1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 4 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 5 */ 6 7 #include <linux/bug.h> 8 #include <linux/cpu_pm.h> 9 #include <linux/errno.h> 10 #include <linux/err.h> 11 #include <linux/kvm_host.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/vmalloc.h> 15 #include <linux/fs.h> 16 #include <linux/mman.h> 17 #include <linux/sched.h> 18 #include <linux/kvm.h> 19 #include <linux/kvm_irqfd.h> 20 #include <linux/irqbypass.h> 21 #include <linux/sched/stat.h> 22 #include <linux/psci.h> 23 #include <trace/events/kvm.h> 24 25 #define CREATE_TRACE_POINTS 26 #include "trace_arm.h" 27 28 #include <linux/uaccess.h> 29 #include <asm/ptrace.h> 30 #include <asm/mman.h> 31 #include <asm/tlbflush.h> 32 #include <asm/cacheflush.h> 33 #include <asm/cpufeature.h> 34 #include <asm/virt.h> 35 #include <asm/kvm_arm.h> 36 #include <asm/kvm_asm.h> 37 #include <asm/kvm_mmu.h> 38 #include <asm/kvm_emulate.h> 39 #include <asm/sections.h> 40 41 #include <kvm/arm_hypercalls.h> 42 #include <kvm/arm_pmu.h> 43 #include <kvm/arm_psci.h> 44 45 #ifdef REQUIRES_VIRT 46 __asm__(".arch_extension virt"); 47 #endif 48 49 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT; 50 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized); 51 52 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector); 53 54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); 55 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS]; 56 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); 57 58 /* The VMID used in the VTTBR */ 59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); 60 static u32 kvm_next_vmid; 61 static DEFINE_SPINLOCK(kvm_vmid_lock); 62 63 static bool vgic_present; 64 65 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); 66 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); 67 68 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 69 { 70 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 71 } 72 73 int kvm_arch_hardware_setup(void *opaque) 74 { 75 return 0; 76 } 77 78 int kvm_arch_check_processor_compat(void *opaque) 79 { 80 return 0; 81 } 82 83 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 84 struct kvm_enable_cap *cap) 85 { 86 int r; 87 88 if (cap->flags) 89 return -EINVAL; 90 91 switch (cap->cap) { 92 case KVM_CAP_ARM_NISV_TO_USER: 93 r = 0; 94 kvm->arch.return_nisv_io_abort_to_user = true; 95 break; 96 case KVM_CAP_ARM_MTE: 97 mutex_lock(&kvm->lock); 98 if (!system_supports_mte() || kvm->created_vcpus) { 99 r = -EINVAL; 100 } else { 101 r = 0; 102 kvm->arch.mte_enabled = true; 103 } 104 mutex_unlock(&kvm->lock); 105 break; 106 default: 107 r = -EINVAL; 108 break; 109 } 110 111 return r; 112 } 113 114 static int kvm_arm_default_max_vcpus(void) 115 { 116 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; 117 } 118 119 static void set_default_spectre(struct kvm *kvm) 120 { 121 /* 122 * The default is to expose CSV2 == 1 if the HW isn't affected. 123 * Although this is a per-CPU feature, we make it global because 124 * asymmetric systems are just a nuisance. 125 * 126 * Userspace can override this as long as it doesn't promise 127 * the impossible. 