;
84 
85 	switch (cap->cap) {
86 	case KVM_CAP_ARM_NISV_TO_USER:
87 		r = 0;
88 		kvm->arch.return_nisv_io_abort_to_user = true;
89 		break;
90 	default:
91 		r = -EINVAL;
92 		break;
93 	}
94 
95 	return r;
96 }
97 
98 static int kvm_arm_default_max_vcpus(void)
99 {
100 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
101 }
102 
103 /**
104  * kvm_arch_init_vm - initializes a VM data structure
105  * @kvm:	pointer to the KVM struct
106  */
107 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
108 {
109 	int ret;
110 
111 	ret = kvm_arm_setup_stage2(kvm, type);
112 	if (ret)
113 		return ret;
114 
115 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
116 	if (ret)
117 		return ret;
118 
119 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
120 	if (ret)
121 		goto out_free_stage2_pgd;
122 
123 	kvm_vgic_early_init(kvm);
124 
125 	/* The maximum number of VCPUs is limited by the host's GIC model */
126 	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
127 
128 	return ret;
129 out_free_stage2_pgd:
130 	kvm_free_stage2_pgd(&kvm->arch.mmu);
131 	return ret;
132 }
133 
134 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
135 {
136 	return VM_FAULT_SIGBUS;
137 }
138 
139 
140 /**
141  * kvm_arch_destroy_vm - destroy the VM data structure
142  * @kvm:	pointer to the KVM struct
143  */
144 void kvm_arch_destroy_vm(struct kvm *kvm)
145 {
146 	int i;
147 
148 	kvm_vgic_destroy(kvm);
149 
150 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
151 		if (kvm->vcpus[i]) {
152 			kvm_vcpu_destroy(kvm->vcpus[i]);
153 			kvm->vcpus[i] = NULL;
154 		}
155 	}
156 	atomic_set(&kvm->online_vcpus, 0);
157 }
158 
159 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
160 {
161 	int r;
162 	switch (ext) {
163 	case KVM_CAP_IRQCHIP:
164 		r = vgic_present;
165 		break;
166 	case KVM_CAP_IOEVENTFD:
167 	case KVM_CAP_DEVICE_CTRL:
168 	case KVM_CAP_USER_MEMORY:
169 	case KVM_CAP_SYNC_MMU:
170 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
171 	case KVM_CAP_ONE_REG:
172 	case KVM_CAP_ARM_PSCI:
173 	case KVM_CAP_ARM_PSCI_0_2:
174 	case KVM_CAP_READONLY_MEM:
175 	case KVM_CAP_MP_STATE:
176 	case KVM_CAP_IMMEDIATE_EXIT:
177 	case KVM_CAP_VCPU_EVENTS:
178 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
179 	case KVM_CAP_ARM_NISV_TO_USER:
180 	case KVM_CAP_ARM_INJECT_EXT_DABT:
181 		r = 1;
182 		break;
183 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
184 		r = 1;
185 		break;
186 	case KVM_CAP_NR_VCPUS:
187 		r = num_online_cpus();
188 		break;
189 	case KVM_CAP_MAX_VCPUS:
190 	case KVM_CAP_MAX_VCPU_ID:
191 		if (kvm)
192 			r = kvm->arch.max_vcpus;
193 		else
194 			r = kvm_arm_default_max_vcpus();
195 		break;
196 	case KVM_CAP_MSI_DEVID:
197 		if (!kvm)
198 			r = -EINVAL;
199 		else
200 			r = kvm->arch.vgic.msis_require_devid;
201 		break;
202 	case KVM_CAP_ARM_USER_IRQ:
203 		/*
204 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
205 		 * (bump this number if adding more devices)
206 		 */
207 		r = 1;
208 		break;
209 	case KVM_CAP_STEAL_TIME:
210 		r = kvm_arm_pvtime_supported();
211 		break;
212 	default:
213 		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
214 		break;
215 	}
216 	return r;
217 }
218 
219 long kvm_arch_dev_ioctl(struct file *filp,
220 			unsigned int ioctl, unsigned long arg)
221 {
222 	return -EINVAL;
223 }
224 
225 struct kvm *kvm_arch_alloc_vm(void)
226 {
227 	if (!has_vhe())
228 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
229 
230 	return vzalloc(sizeof(struct kvm));
231 }
232 
233 void kvm_arch_free_vm(struct kvm *kvm)
234 {
235 	if (!has_vhe())
236 		kfree(kvm);
237 	else
238 		vfree(kvm);
239 }
240 
241 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
242 {
243 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
244 		return -EBUSY;
245 
246 	if (id >= kvm->arch.max_vcpus)
247 		return -EINVAL;
248 
249 	return 0;
250 }
251 
252 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
253 {
254 	int err;
255 
256 	/* Force users to call KVM_ARM_VCPU_INIT */
257 	vcpu->arch.target = -1;
258 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
259 
260 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
261 
262 	/* Set up the timer */
263 	kvm_timer_vcpu_init(vcpu);
264 
265 	kvm_pmu_vcpu_init(vcpu);
266 
267 	kvm_arm_reset_debug_ptr(vcpu);
268 
269 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
270 
271 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
272 
273 	err = kvm_vgic_vcpu_init(vcpu);
274 	if (err)
275 		return err;
276 
277 	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
278 }
279 
280 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
281 {
282 }
283 
284 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
285 {
286 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
287 		static_branch_dec(&userspace_irqchip_in_use);
288 
289 	kvm_mmu_free_memory_caches(vcpu);
290 	kvm_timer_vcpu_terminate(vcpu);
291 	kvm_pmu_vcpu_destroy(vcpu);
292 
293 	kvm_arm_vcpu_destroy(vcpu);
294 }
295 
296 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
297 {
298 	return kvm_timer_is_pending(vcpu);
299 }
300 
301 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
302 {
303 	/*
304 	 * If we're about to block (most likely because we've just hit a
305 	 * WFI), we need to sync back the state of the GIC CPU interface
306 	 * so that we have the latest PMR and group enables. This ensures
307 	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
308 	 * whether we have pending interrupts.
