1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/errno.h> 10 #include <linux/err.h> 11 #include <linux/kvm_host.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/vmalloc.h> 15 #include <linux/fs.h> 16 #include <linux/mman.h> 17 #include <linux/sched.h> 18 #include <linux/kvm.h> 19 #include <linux/kvm_irqfd.h> 20 #include <linux/irqbypass.h> 21 #include <linux/sched/stat.h> 22 #include <linux/psci.h> 23 #include <trace/events/kvm.h> 24 25 #define CREATE_TRACE_POINTS 26 #include "trace_arm.h" 27 28 #include <linux/uaccess.h> 29 #include <asm/ptrace.h> 30 #include <asm/mman.h> 31 #include <asm/tlbflush.h> 32 #include <asm/cacheflush.h> 33 #include <asm/cpufeature.h> 34 #include <asm/virt.h> 35 #include <asm/kvm_arm.h> 36 #include <asm/kvm_asm.h> 37 #include <asm/kvm_mmu.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/sections.h> 40 41 #include <kvm/arm_hypercalls.h> 42 #include <kvm/arm_pmu.h> 43 #include <kvm/arm_psci.h> 44 45 #ifdef REQUIRES_VIRT 46 __asm__(".arch_extension virt"); 47 #endif 48 49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized); 51 52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 53 54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS]; 56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 57 58 /* The VMID used in the VTTBR */ 59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 60 static u32 kvm_next_vmid; 61 static DEFINE_SPINLOCK(kvm_vmid_lock); 62 63 static bool vgic_present; 64 65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); 66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 67 68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 69 { 70 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 71 } 72 73 int kvm_arch_hardware_setup(void *opaque) 74 { 75 return 0; 76 } 77 78 int kvm_arch_check_processor_compat(void *opaque) 79 { 80 return 0; 81 } 82 83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 84 struct kvm_enable_cap *cap) 85 { 86 int r; 87 88 if (cap->flags) 89 return -EINVAL; 90 91 switch (cap->cap) { 92 case KVM_CAP_ARM_NISV_TO_USER: 93 r = 0; 94 kvm->arch.return_nisv_io_abort_to_user = true; 95 break; 96 default: 97 r = -EINVAL; 98 break; 99 } 100 101 return r; 102 } 103 104 static int kvm_arm_default_max_vcpus(void) 105 { 106 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 107 } 108 109 static void set_default_spectre(struct kvm *kvm) 110 { 111 /* 112 * The default is to expose CSV2 == 1 if the HW isn't affected. 113 * Although this is a per-CPU feature, we make it global because 114 * asymmetric systems are just a nuisance. 115 * 116 * Userspace can override this as long as it doesn't promise 117 * the impossible. 118 */ 119 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) 120 kvm->arch.pfr0_csv2 = 1; 121 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) 122 kvm->arch.pfr0_csv3 = 1; 123 } 124 125 /** 126 * kvm_arch_init_vm - initializes a VM data structure 127 * @kvm: pointer to the KVM struct 128 */ 129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 130 { 131 int ret; 132 133 ret = kvm_arm_setup_stage2(kvm, type); 134 if (ret) 135 return ret; 136 137 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu); 138 if (ret) 139 return ret; 140 141 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); 142 if (ret) 143 goto out_free_stage2_pgd; 144 145 kvm_vgic_early_init(kvm); 146 147 /* The maximum number of VCPUs is limited by the host's GIC model */ 148 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus(); 149 150 set_default_spectre(kvm); 151 152 return ret; 153 out_free_stage2_pgd: 154 kvm_free_stage2_pgd(&kvm->arch.mmu); 155 return ret; 156 } 157 158 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 159 { 160 return VM_FAULT_SIGBUS; 161 } 162 163 164 /** 165 * kvm_arch_destroy_vm - destroy the VM data structure 166 * @kvm: pointer to the KVM struct 167 */ 168 void kvm_arch_destroy_vm(struct kvm *kvm) 169 { 170 int i; 171 172 bitmap_free(kvm->arch.pmu_filter); 173 174 kvm_vgic_destroy(kvm); 175 176 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 177 if (kvm->vcpus[i]) { 178 kvm_vcpu_destroy(kvm->vcpus[i]); 179 kvm->vcpus[i] = NULL; 180 } 181 } 182 atomic_set(&kvm->online_vcpus, 0); 183 } 184 185 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 186 { 187 int r; 188 switch (ext) { 189 case KVM_CAP_IRQCHIP: 190 r = vgic_present; 191 break; 192 case KVM_CAP_IOEVENTFD: 193 case KVM_CAP_DEVICE_CTRL: 194 case KVM_CAP_USER_MEMORY: 195 case KVM_CAP_SYNC_MMU: 196 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 197 case KVM_CAP_ONE_REG: 198 case KVM_CAP_ARM_PSCI: 199 case KVM_CAP_ARM_PSCI_0_2: 200 case KVM_CAP_READONLY_MEM: 201 case KVM_CAP_MP_STATE: 202 case KVM_CAP_IMMEDIATE_EXIT: 203 case KVM_CAP_VCPU_EVENTS: 204 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 205 case KVM_CAP_ARM_NISV_TO_USER: 206 case KVM_CAP_ARM_INJECT_EXT_DABT: 207 case KVM_CAP_SET_GUEST_DEBUG: 208 case KVM_CAP_VCPU_ATTRIBUTES: 209 case KVM_CAP_PTP_KVM: 210 r = 1; 211 break; 212 case KVM_CAP_SET_GUEST_DEBUG2: 213 return KVM_GUESTDBG_VALID_MASK; 214 case KVM_CAP_ARM_SET_DEVICE_ADDR: 215 r = 1; 216 break; 217 case KVM_CAP_NR_VCPUS: 218 r = num_online_cpus(); 219 break; 220 case KVM_CAP_MAX_VCPUS: 221 case KVM_CAP_MAX_VCPU_ID: 222 if (kvm) 223 r = kvm->arch.max_vcpus; 224 else 225 r = kvm_arm_default_max_vcpus(); 226 break; 227 case KVM_CAP_MSI_DEVID: 228 if (!kvm) 229 r = -EINVAL; 230 else 231 r = kvm->arch.vgic.msis_require_devid; 232 break; 233 case KVM_CAP_ARM_USER_IRQ: 234 /* 235 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 236 * (bump this number if adding more devices) 237 */ 238 r = 1; 239 break; 240 case KVM_CAP_STEAL_TIME: 241 r = kvm_arm_pvtime_supported(); 242 break; 243 case KVM_CAP_ARM_EL1_32BIT: 244 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1); 245 break; 246 case KVM_CAP_GUEST_DEBUG_HW_BPS: 247 r = get_num_brps(); 248 break; 249 case KVM_CAP_GUEST_DEBUG_HW_WPS: 250 r = get_num_wrps(); 251 break; 252 case KVM_CAP_ARM_PMU_V3: 253 r = kvm_arm_support_pmu_v3(); 254 break; 255 case KVM_CAP_ARM_INJECT_SERROR_ESR: 256 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); 257 break; 258 case KVM_CAP_ARM_VM_IPA_SIZE: 259 r = get_kvm_ipa_limit(); 260 break; 261 case KVM_CAP_ARM_SVE: 262 r = system_supports_sve(); 263 break; 264 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 265 case KVM_CAP_ARM_PTRAUTH_GENERIC: 266 r = system_has_full_ptr_auth(); 267 break; 268 default: 269 r = 0; 270 } 271 272 return r; 273 } 274 275 long kvm_arch_dev_ioctl(struct file *filp, 276 unsigned int ioctl, unsigned long arg) 277 { 278 return -EINVAL; 279 } 280 281 struct kvm *kvm_arch_alloc_vm(void) 282 { 283 if (!has_vhe()) 284 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 285 286 return vzalloc(sizeof(struct kvm)); 287 } 288 289 void kvm_arch_free_vm(struct kvm *kvm) 290 { 291 if (!has_vhe()) 292 kfree(kvm); 293 else 294 vfree(kvm); 295 } 296 297 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 298 { 299 