128 */ 129 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) 130 kvm->arch.pfr0_csv2 = 1; 131 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) 132 kvm->arch.pfr0_csv3 = 1; 133 } 134 135 /** 136 * kvm_arch_init_vm - initializes a VM data structure 137 * @kvm: pointer to the KVM struct 138 */ 139 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 140 { 141 int ret; 142 143 ret = kvm_arm_setup_stage2(kvm, type); 144 if (ret) 145 return ret; 146 147 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu); 148 if (ret) 149 return ret; 150 151 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); 152 if (ret) 153 goto out_free_stage2_pgd; 154 155 kvm_vgic_early_init(kvm); 156 157 /* The maximum number of VCPUs is limited by the host's GIC model */ 158 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus(); 159 160 set_default_spectre(kvm); 161 162 return ret; 163 out_free_stage2_pgd: 164 kvm_free_stage2_pgd(&kvm->arch.mmu); 165 return ret; 166 } 167 168 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 169 { 170 return VM_FAULT_SIGBUS; 171 } 172 173 174 /** 175 * kvm_arch_destroy_vm - destroy the VM data structure 176 * @kvm: pointer to the KVM struct 177 */ 178 void kvm_arch_destroy_vm(struct kvm *kvm) 179 { 180 int i; 181 182 bitmap_free(kvm->arch.pmu_filter); 183 184 kvm_vgic_destroy(kvm); 185 186 for (i = 0; i < KVM_MAX_VCPUS; ++i) { 187 if (kvm->vcpus[i]) { 188 kvm_vcpu_destroy(kvm->vcpus[i]); 189 kvm->vcpus[i] = NULL; 190 } 191 } 192 atomic_set(&kvm->online_vcpus, 0); 193 } 194 195 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 196 { 197 int r; 198 switch (ext) { 199 case KVM_CAP_IRQCHIP: 200 r = vgic_present; 201 break; 202 case KVM_CAP_IOEVENTFD: 203 case KVM_CAP_DEVICE_CTRL: 204 case KVM_CAP_USER_MEMORY: 205 case KVM_CAP_SYNC_MMU: 206 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 207 case KVM_CAP_ONE_REG: 208 case KVM_CAP_ARM_PSCI: 209 case KVM_CAP_ARM_PSCI_0_2: 210 case KVM_CAP_READONLY_MEM: 211 case KVM_CAP_MP_STATE: 212 case KVM_CAP_IMMEDIATE_EXIT: 213 case KVM_CAP_VCPU_EVENTS: 214 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2: 215 case KVM_CAP_ARM_NISV_TO_USER: 216 case KVM_CAP_ARM_INJECT_EXT_DABT: 217 case KVM_CAP_SET_GUEST_DEBUG: 218 case KVM_CAP_VCPU_ATTRIBUTES: 219 case KVM_CAP_PTP_KVM: 220 r = 1; 221 break; 222 case KVM_CAP_SET_GUEST_DEBUG2: 223 return KVM_GUESTDBG_VALID_MASK; 224 case KVM_CAP_ARM_SET_DEVICE_ADDR: 225 r = 1; 226 break; 227 case KVM_CAP_NR_VCPUS: 228 r = num_online_cpus(); 229 break; 230 case KVM_CAP_MAX_VCPUS: 231 case KVM_CAP_MAX_VCPU_ID: 232 if (kvm) 233 r = kvm->arch.max_vcpus; 234 else 235 r = kvm_arm_default_max_vcpus(); 236 break; 237 case KVM_CAP_MSI_DEVID: 238 if (!kvm) 239 r = -EINVAL; 240 else 241 r = kvm->arch.vgic.msis_require_devid; 242 break; 243 case KVM_CAP_ARM_USER_IRQ: 244 /* 245 * 1: EL1_VTIMER, EL1_PTIMER, and PMU. 246 * (bump this number if adding more devices) 247 */ 248 r = 1; 249 break; 250 case KVM_CAP_ARM_MTE: 251 r = system_supports_mte(); 252 break; 253 case KVM_CAP_STEAL_TIME: 254 r = kvm_arm_pvtime_supported(); 255 break; 256 case KVM_CAP_ARM_EL1_32BIT: 257 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1); 258 break; 259 case KVM_CAP_GUEST_DEBUG_HW_BPS: 260 r = get_num_brps(); 261 break; 262 case KVM_CAP_GUEST_DEBUG_HW_WPS: 263 r = get_num_wrps(); 264 break; 265 case KVM_CAP_ARM_PMU_V3: 266 r = kvm_arm_support_pmu_v3(); 267 break; 268 case KVM_CAP_ARM_INJECT_SERROR_ESR: 269 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN); 270 break; 271 case KVM_CAP_ARM_VM_IPA_SIZE: 272 r = get_kvm_ipa_limit(); 273 break; 274 case KVM_CAP_ARM_SVE: 275 r = system_supports_sve(); 276 break; 277 case KVM_CAP_ARM_PTRAUTH_ADDRESS: 278 case KVM_CAP_ARM_PTRAUTH_GENERIC: 279 r = system_has_full_ptr_auth(); 280 break; 281 default: 282 r = 0; 283 } 284 285 return r; 286 } 287 288 long kvm_arch_dev_ioctl(struct file *filp, 289 