309 	 *
310 	 * For the same reason, we want to tell GICv4 that we need
311 	 * doorbells to be signalled, should an interrupt become pending.
312 	 */
313 	preempt_disable();
314 	kvm_vgic_vmcr_sync(vcpu);
315 	vgic_v4_put(vcpu, true);
316 	preempt_enable();
317 }
318 
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
320 {
321 	preempt_disable();
322 	vgic_v4_load(vcpu);
323 	preempt_enable();
324 }
325 
326 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
327 {
328 	struct kvm_s2_mmu *mmu;
329 	int *last_ran;
330 
331 	mmu = vcpu->arch.hw_mmu;
332 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
333 
334 	/*
335 	 * We might get preempted before the vCPU actually runs, but
336 	 * over-invalidation doesn't affect correctness.
337 	 */
338 	if (*last_ran != vcpu->vcpu_id) {
339 		kvm_call_hyp(__kvm_tlb_flush_local_vmid, mmu);
340 		*last_ran = vcpu->vcpu_id;
341 	}
342 
343 	vcpu->cpu = cpu;
344 
345 	kvm_vgic_load(vcpu);
346 	kvm_timer_vcpu_load(vcpu);
347 	if (has_vhe())
348 		kvm_vcpu_load_sysregs_vhe(vcpu);
349 	kvm_arch_vcpu_load_fp(vcpu);
350 	kvm_vcpu_pmu_restore_guest(vcpu);
351 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
352 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
353 
354 	if (single_task_running())
355 		vcpu_clear_wfx_traps(vcpu);
356 	else
357 		vcpu_set_wfx_traps(vcpu);
358 
359 	if (vcpu_has_ptrauth(vcpu))
360 		vcpu_ptrauth_disable(vcpu);
361 }
362 
363 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
364 {
365 	kvm_arch_vcpu_put_fp(vcpu);
366 	if (has_vhe())
367 		kvm_vcpu_put_sysregs_vhe(vcpu);
368 	kvm_timer_vcpu_put(vcpu);
369 	kvm_vgic_put(vcpu);
370 	kvm_vcpu_pmu_restore_host(vcpu);
371 
372 	vcpu->cpu = -1;
373 }
374 
375 static void vcpu_power_off(struct kvm_vcpu *vcpu)
376 {
377 	vcpu->arch.power_off = true;
378 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
379 	kvm_vcpu_kick(vcpu);
380 }
381 
382 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
383 				    struct kvm_mp_state *mp_state)
384 {
385 	if (vcpu->arch.power_off)
386 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
387 	else
388 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
389 
390 	return 0;
391 }
392 
393 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
394 				    struct kvm_mp_state *mp_state)
395 {
396 	int ret = 0;
397 
398 	switch (mp_state->mp_state) {
399 	case KVM_MP_STATE_RUNNABLE:
400 		vcpu->arch.power_off = false;
401 		break;
402 	case KVM_MP_STATE_STOPPED:
403 		vcpu_power_off(vcpu);
404 		break;
405 	default:
406 		ret = -EINVAL;
407 	}
408 
409 	return ret;
410 }
411 
412 /**
413  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
414  * @v:		The VCPU pointer
415  *
416  * If the guest CPU is not waiting for interrupts or an interrupt line is
417  * asserted, the CPU is by definition runnable.
418  */
419 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
420 {
421 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
422 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
423 		&& !v->arch.power_off && !v->arch.pause);
424 }
425 
426 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
427 {
428 	return vcpu_mode_priv(vcpu);
429 }
430 
431 /* Just ensure a guest exit from a particular CPU */
432 static void exit_vm_noop(void *info)
433 {
434 }
435 
436 void force_vm_exit(const cpumask_t *mask)
437 {
438 	preempt_disable();
439 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
440 	preempt_enable();
441 }
442 
443 /**
444  * need_new_vmid_gen - check that the VMID is still valid
445  * @vmid: The VMID to check
446  *
447  * return true if there is a new generation of VMIDs being used
448  *
449  * The hardware supports a limited set of values with the value zero reserved
450  * for the host, so we check if an assigned value belongs to a previous
451  * generation, which requires us to assign a new value. If we're the first to
452  * use a VMID for the new generation, we must flush necessary caches and TLBs
453  * on all CPUs.
454  */
455 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
456 {
457 	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
458 	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
459 	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
460 }
461 
462 /**
463  * update_vmid - Update the vmid with a valid VMID for the current generation
464  * @vmid: The stage-2 VMID information struct
465  */
466 static void update_vmid(struct kvm_vmid *vmid)
467 {
468 	if (!need_new_vmid_gen(vmid))
469 		return;
470 
471 	spin_lock(&kvm_vmid_lock);
472 
473 	/*
474 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
475 	 * already allocated a valid vmid for this vm, then this vcpu should
476 	 * use the same vmid.
477 	 */
478 	if (!need_new_vmid_gen(vmid)) {
479 		spin_unlock(&kvm_vmid_lock);
480 		return;
481 	}
482 
483 	/* First user of a new VMID generation? */
484 	if (unlikely(kvm_next_vmid == 0)) {
485 		atomic64_inc(&kvm_vmid_gen);
486 		kvm_next_vmid = 1;
487 
488 		/*
489 		 * On SMP we know no other CPUs can use this CPU's or each
490 		 * other's VMID after force_vm_exit returns since the
491 		 * kvm_vmid_lock blocks them from reentry to the guest.
492 		 */
493 		force_vm_exit(cpu_all_mask);
494 		/*
495 		 * Now broadcast TLB + ICACHE invalidation over the inner
496 		 * shareable domain to make sure all data structures are
497 		 * clean.