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 300 return -EBUSY; 301 302 if (id >= kvm->arch.max_vcpus) 303 return -EINVAL; 304 305 return 0; 306 } 307 308 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 309 { 310 int err; 311 312 /* Force users to call KVM_ARM_VCPU_INIT */ 313 vcpu->arch.target = -1; 314 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 315 316 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 317 318 /* Set up the timer */ 319 kvm_timer_vcpu_init(vcpu); 320 321 kvm_pmu_vcpu_init(vcpu); 322 323 kvm_arm_reset_debug_ptr(vcpu); 324 325 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 326 327 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 328 329 err = kvm_vgic_vcpu_init(vcpu); 330 if (err) 331 return err; 332 333 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); 334 } 335 336 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 337 { 338 } 339 340 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 341 { 342 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm))) 343 static_branch_dec(&userspace_irqchip_in_use); 344 345 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 346 kvm_timer_vcpu_terminate(vcpu); 347 kvm_pmu_vcpu_destroy(vcpu); 348 349 kvm_arm_vcpu_destroy(vcpu); 350 } 351 352 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 353 { 354 return kvm_timer_is_pending(vcpu); 355 } 356 357 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 358 { 359 /* 360 * If we're about to block (most likely because we've just hit a 361 * WFI), we need to sync back the state of the GIC CPU interface 362 * so that we have the latest PMR and group enables. This ensures 363 * that kvm_arch_vcpu_runnable has up-to-date data to decide 364 * whether we have pending interrupts. 365 * 366 * For the same reason, we want to tell GICv4 that we need 367 * doorbells to be signalled, should an interrupt become pending. 368 */ 369 preempt_disable(); 370 kvm_vgic_vmcr_sync(vcpu); 371 vgic_v4_put(vcpu, true); 372 preempt_enable(); 373 } 374 375 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 376 { 377 preempt_disable(); 378 vgic_v4_load(vcpu); 379 preempt_enable(); 380 } 381 382 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 383 { 384 struct kvm_s2_mmu *mmu; 385 int *last_ran; 386 387 mmu = vcpu->arch.hw_mmu; 388 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 389 390 /* 391 * We guarantee that both TLBs and I-cache are private to each 392 * vcpu. If detecting that a vcpu from the same VM has 393 * previously run on the same physical CPU, call into the 394 * hypervisor code to nuke the relevant contexts. 395 * 396 * We might get preempted before the vCPU actually runs, but 397 * over-invalidation doesn't affect correctness. 398 */ 399 if (*last_ran != vcpu->vcpu_id) { 400 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 401 *last_ran = vcpu->vcpu_id; 402 } 403 404 vcpu->cpu = cpu; 405 406 kvm_vgic_load(vcpu); 407 kvm_timer_vcpu_load(vcpu); 408 if (has_vhe()) 409 kvm_vcpu_load_sysregs_vhe(vcpu); 410 kvm_arch_vcpu_load_fp(vcpu); 411 kvm_vcpu_pmu_restore_guest(vcpu); 412 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 413 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 414 415 if (single_task_running()) 416 vcpu_clear_wfx_traps(vcpu); 417 else 418 vcpu_set_wfx_traps(vcpu); 419 420 if (vcpu_has_ptrauth(vcpu)) 421 vcpu_ptrauth_disable(vcpu); 422 kvm_arch_vcpu_load_debug_state_flags(vcpu); 423 } 424 425 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 426 { 427 kvm_arch_vcpu_put_debug_state_flags(vcpu); 428 kvm_arch_vcpu_put_fp(vcpu); 429 if (has_vhe()) 430 kvm_vcpu_put_sysregs_vhe(vcpu); 431 kvm_timer_vcpu_put(vcpu); 432 kvm_vgic_put(vcpu); 433 kvm_vcpu_pmu_restore_host(vcpu); 434 435 vcpu->cpu = -1; 436 } 437 438 static void vcpu_power_off(struct kvm_vcpu *vcpu) 439 { 440 vcpu->arch.power_off = true; 441 kvm_make_request(KVM_REQ_SLEEP, vcpu); 442 kvm_vcpu_kick(vcpu); 443 } 444 445 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 446 struct kvm_mp_state *mp_state) 447 { 448 if (vcpu->arch.power_off) 449 mp_state->mp_state = KVM_MP_STATE_STOPPED; 450 else 451 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 452 453 return 0; 454 } 455 456 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 457 struct kvm_mp_state *mp_state) 458 { 459 int ret = 0; 460 461 switch (mp_state->mp_state) { 462 case KVM_MP_STATE_RUNNABLE: 463 vcpu->arch.power_off = false; 464 break; 465 case KVM_MP_STATE_STOPPED: 466 vcpu_power_off(vcpu); 467 break; 468 default: 469 ret = -EINVAL; 470 } 471 472 return ret; 473 } 474 475 /** 476 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 477 * @v: The VCPU pointer 478 * 479 * If the guest CPU is not waiting for interrupts or an interrupt line is 480 * asserted, the CPU is by definition runnable. 481 */ 482 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 483 { 484 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 485 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 486 && !v->arch.power_off && !v->arch.pause); 487 } 488 489 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 490 { 491 return vcpu_mode_priv(vcpu); 492 } 493 494 /* Just ensure a guest exit from a particular CPU */ 495 static void exit_vm_noop(void *info) 496 { 497 } 498 499 void force_vm_exit(const cpumask_t *mask) 500 { 501 preempt_disable(); 502 smp_call_function_many(mask, exit_vm_noop, NULL, true); 503 preempt_enable(); 504 } 505 506 /** 507 * need_new_vmid_gen - check that the VMID is still valid 508 * @vmid: The VMID to check 509 * 510 * return true if there is a new generation of VMIDs being used 511 * 512 * The hardware supports a limited set of values with the value zero reserved 513 * for the host, so we check if an assigned value belongs to a previous 514 * generation, which requires us to assign a new value. If we're the first to 515 * use a VMID for the new generation, we must flush necessary caches and TLBs 516 * on all CPUs. 517 */ 518 static bool need_new_vmid_gen(struct kvm_vmid *vmid) 519 { 520 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen); 521 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */ 522 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen); 523 } 524 525 /** 526 * update_vmid - Update the vmid with a valid VMID for the current generation 527 * @vmid: The stage-2 VMID information struct 528 */ 529 static void update_vmid(struct kvm_vmid *vmid) 530 { 531 if (!need_new_vmid_gen(vmid)) 532 return; 533 534 spin_lock(&kvm_vmid_lock); 535 536 /* 537 * We need to re-check the vmid_gen here to ensure that if another vcpu 538 * already allocated a valid vmid for this vm, then this vcpu should 539 * use the same vmid. 540 */ 541 if (!need_new_vmid_gen(vmid)) { 542 spin_unlock(&kvm_vmid_lock); 543 return; 544 } 545 546 /* First user of a new VMID generation? */ 547 if (unlikely(kvm_next_vmid == 0)) { 548 atomic64_inc(&kvm_vmid_gen); 549 kvm_next_vmid = 1; 550 551 /* 552 * On SMP we know no other CPUs can use this CPU's or each 553 * other's VMID after force_vm_exit returns since the 554 * kvm_vmid_lock blocks them from reentry to the guest. 