unsigned int ioctl, unsigned long arg) 290 { 291 return -EINVAL; 292 } 293 294 struct kvm *kvm_arch_alloc_vm(void) 295 { 296 if (!has_vhe()) 297 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 298 299 return vzalloc(sizeof(struct kvm)); 300 } 301 302 void kvm_arch_free_vm(struct kvm *kvm) 303 { 304 if (!has_vhe()) 305 kfree(kvm); 306 else 307 vfree(kvm); 308 } 309 310 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 311 { 312 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) 313 return -EBUSY; 314 315 if (id >= kvm->arch.max_vcpus) 316 return -EINVAL; 317 318 return 0; 319 } 320 321 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 322 { 323 int err; 324 325 /* Force users to call KVM_ARM_VCPU_INIT */ 326 vcpu->arch.target = -1; 327 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 328 329 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO; 330 331 /* Set up the timer */ 332 kvm_timer_vcpu_init(vcpu); 333 334 kvm_pmu_vcpu_init(vcpu); 335 336 kvm_arm_reset_debug_ptr(vcpu); 337 338 kvm_arm_pvtime_vcpu_init(&vcpu->arch); 339 340 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; 341 342 err = kvm_vgic_vcpu_init(vcpu); 343 if (err) 344 return err; 345 346 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); 347 } 348 349 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 350 { 351 } 352 353 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 354 { 355 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm))) 356 static_branch_dec(&userspace_irqchip_in_use); 357 358 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); 359 kvm_timer_vcpu_terminate(vcpu); 360 kvm_pmu_vcpu_destroy(vcpu); 361 362 kvm_arm_vcpu_destroy(vcpu); 363 } 364 365 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) 366 { 367 return kvm_timer_is_pending(vcpu); 368 } 369 370 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) 371 { 372 /* 373 * If we're about to block (most likely because we've just hit a 374 * WFI), we need to sync back the state of the GIC CPU interface 375 * so that we have the latest PMR and group enables. This ensures 376 * that kvm_arch_vcpu_runnable has up-to-date data to decide 377 * whether we have pending interrupts. 378 * 379 * For the same reason, we want to tell GICv4 that we need 380 * doorbells to be signalled, should an interrupt become pending. 381 */ 382 preempt_disable(); 383 kvm_vgic_vmcr_sync(vcpu); 384 vgic_v4_put(vcpu, true); 385 preempt_enable(); 386 } 387 388 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) 389 { 390 preempt_disable(); 391 vgic_v4_load(vcpu); 392 preempt_enable(); 393 } 394 395 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 396 { 397 struct kvm_s2_mmu *mmu; 398 int *last_ran; 399 400 mmu = vcpu->arch.hw_mmu; 401 last_ran = this_cpu_ptr(mmu->last_vcpu_ran); 402 403 /* 404 * We guarantee that both TLBs and I-cache are private to each 405 * vcpu. If detecting that a vcpu from the same VM has 406 * previously run on the same physical CPU, call into the 407 * hypervisor code to nuke the relevant contexts. 408 * 409 * We might get preempted before the vCPU actually runs, but 410 * over-invalidation doesn't affect correctness. 