498 		 */
499 		kvm_call_hyp(__kvm_flush_vm_context);
500 	}
501 
502 	vmid->vmid = kvm_next_vmid;
503 	kvm_next_vmid++;
504 	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
505 
506 	smp_wmb();
507 	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
508 
509 	spin_unlock(&kvm_vmid_lock);
510 }
511 
512 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
513 {
514 	struct kvm *kvm = vcpu->kvm;
515 	int ret = 0;
516 
517 	if (likely(vcpu->arch.has_run_once))
518 		return 0;
519 
520 	if (!kvm_arm_vcpu_is_finalized(vcpu))
521 		return -EPERM;
522 
523 	vcpu->arch.has_run_once = true;
524 
525 	if (likely(irqchip_in_kernel(kvm))) {
526 		/*
527 		 * Map the VGIC hardware resources before running a vcpu the
528 		 * first time on this VM.
529 		 */
530 		if (unlikely(!vgic_ready(kvm))) {
531 			ret = kvm_vgic_map_resources(kvm);
532 			if (ret)
533 				return ret;
534 		}
535 	} else {
536 		/*
537 		 * Tell the rest of the code that there are userspace irqchip
538 		 * VMs in the wild.
539 		 */
540 		static_branch_inc(&userspace_irqchip_in_use);
541 	}
542 
543 	ret = kvm_timer_enable(vcpu);
544 	if (ret)
545 		return ret;
546 
547 	ret = kvm_arm_pmu_v3_enable(vcpu);
548 
549 	return ret;
550 }
551 
552 bool kvm_arch_intc_initialized(struct kvm *kvm)
553 {
554 	return vgic_initialized(kvm);
555 }
556 
557 void kvm_arm_halt_guest(struct kvm *kvm)
558 {
559 	int i;
560 	struct kvm_vcpu *vcpu;
561 
562 	kvm_for_each_vcpu(i, vcpu, kvm)
563 		vcpu->arch.pause = true;
564 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
565 }
566 
567 void kvm_arm_resume_guest(struct kvm *kvm)
568 {
569 	int i;
570 	struct kvm_vcpu *vcpu;
571 
572 	kvm_for_each_vcpu(i, vcpu, kvm) {
573 		vcpu->arch.pause = false;
574 		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
575 	}
576 }
577 
578 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
579 {
580 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
581 
582 	rcuwait_wait_event(wait,
583 			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
584 			   TASK_INTERRUPTIBLE);
585 
586 	if (vcpu->arch.power_off || vcpu->arch.pause) {
587 		/* Awaken to handle a signal, request we sleep again later. */
588 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
589 	}
590 
591 	/*
592 	 * Make sure we will observe a potential reset request if we've
593 	 * observed a change to the power state. Pairs with the smp_wmb() in
594 	 * kvm_psci_vcpu_on().
595 	 */
596 	smp_rmb();
597 }
598 
599 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
600 {
601 	return vcpu->arch.target >= 0;
602 }
603 
604 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
605 {
606 	if (kvm_request_pending(vcpu)) {
607 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
608 			vcpu_req_sleep(vcpu);
609 
610 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
611 			kvm_reset_vcpu(vcpu);
612 
613 		/*
614 		 * Clear IRQ_PENDING requests that were made to guarantee
615 		 * that a VCPU sees new virtual interrupts.
616 		 */
617 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
618 
619 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
620 			kvm_update_stolen_time(vcpu);
621 
622 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
623 			/* The distributor enable bits were changed */
624 			preempt_disable();
625 			vgic_v4_put(vcpu, false);
626 			vgic_v4_load(vcpu);
627 			preempt_enable();
628 		}
629 	}
630 }
631 
632 /**
633  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
634  * @vcpu:	The VCPU pointer
635  *
636  * This function is called through the VCPU_RUN ioctl called from user space. It
637  * will execute VM code in a loop until the time slice for the process is used
638  * or some emulation is needed from user space in which case the function will
639  * return with return value 0 and with the kvm_run structure filled in with the
640  * required data for the requested emulation.
641  */
642 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
643 {
644 	struct kvm_run *run = vcpu->run;
645 	int ret;
646 
647 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
648 		return -ENOEXEC;
649 
650 	ret = kvm_vcpu_first_run_init(vcpu);
651 	if (ret)
652 		return ret;
653 
654 	if (run->exit_reason == KVM_EXIT_MMIO) {
655 		ret = kvm_handle_mmio_return(vcpu);
656 		if (ret)
657 			return ret;
658 	}
659 
660 	if (run->immediate_exit)
661 		return -EINTR;
662 
663 	vcpu_load(vcpu);
664 
665 	kvm_sigset_activate(vcpu);
666 
667 	ret = 1;
668 	run->exit_reason = KVM_EXIT_UNKNOWN;
669 	while (ret > 0) {
670 		/*
671 		 * Check conditions before entering the guest
672 		 */
673 		cond_resched();
674 
675 		update_vmid(&vcpu->arch.hw_mmu->vmid);
676 
677 		check_vcpu_requests(vcpu);
678 
679 		/*
680 		 * Preparing the interrupts to be injected also
681 		 * involves poking the GIC, which must be done in a
682 		 * non-preemptible context.
683 		 */
684 		preempt_disable();
685 
686 		kvm_pmu_flush_hwstate(vcpu);
687 
688 		local_irq_disable();
689 
690 		kvm_vgic_flush_hwstate(vcpu);
691 
692 		/*
693 		 * Exit if we have a signal pending so that we can deliver the
694 		 * signal to user space.
695 		 */
696 		if (signal_pending(current)) {
697 			ret = -EINTR;
698 			run->exit_reason = KVM_EXIT_INTR;
699 		}
700 
701 		/*
702 		 * If we're using a userspace irqchip, then check if we need
703 		 * to tell a userspace irqchip about timer or PMU level
704 		 * changes and if so, exit to userspace (the actual level
705 		 * state gets updated in kvm_timer_update_run and
706 		 * kvm_pmu_update_run below).