555 */ 556 force_vm_exit(cpu_all_mask); 557 /* 558 * Now broadcast TLB + ICACHE invalidation over the inner 559 * shareable domain to make sure all data structures are 560 * clean. 561 */ 562 kvm_call_hyp(__kvm_flush_vm_context); 563 } 564 565 vmid->vmid = kvm_next_vmid; 566 kvm_next_vmid++; 567 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1; 568 569 smp_wmb(); 570 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen)); 571 572 spin_unlock(&kvm_vmid_lock); 573 } 574 575 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 576 { 577 struct kvm *kvm = vcpu->kvm; 578 int ret = 0; 579 580 if (likely(vcpu->arch.has_run_once)) 581 return 0; 582 583 if (!kvm_arm_vcpu_is_finalized(vcpu)) 584 return -EPERM; 585 586 vcpu->arch.has_run_once = true; 587 588 kvm_arm_vcpu_init_debug(vcpu); 589 590 if (likely(irqchip_in_kernel(kvm))) { 591 /* 592 * Map the VGIC hardware resources before running a vcpu the 593 * first time on this VM. 594 */ 595 ret = kvm_vgic_map_resources(kvm); 596 if (ret) 597 return ret; 598 } else { 599 /* 600 * Tell the rest of the code that there are userspace irqchip 601 * VMs in the wild. 602 */ 603 static_branch_inc(&userspace_irqchip_in_use); 604 } 605 606 ret = kvm_timer_enable(vcpu); 607 if (ret) 608 return ret; 609 610 ret = kvm_arm_pmu_v3_enable(vcpu); 611 612 return ret; 613 } 614 615 bool kvm_arch_intc_initialized(struct kvm *kvm) 616 { 617 return vgic_initialized(kvm); 618 } 619 620 void kvm_arm_halt_guest(struct kvm *kvm) 621 { 622 int i; 623 struct kvm_vcpu *vcpu; 624 625 kvm_for_each_vcpu(i, vcpu, kvm) 626 vcpu->arch.pause = true; 627 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 628 } 629 630 void kvm_arm_resume_guest(struct kvm *kvm) 631 { 632 int i; 633 struct kvm_vcpu *vcpu; 634 635 kvm_for_each_vcpu(i, vcpu, kvm) { 636 vcpu->arch.pause = false; 637 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 638 } 639 } 640 641 static void vcpu_req_sleep(struct kvm_vcpu *vcpu) 642 { 643 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 644 645 rcuwait_wait_event(wait, 646 (!vcpu->arch.power_off) &&(!vcpu->arch.pause), 647 TASK_INTERRUPTIBLE); 648 649 if (vcpu->arch.power_off || vcpu->arch.pause) { 650 /* Awaken to handle a signal, request we sleep again later. */ 651 kvm_make_request(KVM_REQ_SLEEP, vcpu); 652 } 653 654 /* 655 * Make sure we will observe a potential reset request if we've 656 * observed a change to the power state. Pairs with the smp_wmb() in 657 * kvm_psci_vcpu_on(). 658 */ 659 smp_rmb(); 660 } 661 662 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 663 { 664 return vcpu->arch.target >= 0; 665 } 666 667 static void check_vcpu_requests(struct kvm_vcpu *vcpu) 668 { 669 if (kvm_request_pending(vcpu)) { 670 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 671 vcpu_req_sleep(vcpu); 672 673 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 674 kvm_reset_vcpu(vcpu); 675 676 /* 677 * Clear IRQ_PENDING requests that were made to guarantee 678 * that a VCPU sees new virtual interrupts. 679 */ 680 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 681 682 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 683 kvm_update_stolen_time(vcpu); 684 685 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 686 /* The distributor enable bits were changed */ 687 preempt_disable(); 688 vgic_v4_put(vcpu, false); 689 vgic_v4_load(vcpu); 690 preempt_enable(); 691 } 692 } 693 } 694 695 /** 696 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 697 * @vcpu: The VCPU pointer 698 * 699 * This function is called through the VCPU_RUN ioctl called from user space. It 700 * will execute VM code in a loop until the time slice for the process is used 701 * or some emulation is needed from user space in which case the function will 702 * return with return value 0 and with the kvm_run structure filled in with the 703 * required data for the requested emulation. 704 */ 705 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 706 { 707 struct kvm_run *run = vcpu->run; 708 int ret; 709 710 if (unlikely(!kvm_vcpu_initialized(vcpu))) 711 return -ENOEXEC; 712 713 ret = kvm_vcpu_first_run_init(vcpu); 714 if (ret) 715 return ret; 716 717 if (run->exit_reason == KVM_EXIT_MMIO) { 718 ret = kvm_handle_mmio_return(vcpu); 719 if (ret) 720 return ret; 721 } 722 723 if (run->immediate_exit) 724 return -EINTR; 725 726 vcpu_load(vcpu); 727 728 kvm_sigset_activate(vcpu); 729 730 ret = 1; 731 run->exit_reason = KVM_EXIT_UNKNOWN; 732 while (ret > 0) { 733 /* 734 * Check conditions before entering the guest 735 */ 736 cond_resched(); 737 738 update_vmid(&vcpu->arch.hw_mmu->vmid); 739 740 check_vcpu_requests(vcpu); 741 742 /* 743 * Preparing the interrupts to be injected also 744 * involves poking the GIC, which must be done in a 745 * non-preemptible context. 746 */ 747 preempt_disable(); 748 749 kvm_pmu_flush_hwstate(vcpu); 750 751 local_irq_disable(); 752 753 kvm_vgic_flush_hwstate(vcpu); 754 755 /* 756 * Exit if we have a signal pending so that we can deliver the 757 * signal to user space. 758 */ 759 if (signal_pending(current)) { 760 ret = -EINTR; 761 run->exit_reason = KVM_EXIT_INTR; 762 } 763 764 /* 765 * If we're using a userspace irqchip, then check if we need 766 * to tell a userspace irqchip about timer or PMU level 767 * changes and if so, exit to userspace (the actual level 768 * state gets updated in kvm_timer_update_run and 769 * kvm_pmu_update_run below). 770 */ 771 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 772 if (kvm_timer_should_notify_user(vcpu) || 773 kvm_pmu_should_notify_user(vcpu)) { 774 ret = -EINTR; 775 run->exit_reason = KVM_EXIT_INTR; 776 } 777 } 778 779 /* 780 * Ensure we set mode to IN_GUEST_MODE after we disable 781 * interrupts and before the final VCPU requests check. 782 * See the comment in kvm_vcpu_exiting_guest_mode() and 783 * Documentation/virt/kvm/vcpu-requests.rst 784 */ 785 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 786 787 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) || 788 kvm_request_pending(vcpu)) { 789 vcpu->mode = OUTSIDE_GUEST_MODE; 790 isb(); /* Ensure work in x_flush_hwstate is committed */ 791 kvm_pmu_sync_hwstate(vcpu); 792 if (static_branch_unlikely(&userspace_irqchip_in_use)) 793 kvm_timer_sync_user(vcpu); 794 kvm_vgic_sync_hwstate(vcpu); 795 local_irq_enable(); 796 preempt_enable(); 797 continue; 798 } 799 800 kvm_arm_setup_debug(vcpu); 801 802 /************************************************************** 803 * Enter the guest 804 */ 805 trace_kvm_entry(*vcpu_pc(vcpu)); 806 guest_enter_irqoff(); 807 808 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 809 810 vcpu->mode = OUTSIDE_GUEST_MODE; 811 vcpu->stat.exits++; 812 /* 813 * Back from guest 814 *************************************************************/ 815 816 kvm_arm_clear_debug(vcpu); 817 818 /* 819 * We must sync the PMU state before the vgic state so 820 * that the vgic can properly sample the updated state of the 821 * interrupt line. 822 */ 823 kvm_pmu_sync_hwstate(vcpu); 824 825 /* 826 * Sync the vgic state before syncing the timer state because 827 * the timer code needs to know if the virtual timer 828 * interrupts are active. 