411 */ 412 if (*last_ran != vcpu->vcpu_id) { 413 kvm_call_hyp(__kvm_flush_cpu_context, mmu); 414 *last_ran = vcpu->vcpu_id; 415 } 416 417 vcpu->cpu = cpu; 418 419 kvm_vgic_load(vcpu); 420 kvm_timer_vcpu_load(vcpu); 421 if (has_vhe()) 422 kvm_vcpu_load_sysregs_vhe(vcpu); 423 kvm_arch_vcpu_load_fp(vcpu); 424 kvm_vcpu_pmu_restore_guest(vcpu); 425 if (kvm_arm_is_pvtime_enabled(&vcpu->arch)) 426 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu); 427 428 if (single_task_running()) 429 vcpu_clear_wfx_traps(vcpu); 430 else 431 vcpu_set_wfx_traps(vcpu); 432 433 if (vcpu_has_ptrauth(vcpu)) 434 vcpu_ptrauth_disable(vcpu); 435 kvm_arch_vcpu_load_debug_state_flags(vcpu); 436 } 437 438 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 439 { 440 kvm_arch_vcpu_put_debug_state_flags(vcpu); 441 kvm_arch_vcpu_put_fp(vcpu); 442 if (has_vhe()) 443 kvm_vcpu_put_sysregs_vhe(vcpu); 444 kvm_timer_vcpu_put(vcpu); 445 kvm_vgic_put(vcpu); 446 kvm_vcpu_pmu_restore_host(vcpu); 447 448 vcpu->cpu = -1; 449 } 450 451 static void vcpu_power_off(struct kvm_vcpu *vcpu) 452 { 453 vcpu->arch.power_off = true; 454 kvm_make_request(KVM_REQ_SLEEP, vcpu); 455 kvm_vcpu_kick(vcpu); 456 } 457 458 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 459 struct kvm_mp_state *mp_state) 460 { 461 if (vcpu->arch.power_off) 462 mp_state->mp_state = KVM_MP_STATE_STOPPED; 463 else 464 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 465 466 return 0; 467 } 468 469 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 470 struct kvm_mp_state *mp_state) 471 { 472 int ret = 0; 473 474 switch (mp_state->mp_state) { 475 case KVM_MP_STATE_RUNNABLE: 476 vcpu->arch.power_off = false; 477 break; 478 case KVM_MP_STATE_STOPPED: 479 vcpu_power_off(vcpu); 480 break; 481 default: 482 ret = -EINVAL; 483 } 484 485 return ret; 486 } 487 488 /** 489 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled 490 * @v: The VCPU pointer 491 * 492 * If the guest CPU is not waiting for interrupts or an interrupt line is 493 * asserted, the CPU is by definition runnable. 494 */ 495 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) 496 { 497 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); 498 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) 499 && !v->arch.power_off && !v->arch.pause); 500 } 501 502 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 503 { 504 return vcpu_mode_priv(vcpu); 505 } 506 507 /* Just ensure a guest exit from a particular CPU */ 508 static void exit_vm_noop(void *info) 509 { 510 } 511 512 void force_vm_exit(const cpumask_t *mask) 513 { 514 preempt_disable(); 515 smp_call_function_many(mask, exit_vm_noop, NULL, true); 516 preempt_enable(); 517 } 518 519 /** 520 * need_new_vmid_gen - check that the VMID is still valid 521 * @vmid: The VMID to check 522 * 523 * return true if there is a new generation of VMIDs being used 524 * 525 * The hardware supports a limited set of values with the value zero reserved 526 * for the host, so we check if an assigned value belongs to a previous 527 * generation, which requires us to assign a new value. If we're the first to 528 * use a VMID for the new generation, we must flush necessary caches and TLBs 529 * on all CPUs. 530 */ 531 static bool need_new_vmid_gen(struct kvm_vmid *vmid) 532 { 533 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen); 534 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */ 535 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen); 536 } 537 538 /** 539 * update_vmid - Update the vmid with a valid VMID for the current generation 540 * @vmid: The stage-2 VMID information struct 541 */ 542 static void update_vmid(struct kvm_vmid *vmid) 543 { 544 if (!need_new_vmid_gen(vmid)) 545 return; 546 547 spin_lock(&kvm_vmid_lock); 548 549 /* 550 * We need to re-check the vmid_gen here to ensure that if another vcpu 551 * already allocated a valid vmid for this vm, then this vcpu should 552 * use the same vmid. 553 */ 554 if (!need_new_vmid_gen(vmid)) { 555 spin_unlock(&kvm_vmid_lock); 556 return; 557 } 558 559 /* First user of a new VMID generation? */ 560 if (unlikely(kvm_next_vmid == 0)) { 561 atomic64_inc(&kvm_vmid_gen); 562 kvm_next_vmid = 1; 563 564 /* 565 * On SMP we know no other CPUs can use this CPU's or each 566 * other's VMID after force_vm_exit returns since the 567 * kvm_vmid_lock blocks them from reentry to the guest. 