707 		 */
708 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
709 			if (kvm_timer_should_notify_user(vcpu) ||
710 			    kvm_pmu_should_notify_user(vcpu)) {
711 				ret = -EINTR;
712 				run->exit_reason = KVM_EXIT_INTR;
713 			}
714 		}
715 
716 		/*
717 		 * Ensure we set mode to IN_GUEST_MODE after we disable
718 		 * interrupts and before the final VCPU requests check.
719 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
720 		 * Documentation/virt/kvm/vcpu-requests.rst
721 		 */
722 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
723 
724 		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
725 		    kvm_request_pending(vcpu)) {
726 			vcpu->mode = OUTSIDE_GUEST_MODE;
727 			isb(); /* Ensure work in x_flush_hwstate is committed */
728 			kvm_pmu_sync_hwstate(vcpu);
729 			if (static_branch_unlikely(&userspace_irqchip_in_use))
730 				kvm_timer_sync_user(vcpu);
731 			kvm_vgic_sync_hwstate(vcpu);
732 			local_irq_enable();
733 			preempt_enable();
734 			continue;
735 		}
736 
737 		kvm_arm_setup_debug(vcpu);
738 
739 		/**************************************************************
740 		 * Enter the guest
741 		 */
742 		trace_kvm_entry(*vcpu_pc(vcpu));
743 		guest_enter_irqoff();
744 
745 		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
746 
747 		vcpu->mode = OUTSIDE_GUEST_MODE;
748 		vcpu->stat.exits++;
749 		/*
750 		 * Back from guest
751 		 *************************************************************/
752 
753 		kvm_arm_clear_debug(vcpu);
754 
755 		/*
756 		 * We must sync the PMU state before the vgic state so
757 		 * that the vgic can properly sample the updated state of the
758 		 * interrupt line.
759 		 */
760 		kvm_pmu_sync_hwstate(vcpu);
761 
762 		/*
763 		 * Sync the vgic state before syncing the timer state because
764 		 * the timer code needs to know if the virtual timer
765 		 * interrupts are active.
766 		 */
767 		kvm_vgic_sync_hwstate(vcpu);
768 
769 		/*
770 		 * Sync the timer hardware state before enabling interrupts as
771 		 * we don't want vtimer interrupts to race with syncing the
772 		 * timer virtual interrupt state.
773 		 */
774 		if (static_branch_unlikely(&userspace_irqchip_in_use))
775 			kvm_timer_sync_user(vcpu);
776 
777 		kvm_arch_vcpu_ctxsync_fp(vcpu);
778 
779 		/*
780 		 * We may have taken a host interrupt in HYP mode (ie
781 		 * while executing the guest). This interrupt is still
782 		 * pending, as we haven't serviced it yet!
783 		 *
784 		 * We're now back in SVC mode, with interrupts
785 		 * disabled.  Enabling the interrupts now will have
786 		 * the effect of taking the interrupt again, in SVC
787 		 * mode this time.
788 		 */
789 		local_irq_enable();
790 
791 		/*
792 		 * We do local_irq_enable() before calling guest_exit() so
793 		 * that if a timer interrupt hits while running the guest we
794 		 * account that tick as being spent in the guest.  We enable
795 		 * preemption after calling guest_exit() so that if we get
796 		 * preempted we make sure ticks after that is not counted as
797 		 * guest time.
798 		 */
799 		guest_exit();
800 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
801 
802 		/* Exit types that need handling before we can be preempted */
803 		handle_exit_early(vcpu, ret);
804 
805 		preempt_enable();
806 
807 		ret = handle_exit(vcpu, ret);
808 	}
809 
810 	/* Tell userspace about in-kernel device output levels */
811 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
812 		kvm_timer_update_run(vcpu);
813 		kvm_pmu_update_run(vcpu);
814 	}
815 
816 	kvm_sigset_deactivate(vcpu);
817 
818 	vcpu_put(vcpu);
819 	return ret;
820 }
821 
822 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
823 {
824 	int bit_index;
825 	bool set;
826 	unsigned long *hcr;
827 
828 	if (number == KVM_ARM_IRQ_CPU_IRQ)
829 		bit_index = __ffs(HCR_VI);
830 	else /* KVM_ARM_IRQ_CPU_FIQ */
831 		bit_index = __ffs(HCR_VF);
832 
833 	hcr = vcpu_hcr(vcpu);
834 	if (level)
835 		set = test_and_set_bit(bit_index, hcr);
836 	else
837 		set = test_and_clear_bit(bit_index, hcr);
838 
839 	/*
840 	 * If we didn't change anything, no need to wake up or kick other CPUs
841 	 */
842 	if (set == level)
843 		return 0;
844 
845 	/*
846 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
847 	 * trigger a world-switch round on the running physical CPU to set the
848 	 * virtual IRQ/FIQ fields in the HCR appropriately.
849 	 */
850 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
851 	kvm_vcpu_kick(vcpu);
852 
853 	return 0;
854 }
855 
856 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
857 			  bool line_status)
858 {
859 	u32 irq = irq_level->irq;
860 	unsigned int irq_type, vcpu_idx, irq_num;
861 	int nrcpus = atomic_read(&kvm->online_vcpus);
862 	struct kvm_vcpu *vcpu = NULL;
863 	bool level = irq_level->level;
864 
865 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
866 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
867 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
868 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
869 
870 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
871 
872 	switch (irq_type) {
873 	case KVM_ARM_IRQ_TYPE_CPU:
874 		if (irqchip_in_kernel(kvm))
875 			return -ENXIO;
876 
877 		if (vcpu_idx >= nrcpus)
878 			return -EINVAL;
879 
880 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
881 		if (!vcpu)
882 			return -EINVAL;
883 
884 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
885 			return -EINVAL;
886 
887 		return vcpu_interrupt_line(vcpu, irq_num, level);
888 	case KVM_ARM_IRQ_TYPE_PPI:
889 		if (!irqchip_in_kernel(kvm))
890 			return -ENXIO;
891 
892 		if (vcpu_idx >= nrcpus)
893 			return -EINVAL;
894 
895 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
896 		if (!vcpu)
897 			return -EINVAL;
898 
899 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
900 			return -EINVAL;
901 
902 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
903 	case KVM_ARM_IRQ_TYPE_SPI:
904 		if (!irqchip_in_kernel(kvm))
905 			return -ENXIO;
906 
907 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
908 			return -EINVAL;
909 
910 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
911 	}
912 
913 	return -EINVAL;
914 }
915 
916 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
917 			       const struct kvm_vcpu_init *init)
918 {
919 	unsigned int i, ret;
920 	int phys_target = kvm_target_cpu();
921 
922 	if (init->target != phys_target)
923 		return -EINVAL;
924 
925 	/*
926 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
927 	 * use the same target.