829 */ 830 kvm_vgic_sync_hwstate(vcpu); 831 832 /* 833 * Sync the timer hardware state before enabling interrupts as 834 * we don't want vtimer interrupts to race with syncing the 835 * timer virtual interrupt state. 836 */ 837 if (static_branch_unlikely(&userspace_irqchip_in_use)) 838 kvm_timer_sync_user(vcpu); 839 840 kvm_arch_vcpu_ctxsync_fp(vcpu); 841 842 /* 843 * We may have taken a host interrupt in HYP mode (ie 844 * while executing the guest). This interrupt is still 845 * pending, as we haven't serviced it yet! 846 * 847 * We're now back in SVC mode, with interrupts 848 * disabled. Enabling the interrupts now will have 849 * the effect of taking the interrupt again, in SVC 850 * mode this time. 851 */ 852 local_irq_enable(); 853 854 /* 855 * We do local_irq_enable() before calling guest_exit() so 856 * that if a timer interrupt hits while running the guest we 857 * account that tick as being spent in the guest. We enable 858 * preemption after calling guest_exit() so that if we get 859 * preempted we make sure ticks after that is not counted as 860 * guest time. 861 */ 862 guest_exit(); 863 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 864 865 /* Exit types that need handling before we can be preempted */ 866 handle_exit_early(vcpu, ret); 867 868 preempt_enable(); 869 870 /* 871 * The ARMv8 architecture doesn't give the hypervisor 872 * a mechanism to prevent a guest from dropping to AArch32 EL0 873 * if implemented by the CPU. If we spot the guest in such 874 * state and that we decided it wasn't supposed to do so (like 875 * with the asymmetric AArch32 case), return to userspace with 876 * a fatal error. 877 */ 878 if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) { 879 /* 880 * As we have caught the guest red-handed, decide that 881 * it isn't fit for purpose anymore by making the vcpu 882 * invalid. The VMM can try and fix it by issuing a 883 * KVM_ARM_VCPU_INIT if it really wants to. 884 */ 885 vcpu->arch.target = -1; 886 ret = ARM_EXCEPTION_IL; 887 } 888 889 ret = handle_exit(vcpu, ret); 890 } 891 892 /* Tell userspace about in-kernel device output levels */ 893 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 894 kvm_timer_update_run(vcpu); 895 kvm_pmu_update_run(vcpu); 896 } 897 898 kvm_sigset_deactivate(vcpu); 899 900 vcpu_put(vcpu); 901 return ret; 902 } 903 904 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 905 { 906 int bit_index; 907 bool set; 908 unsigned long *hcr; 909 910 if (number == KVM_ARM_IRQ_CPU_IRQ) 911 bit_index = __ffs(HCR_VI); 912 else /* KVM_ARM_IRQ_CPU_FIQ */ 913 bit_index = __ffs(HCR_VF); 914 915 hcr = vcpu_hcr(vcpu); 916 if (level) 917 set = test_and_set_bit(bit_index, hcr); 918 else 919 set = test_and_clear_bit(bit_index, hcr); 920 921 /* 922 * If we didn't change anything, no need to wake up or kick other CPUs 923 */ 924 if (set == level) 925 return 0; 926 927 /* 928 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 929 * trigger a world-switch round on the running physical CPU to set the 930 * virtual IRQ/FIQ fields in the HCR appropriately. 931 */ 932 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 933 kvm_vcpu_kick(vcpu); 934 935 return 0; 936 } 937 938 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 939 bool line_status) 940 { 941 u32 irq = irq_level->irq; 942 unsigned int irq_type, vcpu_idx, irq_num; 943 int nrcpus = atomic_read(&kvm->online_vcpus); 944 struct kvm_vcpu *vcpu = NULL; 945 bool level = irq_level->level; 946 947 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 948 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 949 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 950 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 951 952 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 953 954 switch (irq_type) { 955 case KVM_ARM_IRQ_TYPE_CPU: 956 if (irqchip_in_kernel(kvm)) 957 return -ENXIO; 958 959 if (vcpu_idx >= nrcpus) 960 return -EINVAL; 961 962 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 963 if (!vcpu) 964 return -EINVAL; 965 966 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 967 return -EINVAL; 968 969 return vcpu_interrupt_line(vcpu, irq_num, level); 970 case KVM_ARM_IRQ_TYPE_PPI: 971 if (!irqchip_in_kernel(kvm)) 972 return -ENXIO; 973 974 if (vcpu_idx >= nrcpus) 975 return -EINVAL; 976 977 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 978 if (!vcpu) 979 return -EINVAL; 980 981 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 982 return -EINVAL; 983 984 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); 985 case KVM_ARM_IRQ_TYPE_SPI: 986 if (!irqchip_in_kernel(kvm)) 987 return -ENXIO; 988 989 if (irq_num < VGIC_NR_PRIVATE_IRQS) 990 return -EINVAL; 991 992 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); 993 } 994 995 return -EINVAL; 996 } 997 998 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 999 const struct kvm_vcpu_init *init) 1000 { 1001 unsigned int i, ret; 1002 int phys_target = kvm_target_cpu(); 1003 1004 if (init->target != phys_target) 1005 return -EINVAL; 1006 1007 /* 1008 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 1009 * use the same target. 1010 */ 1011 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 1012 return -EINVAL; 1013 1014 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 1015 for (i = 0; i < sizeof(init->features) * 8; i++) { 1016 bool set = (init->features[i / 32] & (1 << (i % 32))); 1017 1018 if (set && i >= KVM_VCPU_MAX_FEATURES) 1019 return -ENOENT; 1020 1021 /* 1022 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 1023 * use the same feature set. 1024 */ 1025 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 1026 test_bit(i, vcpu->arch.features) != set) 1027 return -EINVAL; 1028 1029 if (set) 1030 set_bit(i, vcpu->arch.features); 1031 } 1032 1033 vcpu->arch.target = phys_target; 1034 1035 /* Now we know what it is, we can reset it. */ 1036 ret = kvm_reset_vcpu(vcpu); 1037 if (ret) { 1038 vcpu->arch.target = -1; 1039 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 1040 } 1041 1042 return ret; 1043 } 1044 1045 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1046 struct kvm_vcpu_init *init) 1047 { 1048 int ret; 1049 1050 ret = kvm_vcpu_set_target(vcpu, init); 1051 if (ret) 1052 return ret; 1053 1054 /* 1055 * Ensure a rebooted VM will fault in RAM pages and detect if the 1056 * guest MMU is turned off and flush the caches as needed. 