568 */ 569 force_vm_exit(cpu_all_mask); 570 /* 571 * Now broadcast TLB + ICACHE invalidation over the inner 572 * shareable domain to make sure all data structures are 573 * clean. 574 */ 575 kvm_call_hyp(__kvm_flush_vm_context); 576 } 577 578 vmid->vmid = kvm_next_vmid; 579 kvm_next_vmid++; 580 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1; 581 582 smp_wmb(); 583 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen)); 584 585 spin_unlock(&kvm_vmid_lock); 586 } 587 588 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) 589 { 590 struct kvm *kvm = vcpu->kvm; 591 int ret = 0; 592 593 if (likely(vcpu->arch.has_run_once)) 594 return 0; 595 596 if (!kvm_arm_vcpu_is_finalized(vcpu)) 597 return -EPERM; 598 599 vcpu->arch.has_run_once = true; 600 601 kvm_arm_vcpu_init_debug(vcpu); 602 603 if (likely(irqchip_in_kernel(kvm))) { 604 /* 605 * Map the VGIC hardware resources before running a vcpu the 606 * first time on this VM. 607 */ 608 ret = kvm_vgic_map_resources(kvm); 609 if (ret) 610 return ret; 611 } else { 612 /* 613 * Tell the rest of the code that there are userspace irqchip 614 * VMs in the wild. 615 */ 616 static_branch_inc(&userspace_irqchip_in_use); 617 } 618 619 ret = kvm_timer_enable(vcpu); 620 if (ret) 621 return ret; 622 623 ret = kvm_arm_pmu_v3_enable(vcpu); 624 625 return ret; 626 } 627 628 bool kvm_arch_intc_initialized(struct kvm *kvm) 629 { 630 return vgic_initialized(kvm); 631 } 632 633 void kvm_arm_halt_guest(struct kvm *kvm) 634 { 635 int i; 636 struct kvm_vcpu *vcpu; 637 638 kvm_for_each_vcpu(i, vcpu, kvm) 639 vcpu->arch.pause = true; 640 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); 641 } 642 643 void kvm_arm_resume_guest(struct kvm *kvm) 644 { 645 int i; 646 struct kvm_vcpu *vcpu; 647 648 kvm_for_each_vcpu(i, vcpu, kvm) { 649 vcpu->arch.pause = false; 650 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu)); 651 } 652 } 653 654 static void vcpu_req_sleep(struct kvm_vcpu *vcpu) 655 { 656 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 657 658 rcuwait_wait_event(wait, 659 (!vcpu->arch.power_off) &&(!vcpu->arch.pause), 660 TASK_INTERRUPTIBLE); 661 662 if (vcpu->arch.power_off || vcpu->arch.pause) { 663 /* Awaken to handle a signal, request we sleep again later. */ 664 kvm_make_request(KVM_REQ_SLEEP, vcpu); 665 } 666 667 /* 668 * Make sure we will observe a potential reset request if we've 669 * observed a change to the power state. Pairs with the smp_wmb() in 670 * kvm_psci_vcpu_on(). 671 */ 672 smp_rmb(); 673 } 674 675 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) 676 { 677 return vcpu->arch.target >= 0; 678 } 679 680 static void check_vcpu_requests(struct kvm_vcpu *vcpu) 681 { 682 if (kvm_request_pending(vcpu)) { 683 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) 684 vcpu_req_sleep(vcpu); 685 686 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) 687 kvm_reset_vcpu(vcpu); 688 689 /* 690 * Clear IRQ_PENDING requests that were made to guarantee 691 * that a VCPU sees new virtual interrupts. 