928 	 */
929 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
930 		return -EINVAL;
931 
932 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
933 	for (i = 0; i < sizeof(init->features) * 8; i++) {
934 		bool set = (init->features[i / 32] & (1 << (i % 32)));
935 
936 		if (set && i >= KVM_VCPU_MAX_FEATURES)
937 			return -ENOENT;
938 
939 		/*
940 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
941 		 * use the same feature set.
942 		 */
943 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
944 		    test_bit(i, vcpu->arch.features) != set)
945 			return -EINVAL;
946 
947 		if (set)
948 			set_bit(i, vcpu->arch.features);
949 	}
950 
951 	vcpu->arch.target = phys_target;
952 
953 	/* Now we know what it is, we can reset it. */
954 	ret = kvm_reset_vcpu(vcpu);
955 	if (ret) {
956 		vcpu->arch.target = -1;
957 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
958 	}
959 
960 	return ret;
961 }
962 
963 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
964 					 struct kvm_vcpu_init *init)
965 {
966 	int ret;
967 
968 	ret = kvm_vcpu_set_target(vcpu, init);
969 	if (ret)
970 		return ret;
971 
972 	/*
973 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
974 	 * guest MMU is turned off and flush the caches as needed.
975 	 *
976 	 * S2FWB enforces all memory accesses to RAM being cacheable,
977 	 * ensuring that the data side is always coherent. We still
978 	 * need to invalidate the I-cache though, as FWB does *not*
979 	 * imply CTR_EL0.DIC.
980 	 */
981 	if (vcpu->arch.has_run_once) {
982 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
983 			stage2_unmap_vm(vcpu->kvm);
984 		else
985 			__flush_icache_all();
986 	}
987 
988 	vcpu_reset_hcr(vcpu);
989 
990 	/*
991 	 * Handle the "start in power-off" case.
992 	 */
993 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
994 		vcpu_power_off(vcpu);
995 	else
996 		vcpu->arch.power_off = false;
997 
998 	return 0;
999 }
1000 
1001 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1002 				 struct kvm_device_attr *attr)
1003 {
1004 	int ret = -ENXIO;
1005 
1006 	switch (attr->group) {
1007 	default:
1008 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1009 		break;
1010 	}
1011 
1012 	return ret;
1013 }
1014 
1015 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1016 				 struct kvm_device_attr *attr)
1017 {
1018 	int ret = -ENXIO;
1019 
1020 	switch (attr->group) {
1021 	default:
1022 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1023 		break;
1024 	}
1025 
1026 	return ret;
1027 }
1028 
1029 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1030 				 struct kvm_device_attr *attr)
1031 {
1032 	int ret = -ENXIO;
1033 
1034 	switch (attr->group) {
1035 	default:
1036 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1037 		break;
1038 	}
1039 
1040 	return ret;
1041 }
1042 
1043 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1044 				   struct kvm_vcpu_events *events)
1045 {
1046 	memset(events, 0, sizeof(*events));
1047 
1048 	return __kvm_arm_vcpu_get_events(vcpu, events);
1049 }
1050 
1051 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1052 				   struct kvm_vcpu_events *events)
1053 {
1054 	int i;
1055 
1056 	/* check whether the reserved field is zero */
1057 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1058 		if (events->reserved[i])
1059 			return -EINVAL;
1060 
1061 	/* check whether the pad field is zero */
1062 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1063 		if (events->exception.pad[i])
1064 			return -EINVAL;
1065 
1066 	return __kvm_arm_vcpu_set_events(vcpu, events);
1067 }
1068 
1069 long kvm_arch_vcpu_ioctl(struct file *filp,
1070 			 unsigned int ioctl, unsigned long arg)
1071 {
1072 	struct kvm_vcpu *vcpu = filp->private_data;
1073 	void __user *argp = (void __user *)arg;
1074 	struct kvm_device_attr attr;
1075 	long r;
1076 
1077 	switch (ioctl) {
1078 	case KVM_ARM_VCPU_INIT: {
1079 		struct kvm_vcpu_init init;
1080 
1081 		r = -EFAULT;
1082 		if (copy_from_user(&init, argp, sizeof(init)))
1083 			break;
1084 
1085 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1086 		break;
1087 	}
1088 	case KVM_SET_ONE_REG:
1089 	case KVM_GET_ONE_REG: {
1090 		struct kvm_one_reg reg;
1091 
1092 		r = -ENOEXEC;
1093 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1094 			break;
1095 
1096 		r = -EFAULT;
1097 		if (copy_from_user(&reg, argp, sizeof(reg)))
1098 			break;
1099 
1100 		if (ioctl == KVM_SET_ONE_REG)
1101 			r = kvm_arm_set_reg(vcpu, &reg);
1102 		else
1103 			r = kvm_arm_get_reg(vcpu, &reg);
1104 		break;
1105 	}
1106 	case KVM_GET_REG_LIST: {
1107 		struct kvm_reg_list __user *user_list = argp;
1108 		struct kvm_reg_list reg_list;
1109 		unsigned n;
1110 
1111 		r = -ENOEXEC;
1112 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1113 			break;
1114 
1115 		r = -EPERM;
1116 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1117 			break;
1118 
1119 		r = -EFAULT;
1120 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1121 			break;
1122 		n = reg_list.n;
1123 		reg_list.n = kvm_arm_num_regs(vcpu);
1124 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1125 			break;