1057 * 1058 * S2FWB enforces all memory accesses to RAM being cacheable, 1059 * ensuring that the data side is always coherent. We still 1060 * need to invalidate the I-cache though, as FWB does *not* 1061 * imply CTR_EL0.DIC. 1062 */ 1063 if (vcpu->arch.has_run_once) { 1064 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1065 stage2_unmap_vm(vcpu->kvm); 1066 else 1067 __flush_icache_all(); 1068 } 1069 1070 vcpu_reset_hcr(vcpu); 1071 1072 /* 1073 * Handle the "start in power-off" case. 1074 */ 1075 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 1076 vcpu_power_off(vcpu); 1077 else 1078 vcpu->arch.power_off = false; 1079 1080 return 0; 1081 } 1082 1083 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1084 struct kvm_device_attr *attr) 1085 { 1086 int ret = -ENXIO; 1087 1088 switch (attr->group) { 1089 default: 1090 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1091 break; 1092 } 1093 1094 return ret; 1095 } 1096 1097 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1098 struct kvm_device_attr *attr) 1099 { 1100 int ret = -ENXIO; 1101 1102 switch (attr->group) { 1103 default: 1104 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1105 break; 1106 } 1107 1108 return ret; 1109 } 1110 1111 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1112 struct kvm_device_attr *attr) 1113 { 1114 int ret = -ENXIO; 1115 1116 switch (attr->group) { 1117 default: 1118 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1119 break; 1120 } 1121 1122 return ret; 1123 } 1124 1125 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1126 struct kvm_vcpu_events *events) 1127 { 1128 memset(events, 0, sizeof(*events)); 1129 1130 return __kvm_arm_vcpu_get_events(vcpu, events); 1131 } 1132 1133 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1134 struct kvm_vcpu_events *events) 1135 { 1136 int i; 1137 1138 /* check whether the reserved field is zero */ 1139 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1140 if (events->reserved[i]) 1141 return -EINVAL; 1142 1143 /* check whether the pad field is zero */ 1144 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1145 if (events->exception.pad[i]) 1146 return -EINVAL; 1147 1148 return __kvm_arm_vcpu_set_events(vcpu, events); 1149 } 1150 1151 long kvm_arch_vcpu_ioctl(struct file *filp, 1152 unsigned int ioctl, unsigned long arg) 1153 { 1154 struct kvm_vcpu *vcpu = filp->private_data; 1155 void __user *argp = (void __user *)arg; 1156 struct kvm_device_attr attr; 1157 long r; 1158 1159 switch (ioctl) { 1160 case KVM_ARM_VCPU_INIT: { 1161 struct kvm_vcpu_init init; 1162 1163 r = -EFAULT; 1164 if (copy_from_user(&init, argp, sizeof(init))) 1165 break; 1166 1167 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1168 break; 1169 } 1170 case KVM_SET_ONE_REG: 1171 case KVM_GET_ONE_REG: { 1172 struct kvm_one_reg reg; 1173 1174 r = -ENOEXEC; 1175 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1176 break; 1177 1178 r = -EFAULT; 1179 if (copy_from_user(®, argp, sizeof(reg))) 1180 break; 1181 1182 if (ioctl == KVM_SET_ONE_REG) 1183 r = kvm_arm_set_reg(vcpu, ®); 1184 else 1185 r = kvm_arm_get_reg(vcpu, ®); 1186 break; 1187 } 1188 case KVM_GET_REG_LIST: { 1189 struct kvm_reg_list __user *user_list = argp; 1190 struct kvm_reg_list reg_list; 1191 unsigned n; 1192 1193 r = -ENOEXEC; 1194 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1195 break; 1196 1197 r = -EPERM; 1198 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1199 break; 1200 1201 r = -EFAULT; 1202 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1203 break; 1204 n = reg_list.n; 1205 reg_list.n = kvm_arm_num_regs(vcpu); 1206 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1207 break; 1208 r = -E2BIG; 1209 if (n < reg_list.n) 1210 break; 1211 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1212 break; 1213 } 1214 case KVM_SET_DEVICE_ATTR: { 1215 r = -EFAULT; 1216 if (copy_from_user(&attr, argp, sizeof(attr))) 1217 break; 1218 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1219 break; 1220 } 1221 case KVM_GET_DEVICE_ATTR: { 1222 r = -EFAULT; 1223 if (copy_from_user(&attr, argp, sizeof(attr))) 1224 break; 1225 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1226 break; 1227 } 1228 case KVM_HAS_DEVICE_ATTR: { 1229 r = -EFAULT; 1230 if (copy_from_user(&attr, argp, sizeof(attr))) 1231 break; 1232 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1233 break; 1234 } 1235 case KVM_GET_VCPU_EVENTS: { 1236 struct kvm_vcpu_events events; 1237 1238 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1239 return -EINVAL; 1240 1241 if (copy_to_user(argp, &events, sizeof(events))) 1242 return -EFAULT; 1243 1244 return 0; 1245 } 1246 case KVM_SET_VCPU_EVENTS: { 1247 struct kvm_vcpu_events events; 1248 1249 if (copy_from_user(&events, argp, sizeof(events))) 1250 return -EFAULT; 1251 1252 return kvm_arm_vcpu_set_events(vcpu, &events); 1253 } 1254 case KVM_ARM_VCPU_FINALIZE: { 1255 int what; 1256 1257 if (!kvm_vcpu_initialized(vcpu)) 1258 return -ENOEXEC; 1259 1260 if (get_user(what, (const int __user *)argp)) 1261 return -EFAULT; 1262 1263 return kvm_arm_vcpu_finalize(vcpu, what); 1264 } 1265 default: 1266 r = -EINVAL; 1267 } 1268 1269 return r; 1270 } 1271 1272 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1273 { 1274 1275 } 1276 1277 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1278 const struct kvm_memory_slot *memslot) 1279 { 1280 kvm_flush_remote_tlbs(kvm); 1281 } 1282 1283 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1284 struct kvm_arm_device_addr *dev_addr) 1285 { 1286 unsigned long dev_id, type; 1287 1288 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 1289 KVM_ARM_DEVICE_ID_SHIFT; 1290 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 1291 KVM_ARM_DEVICE_TYPE_SHIFT; 1292 1293 switch (dev_id) { 1294 case KVM_ARM_DEVICE_VGIC_V2: 1295 if (!vgic_present) 1296 return -ENXIO; 1297 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 1298 default: 1299 return -ENODEV; 1300 } 1301 } 1302 1303 long kvm_arch_vm_ioctl(struct file *filp, 1304 unsigned int ioctl, unsigned long arg) 1305 { 1306 struct kvm *kvm = filp->private_data; 1307 void __user *argp = (void __user *)arg; 1308 1309 switch (ioctl) { 1310 case KVM_CREATE_IRQCHIP: { 1311 int ret; 1312 if (!vgic_present) 1313 return -ENXIO; 1314 mutex_lock(&kvm->lock); 1315 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1316 mutex_unlock(&kvm->lock); 1317 return ret; 1318 } 1319 case KVM_ARM_SET_DEVICE_ADDR: { 1320 struct kvm_arm_device_addr dev_addr; 1321 1322 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1323 return -EFAULT; 1324 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1325 } 1326 case KVM_ARM_PREFERRED_TARGET: { 1327 int err; 1328 struct kvm_vcpu_init init; 1329 1330 err = kvm_vcpu_preferred_target(&init); 1331 if (err) 1332 return err; 1333 1334 if (copy_to_user(argp, &init, sizeof(init))) 1335 return -EFAULT; 1336 1337 return 0; 1338 } 1339 default: 1340 return -EINVAL; 1341 } 1342 } 1343 1344 static unsigned long nvhe_percpu_size(void) 1345 { 1346 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1347 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1348 } 1349 1350 static unsigned long nvhe_percpu_order(void) 1351 { 1352 unsigned long size = nvhe_percpu_size(); 1353 1354 return size ? get_order(size) : 0; 1355 } 1356 1357 /* A lookup table holding the hypervisor VA for each