692 */ 693 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); 694 695 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu)) 696 kvm_update_stolen_time(vcpu); 697 698 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) { 699 /* The distributor enable bits were changed */ 700 preempt_disable(); 701 vgic_v4_put(vcpu, false); 702 vgic_v4_load(vcpu); 703 preempt_enable(); 704 } 705 706 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) 707 kvm_pmu_handle_pmcr(vcpu, 708 __vcpu_sys_reg(vcpu, PMCR_EL0)); 709 } 710 } 711 712 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu) 713 { 714 if (likely(!vcpu_mode_is_32bit(vcpu))) 715 return false; 716 717 return !system_supports_32bit_el0() || 718 static_branch_unlikely(&arm64_mismatched_32bit_el0); 719 } 720 721 /** 722 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code 723 * @vcpu: The VCPU pointer 724 * 725 * This function is called through the VCPU_RUN ioctl called from user space. It 726 * will execute VM code in a loop until the time slice for the process is used 727 * or some emulation is needed from user space in which case the function will 728 * return with return value 0 and with the kvm_run structure filled in with the 729 * required data for the requested emulation. 730 */ 731 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 732 { 733 struct kvm_run *run = vcpu->run; 734 int ret; 735 736 if (unlikely(!kvm_vcpu_initialized(vcpu))) 737 return -ENOEXEC; 738 739 ret = kvm_vcpu_first_run_init(vcpu); 740 if (ret) 741 return ret; 742 743 if (run->exit_reason == KVM_EXIT_MMIO) { 744 ret = kvm_handle_mmio_return(vcpu); 745 if (ret) 746 return ret; 747 } 748 749 vcpu_load(vcpu); 750 751 if (run->immediate_exit) { 752 ret = -EINTR; 753 goto out; 754 } 755 756 kvm_sigset_activate(vcpu); 757 758 ret = 1; 759 run->exit_reason = KVM_EXIT_UNKNOWN; 760 while (ret > 0) { 761 /* 762 * Check conditions before entering the guest 763 */ 764 cond_resched(); 765 766 update_vmid(&vcpu->arch.hw_mmu->vmid); 767 768 check_vcpu_requests(vcpu); 769 770 /* 771 * Preparing the interrupts to be injected also 772 * involves poking the GIC, which must be done in a 773 * non-preemptible context. 774 */ 775 preempt_disable(); 776 777 kvm_pmu_flush_hwstate(vcpu); 778 779 local_irq_disable(); 780 781 kvm_vgic_flush_hwstate(vcpu); 782 783 /* 784 * Exit if we have a signal pending so that we can deliver the 785 * signal to user space. 786 */ 787 if (signal_pending(current)) { 788 ret = -EINTR; 789 run->exit_reason = KVM_EXIT_INTR; 790 } 791 792 /* 793 * If we're using a userspace irqchip, then check if we need 794 * to tell a userspace irqchip about timer or PMU level 795 * changes and if so, exit to userspace (the actual level 796 * state gets updated in kvm_timer_update_run and 797 * kvm_pmu_update_run below). 798 */ 799 if (static_branch_unlikely(&userspace_irqchip_in_use)) { 800 if (kvm_timer_should_notify_user(vcpu) || 801 kvm_pmu_should_notify_user(vcpu)) { 802 ret = -EINTR; 803 run->exit_reason = KVM_EXIT_INTR; 804 } 805 } 806 807 /* 808 * Ensure we set mode to IN_GUEST_MODE after we disable 809 * interrupts and before the final VCPU requests check. 