1126 		r = -E2BIG;
1127 		if (n < reg_list.n)
1128 			break;
1129 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1130 		break;
1131 	}
1132 	case KVM_SET_DEVICE_ATTR: {
1133 		r = -EFAULT;
1134 		if (copy_from_user(&attr, argp, sizeof(attr)))
1135 			break;
1136 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1137 		break;
1138 	}
1139 	case KVM_GET_DEVICE_ATTR: {
1140 		r = -EFAULT;
1141 		if (copy_from_user(&attr, argp, sizeof(attr)))
1142 			break;
1143 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1144 		break;
1145 	}
1146 	case KVM_HAS_DEVICE_ATTR: {
1147 		r = -EFAULT;
1148 		if (copy_from_user(&attr, argp, sizeof(attr)))
1149 			break;
1150 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1151 		break;
1152 	}
1153 	case KVM_GET_VCPU_EVENTS: {
1154 		struct kvm_vcpu_events events;
1155 
1156 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1157 			return -EINVAL;
1158 
1159 		if (copy_to_user(argp, &events, sizeof(events)))
1160 			return -EFAULT;
1161 
1162 		return 0;
1163 	}
1164 	case KVM_SET_VCPU_EVENTS: {
1165 		struct kvm_vcpu_events events;
1166 
1167 		if (copy_from_user(&events, argp, sizeof(events)))
1168 			return -EFAULT;
1169 
1170 		return kvm_arm_vcpu_set_events(vcpu, &events);
1171 	}
1172 	case KVM_ARM_VCPU_FINALIZE: {
1173 		int what;
1174 
1175 		if (!kvm_vcpu_initialized(vcpu))
1176 			return -ENOEXEC;
1177 
1178 		if (get_user(what, (const int __user *)argp))
1179 			return -EFAULT;
1180 
1181 		return kvm_arm_vcpu_finalize(vcpu, what);
1182 	}
1183 	default:
1184 		r = -EINVAL;
1185 	}
1186 
1187 	return r;
1188 }
1189 
1190 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1191 {
1192 
1193 }
1194 
1195 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1196 					struct kvm_memory_slot *memslot)
1197 {
1198 	kvm_flush_remote_tlbs(kvm);
1199 }
1200 
1201 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1202 					struct kvm_arm_device_addr *dev_addr)
1203 {
1204 	unsigned long dev_id, type;
1205 
1206 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1207 		KVM_ARM_DEVICE_ID_SHIFT;
1208 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1209 		KVM_ARM_DEVICE_TYPE_SHIFT;
1210 
1211 	switch (dev_id) {
1212 	case KVM_ARM_DEVICE_VGIC_V2:
1213 		if (!vgic_present)
1214 			return -ENXIO;
1215 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1216 	default:
1217 		return -ENODEV;
1218 	}
1219 }
1220 
1221 long kvm_arch_vm_ioctl(struct file *filp,
1222 		       unsigned int ioctl, unsigned long arg)
1223 {
1224 	struct kvm *kvm = filp->private_data;
1225 	void __user *argp = (void __user *)arg;
1226 
1227 	switch (ioctl) {
1228 	case KVM_CREATE_IRQCHIP: {
1229 		int ret;
1230 		if (!vgic_present)
1231 			return -ENXIO;
1232 		mutex_lock(&kvm->lock);
1233 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1234 		mutex_unlock(&kvm->lock);
1235 		return ret;
1236 	}
1237 	case KVM_ARM_SET_DEVICE_ADDR: {
1238 		struct kvm_arm_device_addr dev_addr;
1239 
1240 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1241 			return -EFAULT;
1242 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1243 	}
1244 	case KVM_ARM_PREFERRED_TARGET: {
1245 		int err;
1246 		struct kvm_vcpu_init init;
1247 
1248 		err = kvm_vcpu_preferred_target(&init);
1249 		if (err)
1250 			return err;
1251 
1252 		if (copy_to_user(argp, &init, sizeof(init)))
1253 			return -EFAULT;
1254 
1255 		return 0;
1256 	}
1257 	default:
1258 		return -EINVAL;
1259 	}
1260 }
1261 
1262 static int kvm_map_vectors(void)
1263 {
1264 	/*
1265 	 * SV2  = ARM64_SPECTRE_V2
1266 	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
1267 	 *
1268 	 * !SV2 + !HEL2 -> use direct vectors
1269 	 *  SV2 + !HEL2 -> use hardened vectors in place
1270 	 * !SV2 +  HEL2 -> allocate one vector slot and use exec mapping
1271 	 *  SV2 +  HEL2 -> use hardened vectors and use exec mapping
1272 	 */
1273 	if (cpus_have_const_cap(ARM64_SPECTRE_V2)) {
1274 		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
1275 		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
1276 	}
1277 
1278 	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
1279 		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
1280 		unsigned long size = __BP_HARDEN_HYP_VECS_SZ;
1281 
1282 		/*
1283 		 * Always allocate a spare vector slot, as we don't
1284 		 * know yet which CPUs have a BP hardening slot that
1285 		 * we can reuse.
1286 		 */
1287 		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
1288 		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
1289 		return create_hyp_exec_mappings(vect_pa, size,
1290 						&__kvm_bp_vect_base);
1291 	}
1292 
1293 	return 0;
1294 }
1295 
1296 static void cpu_init_hyp_mode(void)
1297 {
1298 	phys_addr_t pgd_ptr;
1299 	unsigned long hyp_stack_ptr;
1300 	unsigned long vector_ptr;
1301 	unsigned long tpidr_el2;
1302 
1303 	/* Switch from the HYP stub to our own HYP init vector */
1304 	__hyp_set_vectors(kvm_get_idmap_vector());
1305 
1306 	/*
1307 	 * Calculate the raw per-cpu offset without a translation from the
1308 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1309 	 * so that we can use adr_l to access per-cpu variables in EL2.