vector slot */ 1358 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1359 1360 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1361 { 1362 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1363 } 1364 1365 static int kvm_init_vector_slots(void) 1366 { 1367 int err; 1368 void *base; 1369 1370 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1371 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1372 1373 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1374 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1375 1376 if (!cpus_have_const_cap(ARM64_SPECTRE_V3A)) 1377 return 0; 1378 1379 if (!has_vhe()) { 1380 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1381 __BP_HARDEN_HYP_VECS_SZ, &base); 1382 if (err) 1383 return err; 1384 } 1385 1386 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1387 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1388 return 0; 1389 } 1390 1391 static void cpu_prepare_hyp_mode(int cpu) 1392 { 1393 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1394 unsigned long tcr; 1395 1396 /* 1397 * Calculate the raw per-cpu offset without a translation from the 1398 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1399 * so that we can use adr_l to access per-cpu variables in EL2. 1400 * Also drop the KASAN tag which gets in the way... 1401 */ 1402 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 1403 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1404 1405 params->mair_el2 = read_sysreg(mair_el1); 1406 1407 /* 1408 * The ID map may be configured to use an extended virtual address 1409 * range. This is only the case if system RAM is out of range for the 1410 * currently configured page size and VA_BITS, in which case we will 1411 * also need the extended virtual range for the HYP ID map, or we won't 1412 * be able to enable the EL2 MMU. 1413 * 1414 * However, at EL2, there is only one TTBR register, and we can't switch 1415 * between translation tables *and* update TCR_EL2.T0SZ at the same 1416 * time. Bottom line: we need to use the extended range with *both* our 1417 * translation tables. 1418 * 1419 * So use the same T0SZ value we use for the ID map. 1420 */ 1421 tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1; 1422 tcr &= ~TCR_T0SZ_MASK; 1423 tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET; 1424 params->tcr_el2 = tcr; 1425 1426 params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE); 1427 params->pgd_pa = kvm_mmu_get_httbr(); 1428 if (is_protected_kvm_enabled()) 1429 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 1430 else 1431 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 1432 params->vttbr = params->vtcr = 0; 1433 1434 /* 1435 * Flush the init params from the data cache because the struct will 1436 * be read while the MMU is off. 1437 */ 1438 kvm_flush_dcache_to_poc(params, sizeof(*params)); 1439 } 1440 1441 static void hyp_install_host_vector(void) 1442 { 1443 struct kvm_nvhe_init_params *params; 1444 struct arm_smccc_res res; 1445 1446 /* Switch from the HYP stub to our own HYP init vector */ 1447 __hyp_set_vectors(kvm_get_idmap_vector()); 1448 1449 /* 1450 * Call initialization code, and switch to the full blown HYP code. 1451 * If the cpucaps haven't been finalized yet, something has gone very 1452 * wrong, and hyp will crash and burn when it uses any 1453 * cpus_have_const_cap() wrapper. 1454 */ 1455 BUG_ON(!system_capabilities_finalized()); 1456 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 1457 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 1458 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 1459 } 1460 1461 static void cpu_init_hyp_mode(void) 1462 { 1463 hyp_install_host_vector(); 1464 1465 /* 1466 * Disabling SSBD on a non-VHE system requires us to enable SSBS 1467 * at EL2. 1468 */ 1469 if (this_cpu_has_cap(ARM64_SSBS) && 1470 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 1471 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 1472 } 1473 } 1474 1475 static void cpu_hyp_reset(void) 1476 { 1477 if (!is_kernel_in_hyp_mode()) 1478 __hyp_reset_vectors(); 1479 } 1480 1481 /* 1482 * EL2 vectors can be mapped and rerouted in a number of ways, 1483 * depending on the kernel configuration and CPU present: 1484 * 1485 * - If the CPU is affected by Spectre-v2, the hardening sequence is 1486 * placed in one of the vector slots, which is executed before jumping 1487 * to the real vectors. 1488 * 1489 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 1490 * containing the hardening sequence is mapped next to the idmap page, 1491 * and executed before jumping to the real vectors. 1492 * 1493 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 1494 * empty slot is selected, mapped next to the idmap page, and 1495 * executed before jumping to the real vectors. 1496 * 1497 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 1498 * VHE, as we don't have hypervisor-specific mappings. If the system 1499 * is VHE and yet selects this capability, it will be ignored. 1500 */ 1501 static void cpu_set_hyp_vector(void) 1502 { 1503 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 1504 void *vector = hyp_spectre_vector_selector[data->slot]; 1505 1506 if (!is_protected_kvm_enabled()) 1507 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 1508 else 1509 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 1510 } 1511 1512 static void cpu_hyp_reinit(void) 1513 { 1514 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt); 1515 1516 cpu_hyp_reset(); 1517 1518 if (is_kernel_in_hyp_mode()) 1519 kvm_timer_init_vhe(); 1520 else 1521 cpu_init_hyp_mode(); 1522 1523 cpu_set_hyp_vector(); 1524 1525 kvm_arm_init_debug(); 1526 1527 if (vgic_present) 1528 kvm_vgic_init_cpu_hardware(); 1529 } 1530 1531 static void _kvm_arch_hardware_enable(void *discard) 1532 { 1533 if (!__this_cpu_read(kvm_arm_hardware_enabled)) { 1534 cpu_hyp_reinit(); 1535 __this_cpu_write(kvm_arm_hardware_enabled, 1); 1536 } 1537 } 1538 1539 int kvm_arch_hardware_enable(void) 1540 { 1541 _kvm_arch_hardware_enable(NULL); 1542 return 0; 1543 } 1544 1545 static void _kvm_arch_hardware_disable(void *discard) 1546 { 1547 if (__this_cpu_read(kvm_arm_hardware_enabled)) { 1548 cpu_hyp_reset(); 1549 __this_cpu_write(kvm_arm_hardware_enabled, 0); 1550 } 1551 } 1552 1553 void kvm_arch_hardware_disable(void) 1554 { 1555 if (!is_protected_kvm_enabled()) 1556 _kvm_arch_hardware_disable(NULL); 1557 } 1558 1559 #ifdef CONFIG_CPU_PM 1560 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 1561 unsigned long cmd, 1562 void *v) 1563 { 1564 /* 1565 * kvm_arm_hardware_enabled is left with its old value over 1566 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 1567 * re-enable hyp. 1568 */ 1569 switch (cmd) { 1570 case CPU_PM_ENTER: 1571 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1572 /* 1573 * don't update kvm_arm_hardware_enabled here 1574 * so that the hardware will be re-enabled 1575 * when we resume. See below. 1576 */ 1577 cpu_hyp_reset(); 1578 1579 return NOTIFY_OK; 1580 case CPU_PM_ENTER_FAILED: 1581 case CPU_PM_EXIT: 1582 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1583 /* The hardware was enabled before suspend. */ 1584 cpu_hyp_reinit(); 1585 1586 return NOTIFY_OK; 1587 1588 default: 1589 return NOTIFY_DONE; 1590 } 1591 } 1592 1593 static struct notifier_block hyp_init_cpu_pm_nb = { 1594 .notifier_call = hyp_init_cpu_pm_notifier, 1595 }; 1596 1597 static void hyp_cpu_pm_init(void) 1598 { 1599 if (!is_protected_kvm_enabled()) 1600 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1601 } 1602 static void hyp_cpu_pm_exit(void) 1603 { 1604 if (!is_protected_kvm_enabled()) 1605 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 1606 } 1607 #else 1608 static inline void hyp_cpu_pm_init(void) 1609 { 1610 } 1611 static inline void hyp_cpu_pm_exit(void) 1612 { 1613 } 1614 #endif 1615 1616 static void init_cpu_logical_map(void) 1617 { 1618 unsigned int cpu; 1619 1620 /* 1621 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 1622 * Only copy the set of online CPUs whose features have been chacked 1623 * against the finalized system capabilities. The hypervisor will not 1624 * allow any other CPUs from the `possible` set to boot. 1625 */ 1626 for_each_online_cpu(cpu) 1627 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 1628 } 1629 1630 #define init_psci_0_1_impl_state(config, what) \ 1631 config.psci_0_1_ ## what ## _implemented = psci_ops.what 1632 1633 static bool init_psci_relay(void) 1634 { 1635 /* 1636 * If PSCI has not been initialized, protected KVM cannot install 1637 * itself on newly booted CPUs. 1638 */ 1639 if (!psci_ops.get_version) { 1640 kvm_err("Cannot initialize protected mode without PSCI\n"); 1641 return false; 1642 } 1643 1644 kvm_host_psci_config.version = psci_ops.get_version(); 1645 1646 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 1647 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 1648 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 1649 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 1650 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 1651 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 1652 } 1653 return true; 1654 } 1655 1656 static int init_common_resources(void) 1657 { 1658 return kvm_set_ipa_limit(); 1659 } 1660 1661 static int init_subsystems(void) 1662 { 1663 int err = 0; 1664 1665 /* 1666 * Enable hardware so that subsystem initialisation can access EL2. 1667 */ 1668 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); 1669 1670 /* 1671 * Register CPU lower-power notifier 1672 */ 1673 hyp_cpu_pm_init(); 1674 1675 /* 1676 * Init HYP view of VGIC 1677 */ 1678 err = kvm_vgic_hyp_init(); 1679 switch (err) { 1680 case 0: 1681 vgic_present = true; 1682 break; 1683 case -ENODEV: 1684 case -ENXIO: 1685 vgic_present = false; 1686 err = 0; 1687 break; 1688 default: 1689 goto out; 1690 } 1691 1692 /* 1693 * Init HYP architected timer support 1694 */ 1695 err = kvm_timer_hyp_init(vgic_present); 1696 if (err) 1697 goto out; 1698 1699 kvm_perf_init(); 1700 kvm_sys_reg_table_init(); 1701 1702 out: 1703 if (err || !is_protected_kvm_enabled()) 1704 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); 1705 1706 return err; 1707 } 1708 1709 static void teardown_hyp_mode(void) 1710 { 1711 int cpu; 1712 1713 free_hyp_pgds(); 1714 for_each_possible_cpu(cpu) { 1715 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1716 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order()); 1717 } 1718 } 1719 1720 static int do_pkvm_init(u32 hyp_va_bits) 1721 { 1722 void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base); 1723 int ret; 1724 1725 preempt_disable(); 1726 hyp_install_host_vector(); 1727 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 1728 num_possible_cpus(), kern_hyp_va(per_cpu_base), 1729 hyp_va_bits); 1730 preempt_enable(); 1731 1732 return ret; 1733 } 1734 1735 static int kvm_hyp_init_protection(u32 hyp_va_bits) 1736 { 1737 void *addr = phys_to_virt(hyp_mem_base); 1738 int ret; 1739 1740 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 1741 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 1742 1743 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 1744 if (ret) 1745 return ret; 1746 1747 ret = do_pkvm_init(hyp_va_bits); 1748 if (ret) 1749 return ret; 1750 1751 free_hyp_pgds(); 1752 1753 return 0; 1754 } 1755 1756 /** 1757 * Inits Hyp-mode on all online CPUs 1758 */ 1759 static int init_hyp_mode(void) 1760 { 1761 u32 hyp_va_bits; 1762 int cpu; 1763 int err = -ENOMEM; 1764 1765 /* 1766 * The protected Hyp-mode cannot be initialized if the memory pool 1767 * allocation has failed. 1768 */ 1769 if (is_protected_kvm_enabled() && !hyp_mem_base) 1770 goto out_err; 1771 1772 /* 1773 * Allocate Hyp PGD and setup Hyp identity mapping 1774 */ 1775 err = kvm_mmu_init(&hyp_va_bits); 1776 if (err) 1777 goto out_err; 1778 1779 /* 1780 * Allocate stack pages for Hypervisor-mode 1781 */ 1782 for_each_possible_cpu(cpu) { 1783 unsigned long stack_page; 1784 1785 stack_page = __get_free_page(GFP_KERNEL); 1786 if (!stack_page) { 1787 err = -ENOMEM; 1788 goto out_err; 1789 } 1790 1791 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1792 } 1793 1794 /* 1795 * Allocate and initialize pages for Hypervisor-mode percpu regions. 1796 */ 1797 for_each_possible_cpu(cpu) { 1798 struct page *page; 1799 void *page_addr; 1800 1801 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 1802 if (!page) { 1803 err = -ENOMEM; 1804 goto out_err; 1805 } 1806 1807 page_addr = page_address(page); 1808 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 1809 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr; 1810 } 1811 1812 /* 1813 * Map the Hyp-code called directly from the host 1814 */ 1815 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 1816 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 1817 if (err) { 1818 kvm_err("Cannot map world-switch code\n"); 1819 goto out_err; 1820 } 1821 1822 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 1823 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 1824 if (err) { 1825 kvm_err("Cannot map .hyp.rodata section\n"); 1826 goto out_err; 1827 } 1828 1829 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 1830 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 1831 if (err) { 1832 kvm_err("Cannot map rodata section\n"); 1833 goto out_err; 1834 } 1835 1836 /* 1837 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 1838 * section thanks to an assertion in the linker script. Map it RW and 1839 * the rest of .bss RO. 1840 */ 1841 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 1842 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 1843 if (err) { 1844 kvm_err("Cannot map hyp bss section: %d\n", err); 1845 goto out_err; 1846 } 1847 1848 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 1849 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 1850 if (err) { 1851 kvm_err("Cannot map bss section\n"); 1852 goto out_err; 1853 } 1854 1855 /* 1856 * Map the Hyp stack