1310 	 */
1311 	tpidr_el2 = ((unsigned long)this_cpu_ptr(&kvm_host_data) -
1312 		     (unsigned long)kvm_ksym_ref(&kvm_host_data));
1313 
1314 	pgd_ptr = kvm_mmu_get_httbr();
1315 	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1316 	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1317 
1318 	/*
1319 	 * Call initialization code, and switch to the full blown HYP code.
1320 	 * If the cpucaps haven't been finalized yet, something has gone very
1321 	 * wrong, and hyp will crash and burn when it uses any
1322 	 * cpus_have_const_cap() wrapper.
1323 	 */
1324 	BUG_ON(!system_capabilities_finalized());
1325 	__kvm_call_hyp((void *)pgd_ptr, hyp_stack_ptr, vector_ptr, tpidr_el2);
1326 
1327 	/*
1328 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1329 	 * at EL2.
1330 	 */
1331 	if (this_cpu_has_cap(ARM64_SSBS) &&
1332 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1333 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1334 	}
1335 }
1336 
1337 static void cpu_hyp_reset(void)
1338 {
1339 	if (!is_kernel_in_hyp_mode())
1340 		__hyp_reset_vectors();
1341 }
1342 
1343 static void cpu_hyp_reinit(void)
1344 {
1345 	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);
1346 
1347 	cpu_hyp_reset();
1348 
1349 	if (is_kernel_in_hyp_mode())
1350 		kvm_timer_init_vhe();
1351 	else
1352 		cpu_init_hyp_mode();
1353 
1354 	kvm_arm_init_debug();
1355 
1356 	if (vgic_present)
1357 		kvm_vgic_init_cpu_hardware();
1358 }
1359 
1360 static void _kvm_arch_hardware_enable(void *discard)
1361 {
1362 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1363 		cpu_hyp_reinit();
1364 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1365 	}
1366 }
1367 
1368 int kvm_arch_hardware_enable(void)
1369 {
1370 	_kvm_arch_hardware_enable(NULL);
1371 	return 0;
1372 }
1373 
1374 static void _kvm_arch_hardware_disable(void *discard)
1375 {
1376 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1377 		cpu_hyp_reset();
1378 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1379 	}
1380 }
1381 
1382 void kvm_arch_hardware_disable(void)
1383 {
1384 	_kvm_arch_hardware_disable(NULL);
1385 }
1386 
1387 #ifdef CONFIG_CPU_PM
1388 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1389 				    unsigned long cmd,
1390 				    void *v)
1391 {
1392 	/*
1393 	 * kvm_arm_hardware_enabled is left with its old value over
1394 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1395 	 * re-enable hyp.
1396 	 */
1397 	switch (cmd) {
1398 	case CPU_PM_ENTER:
1399 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1400 			/*
1401 			 * don't update kvm_arm_hardware_enabled here
1402 			 * so that the hardware will be re-enabled
1403 			 * when we resume. See below.
1404 			 */
1405 			cpu_hyp_reset();
1406 
1407 		return NOTIFY_OK;
1408 	case CPU_PM_ENTER_FAILED:
1409 	case CPU_PM_EXIT:
1410 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1411 			/* The hardware was enabled before suspend. */
1412 			cpu_hyp_reinit();
1413 
1414 		return NOTIFY_OK;
1415 
1416 	default:
1417 		return NOTIFY_DONE;
1418 	}
1419 }
1420 
1421 static struct notifier_block hyp_init_cpu_pm_nb = {
1422 	.notifier_call = hyp_init_cpu_pm_notifier,
1423 };
1424 
1425 static void __init hyp_cpu_pm_init(void)
1426 {
1427 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1428 }
1429 static void __init hyp_cpu_pm_exit(void)
1430 {
1431 	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1432 }
1433 #else
1434 static inline void hyp_cpu_pm_init(void)
1435 {
1436 }
1437 static inline void hyp_cpu_pm_exit(void)
1438 {
1439 }
1440 #endif
1441 
1442 static int init_common_resources(void)
1443 {
1444 	return kvm_set_ipa_limit();
1445 }
1446 
1447 static int init_subsystems(void)
1448 {
1449 	int err = 0;
1450 
1451 	/*
1452 	 * Enable hardware so that subsystem initialisation can access EL2.