pages 1857 */ 1858 for_each_possible_cpu(cpu) { 1859 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1860 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, 1861 PAGE_HYP); 1862 1863 if (err) { 1864 kvm_err("Cannot map hyp stack\n"); 1865 goto out_err; 1866 } 1867 } 1868 1869 for_each_possible_cpu(cpu) { 1870 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu]; 1871 char *percpu_end = percpu_begin + nvhe_percpu_size(); 1872 1873 /* Map Hyp percpu pages */ 1874 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 1875 if (err) { 1876 kvm_err("Cannot map hyp percpu region\n"); 1877 goto out_err; 1878 } 1879 1880 /* Prepare the CPU initialization parameters */ 1881 cpu_prepare_hyp_mode(cpu); 1882 } 1883 1884 if (is_protected_kvm_enabled()) { 1885 init_cpu_logical_map(); 1886 1887 if (!init_psci_relay()) { 1888 err = -ENODEV; 1889 goto out_err; 1890 } 1891 } 1892 1893 if (is_protected_kvm_enabled()) { 1894 err = kvm_hyp_init_protection(hyp_va_bits); 1895 if (err) { 1896 kvm_err("Failed to init hyp memory protection\n"); 1897 goto out_err; 1898 } 1899 } 1900 1901 return 0; 1902 1903 out_err: 1904 teardown_hyp_mode(); 1905 kvm_err("error initializing Hyp mode: %d\n", err); 1906 return err; 1907 } 1908 1909 static void _kvm_host_prot_finalize(void *discard) 1910 { 1911 WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)); 1912 } 1913 1914 static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end) 1915 { 1916 return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end); 1917 } 1918 1919 #define pkvm_mark_hyp_section(__section) \ 1920 pkvm_mark_hyp(__pa_symbol(__section##_start), \ 1921 __pa_symbol(__section##_end)) 1922 1923 static int finalize_hyp_mode(void) 1924 { 1925 int cpu, ret; 1926 1927 if (!is_protected_kvm_enabled()) 1928 return 0; 1929 1930 ret = pkvm_mark_hyp_section(__hyp_idmap_text); 1931 if (ret) 1932 return ret; 1933 1934 ret = pkvm_mark_hyp_section(__hyp_text); 1935 if (ret) 1936 return ret; 1937 1938 ret = pkvm_mark_hyp_section(__hyp_rodata); 1939 if (ret) 1940 return ret; 1941 1942 ret = pkvm_mark_hyp_section(__hyp_bss); 1943 if (ret) 1944 return ret; 1945 1946 ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size); 1947 if (ret) 1948 return ret; 1949 1950 for_each_possible_cpu(cpu) { 1951 phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]); 1952 phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order()); 1953 1954 ret = pkvm_mark_hyp(start, end); 1955 if (ret) 1956 return ret; 1957 1958 start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu)); 1959 end = start + PAGE_SIZE; 1960 ret = pkvm_mark_hyp(start, end); 1961 if (ret) 1962 return ret; 1963 } 1964 1965 /* 1966 * Flip the static key upfront as that may no longer be possible 1967 * once the host stage 2 is installed. 1968 */ 1969 static_branch_enable(&kvm_protected_mode_initialized); 1970 on_each_cpu(_kvm_host_prot_finalize, NULL, 1); 1971 1972 return 0; 1973 } 1974 1975 static void check_kvm_target_cpu(void *ret) 1976 { 1977 *(int *)ret = kvm_target_cpu(); 1978 } 1979 1980 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 1981 { 1982 struct kvm_vcpu *vcpu; 1983 int i; 1984 1985 mpidr &= MPIDR_HWID_BITMASK; 1986 kvm_for_each_vcpu(i, vcpu, kvm) { 1987 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 1988 return vcpu; 1989 } 1990 return NULL; 1991 } 1992 1993 bool kvm_arch_has_irq_bypass(void) 1994 { 1995 return true; 1996 } 1997 1998 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 1999 struct irq_bypass_producer *prod) 2000 { 2001 struct kvm_kernel_irqfd *irqfd = 2002 container_of(cons, struct kvm_kernel_irqfd, consumer); 2003 2004 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2005 &irqfd->irq_entry); 2006 } 2007 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2008 struct irq_bypass_producer *prod) 2009 { 2010 struct kvm_kernel_irqfd *irqfd = 2011 container_of(cons, struct kvm_kernel_irqfd, consumer); 2012 2013 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2014 &irqfd->irq_entry); 2015 } 2016 2017 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2018 { 2019 struct kvm_kernel_irqfd *irqfd = 2020 container_of(cons, struct kvm_kernel_irqfd, consumer); 2021 2022 kvm_arm_halt_guest(irqfd->kvm); 2023 } 2024 2025 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2026 { 2027 struct kvm_kernel_irqfd *irqfd = 2028 container_of(cons, struct kvm_kernel_irqfd, consumer); 2029 2030 kvm_arm_resume_guest(irqfd->kvm); 2031 } 2032 2033 /** 2034 * Initialize Hyp-mode and memory mappings on all CPUs. 2035 */ 2036 int kvm_arch_init(void *opaque) 2037 { 2038 int err; 2039 int ret, cpu; 2040 bool in_hyp_mode; 2041 2042 if (!is_hyp_mode_available()) { 2043 kvm_info("HYP mode not available\n"); 2044 return -ENODEV; 2045 } 2046 2047 in_hyp_mode = is_kernel_in_hyp_mode(); 2048 2049 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2050 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2051 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2052 "Only trusted guests should be used on this system.\n"); 2053 2054 for_each_online_cpu(cpu) { 2055 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); 2056 if (ret < 0) { 2057 kvm_err("Error, CPU %d not supported!\n", cpu); 2058 return -ENODEV; 2059 } 2060 } 2061 2062 err = init_common_resources(); 2063 if (err) 2064 return err; 2065 2066 err = kvm_arm_init_sve(); 2067 if (err) 2068 return err; 2069 2070 if (!in_hyp_mode) { 2071 err = init_hyp_mode(); 2072 if (err) 2073 goto out_err; 2074 } 2075 2076 err = kvm_init_vector_slots(); 2077 if (err) { 2078 kvm_err("Cannot initialise vector slots\n"); 2079 goto out_err; 2080 } 2081 2082 err = init_subsystems(); 2083 if (err) 2084 goto out_hyp; 2085 2086 if (!in_hyp_mode) { 2087 err = finalize_hyp_mode(); 2088 if (err) { 2089 kvm_err("Failed to finalize Hyp protection\n"); 2090 goto out_hyp; 2091 } 2092 } 2093 2094 if (is_protected_kvm_enabled()) { 2095 kvm_info("Protected nVHE mode initialized successfully\n"); 2096 } else if (in_hyp_mode) { 2097 kvm_info("VHE mode initialized successfully\n"); 2098 } else { 2099 kvm_info("Hyp mode initialized successfully\n"); 2100 } 2101 2102 return 0; 2103 2104 out_hyp: 2105 hyp_cpu_pm_exit(); 2106 if (!in_hyp_mode) 2107 teardown_hyp_mode(); 2108 out_err: 2109 return err; 2110 } 2111 2112 /* NOP: Compiling as a module not supported */ 2113 void kvm_arch_exit(void) 2114 { 2115 kvm_perf_teardown(); 2116 } 2117 2118 static int __init early_kvm_mode_cfg(char *arg) 2119 { 2120 if (!arg) 2121 return -EINVAL; 2122 2123 if (strcmp(arg, "protected") == 0) { 2124 kvm_mode = KVM_MODE_PROTECTED; 2125 return 0; 2126 } 2127 2128 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) 2129 return 0; 2130 2131 return -EINVAL; 2132 } 2133 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2134 2135 enum kvm_mode kvm_get_mode(void) 2136 { 2137 return kvm_mode; 2138 } 2139 2140 static int arm_init(void) 2141 { 2142 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2143 return rc; 2144 } 2145 2146 module_init(arm_init); 2147