1453 	 */
1454 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1455 
1456 	/*
1457 	 * Register CPU lower-power notifier
1458 	 */
1459 	hyp_cpu_pm_init();
1460 
1461 	/*
1462 	 * Init HYP view of VGIC
1463 	 */
1464 	err = kvm_vgic_hyp_init();
1465 	switch (err) {
1466 	case 0:
1467 		vgic_present = true;
1468 		break;
1469 	case -ENODEV:
1470 	case -ENXIO:
1471 		vgic_present = false;
1472 		err = 0;
1473 		break;
1474 	default:
1475 		goto out;
1476 	}
1477 
1478 	/*
1479 	 * Init HYP architected timer support
1480 	 */
1481 	err = kvm_timer_hyp_init(vgic_present);
1482 	if (err)
1483 		goto out;
1484 
1485 	kvm_perf_init();
1486 	kvm_coproc_table_init();
1487 
1488 out:
1489 	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1490 
1491 	return err;
1492 }
1493 
1494 static void teardown_hyp_mode(void)
1495 {
1496 	int cpu;
1497 
1498 	free_hyp_pgds();
1499 	for_each_possible_cpu(cpu)
1500 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1501 }
1502 
1503 /**
1504  * Inits Hyp-mode on all online CPUs
1505  */
1506 static int init_hyp_mode(void)
1507 {
1508 	int cpu;
1509 	int err = 0;
1510 
1511 	/*
1512 	 * Allocate Hyp PGD and setup Hyp identity mapping
1513 	 */
1514 	err = kvm_mmu_init();
1515 	if (err)
1516 		goto out_err;
1517 
1518 	/*
1519 	 * Allocate stack pages for Hypervisor-mode
1520 	 */
1521 	for_each_possible_cpu(cpu) {
1522 		unsigned long stack_page;
1523 
1524 		stack_page = __get_free_page(GFP_KERNEL);
1525 		if (!stack_page) {
1526 			err = -ENOMEM;
1527 			goto out_err;
1528 		}
1529 
1530 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1531 	}
1532 
1533 	/*
1534 	 * Map the Hyp-code called directly from the host
1535 	 */
1536 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1537 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1538 	if (err) {
1539 		kvm_err("Cannot map world-switch code\n");
1540 		goto out_err;
1541 	}
1542 
1543 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1544 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1545 	if (err) {
1546 		kvm_err("Cannot map rodata section\n");
1547 		goto out_err;
1548 	}
1549 
1550 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1551 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1552 	if (err) {
1553 		kvm_err("Cannot map bss section\n");
1554 		goto out_err;
1555 	}
1556 
1557 	err = kvm_map_vectors();
1558 	if (err) {
1559 		kvm_err("Cannot map vectors\n");
1560 		goto out_err;
1561 	}
1562 
1563 	/*
1564 	 * Map the Hyp stack pages
1565 	 */
1566 	for_each_possible_cpu(cpu) {
1567 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1568 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1569 					  PAGE_HYP);
1570 
1571 		if (err) {
1572 			kvm_err("Cannot map hyp stack\n");
1573 			goto out_err;
1574 		}
1575 	}
1576 
1577 	for_each_possible_cpu(cpu) {
1578 		kvm_host_data_t *cpu_data;
1579 
1580 		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
1581 		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1582 
1583 		if (err) {
1584 			kvm_err("Cannot map host CPU state: %d\n", err);
1585 			goto out_err;
1586 		}
1587 	}
1588 
1589 	return 0;
1590 
1591 out_err:
1592 	teardown_hyp_mode();
1593 	kvm_err("error initializing Hyp mode: %d\n", err);
1594 	return err;
1595 }
1596 
1597 static void check_kvm_target_cpu(void *ret)
1598 {
1599 	*(int *)ret = kvm_target_cpu();
1600 }
1601 
1602 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1603 {
1604 	struct kvm_vcpu *vcpu;
1605 	int i;
1606 
1607 	mpidr &= MPIDR_HWID_BITMASK;
1608 	kvm_for_each_vcpu(i, vcpu, kvm) {
1609 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1610 			return vcpu;
1611 	}
1612 	return NULL;
1613 }
1614 
1615 bool kvm_arch_has_irq_bypass(void)
1616 {
1617 	return true;
1618 }
1619 
1620 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1621 				      struct irq_bypass_producer *prod)
1622 {
1623 	struct kvm_kernel_irqfd *irqfd =
1624 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1625 
1626 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1627 					  &irqfd->irq_entry);
1628 }
1629 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1630 				      struct irq_bypass_producer *prod)
1631 {
1632 	struct kvm_kernel_irqfd *irqfd =
1633 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1634 
1635 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1636 				     &irqfd->irq_entry);
1637 }
1638 
1639 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1640 {
1641 	struct kvm_kernel_irqfd *irqfd =
1642 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1643 
1644 	kvm_arm_halt_guest(irqfd->kvm);
1645 }
1646 
1647 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1648 {
1649 	struct kvm_kernel_irqfd *irqfd =
1650 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1651 
1652 	kvm_arm_resume_guest(irqfd->kvm);
1653 }
1654 
1655 /**
1656  * Initialize Hyp-mode and memory mappings on all CPUs.
1657  */
1658 int kvm_arch_init(void *opaque)
1659 {
1660 	int err;
1661 	int ret, cpu;
1662 	bool in_hyp_mode;
1663 
1664 	if (!is_hyp_mode_available()) {
1665 		kvm_info("HYP mode not available\n");
1666 		return -ENODEV;
1667 	}
1668 
1669 	in_hyp_mode = is_kernel_in_hyp_mode();
1670 
1671 	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1672 		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1673 		return -ENODEV;
1674 	}
1675 
1676 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE))
1677 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1678 			 "Only trusted guests should be used on this system.\n");
1679 
1680 	for_each_online_cpu(cpu) {
1681 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1682 		if (ret < 0) {
1683 			kvm_err("Error, CPU %d not supported!\n", cpu);
1684 			return -ENODEV;
1685 		}
1686 	}
1687 
1688 	err = init_common_resources();
1689 	if (err)
1690 		return err;
1691 
1692 	err = kvm_arm_init_sve();
1693 	if (err)
1694 		return err;
1695 
1696 	if (!in_hyp_mode) {
1697 		err = init_hyp_mode();
1698 		if (err)
1699 			goto out_err;
1700 	}
1701 
1702 	err = init_subsystems();
1703 	if (err)
1704 		goto out_hyp;
1705 
1706 	if (in_hyp_mode)
1707 		kvm_info("VHE mode initialized successfully\n");
1708 	else
1709 		kvm_info("Hyp mode initialized successfully\n");
1710 
1711 	return 0;
1712 
1713 out_hyp:
1714 	hyp_cpu_pm_exit();
1715 	if (!in_hyp_mode)
1716 		teardown_hyp_mode();
1717 out_err:
1718 	return err;
1719 }
1720 
1721 /* NOP: Compiling as a module not supported */
1722 void kvm_arch_exit(void)
1723 {
1724 	kvm_perf_teardown();
1725 }
1726 
1727 static int arm_init(void)
1728 {
1729 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1730 	return rc;
1731 }
1732 
1733 module_init(arm_init);
1734