810 * See the comment in kvm_vcpu_exiting_guest_mode() and 811 * Documentation/virt/kvm/vcpu-requests.rst 812 */ 813 smp_store_mb(vcpu->mode, IN_GUEST_MODE); 814 815 if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) || 816 kvm_request_pending(vcpu)) { 817 vcpu->mode = OUTSIDE_GUEST_MODE; 818 isb(); /* Ensure work in x_flush_hwstate is committed */ 819 kvm_pmu_sync_hwstate(vcpu); 820 if (static_branch_unlikely(&userspace_irqchip_in_use)) 821 kvm_timer_sync_user(vcpu); 822 kvm_vgic_sync_hwstate(vcpu); 823 local_irq_enable(); 824 preempt_enable(); 825 continue; 826 } 827 828 kvm_arm_setup_debug(vcpu); 829 830 /************************************************************** 831 * Enter the guest 832 */ 833 trace_kvm_entry(*vcpu_pc(vcpu)); 834 guest_enter_irqoff(); 835 836 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu); 837 838 vcpu->mode = OUTSIDE_GUEST_MODE; 839 vcpu->stat.exits++; 840 /* 841 * Back from guest 842 *************************************************************/ 843 844 kvm_arm_clear_debug(vcpu); 845 846 /* 847 * We must sync the PMU state before the vgic state so 848 * that the vgic can properly sample the updated state of the 849 * interrupt line. 850 */ 851 kvm_pmu_sync_hwstate(vcpu); 852 853 /* 854 * Sync the vgic state before syncing the timer state because 855 * the timer code needs to know if the virtual timer 856 * interrupts are active. 857 */ 858 kvm_vgic_sync_hwstate(vcpu); 859 860 /* 861 * Sync the timer hardware state before enabling interrupts as 862 * we don't want vtimer interrupts to race with syncing the 863 * timer virtual interrupt state. 864 */ 865 if (static_branch_unlikely(&userspace_irqchip_in_use)) 866 kvm_timer_sync_user(vcpu); 867 868 kvm_arch_vcpu_ctxsync_fp(vcpu); 869 870 /* 871 * We may have taken a host interrupt in HYP mode (ie 872 * while executing the guest). This interrupt is still 873 * pending, as we haven't serviced it yet! 874 * 875 * We're now back in SVC mode, with interrupts 876 * disabled. Enabling the interrupts now will have 877 * the effect of taking the interrupt again, in SVC 878 * mode this time. 879 */ 880 local_irq_enable(); 881 882 /* 883 * We do local_irq_enable() before calling guest_exit() so 884 * that if a timer interrupt hits while running the guest we 885 * account that tick as being spent in the guest. We enable 886 * preemption after calling guest_exit() so that if we get 887 * preempted we make sure ticks after that is not counted as 888 * guest time. 889 */ 890 guest_exit(); 891 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); 892 893 /* Exit types that need handling before we can be preempted */ 894 handle_exit_early(vcpu, ret); 895 896 preempt_enable(); 897 898 /* 899 * The ARMv8 architecture doesn't give the hypervisor 900 * a mechanism to prevent a guest from dropping to AArch32 EL0 901 * if implemented by the CPU. If we spot the guest in such 902 * state and that we decided it wasn't supposed to do so (like 903 * with the asymmetric AArch32 case), return to userspace with 904 * a fatal error. 905 */ 906 if (vcpu_mode_is_bad_32bit(vcpu)) { 907 /* 908 * As we have caught the guest red-handed, decide that 909 * it isn't fit for purpose anymore by making the vcpu 910 * invalid. The VMM can try and fix it by issuing a 911 * KVM_ARM_VCPU_INIT if it really wants to. 912 */ 913 vcpu->arch.target = -1; 914 ret = ARM_EXCEPTION_IL; 915 } 916 917 ret = handle_exit(vcpu, ret); 918 } 919 920 /* Tell userspace about in-kernel device output levels */ 921 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { 922 kvm_timer_update_run(vcpu); 923 kvm_pmu_update_run(vcpu); 924 } 925 926 kvm_sigset_deactivate(vcpu); 927 928 out: 929 /* 930 * In the unlikely event that we are returning to userspace 931 * with pending exceptions or PC adjustment, commit these 932 * adjustments in order to give userspace a consistent view of 933 * the vcpu state. Note that this relies on __kvm_adjust_pc() 934 * being preempt-safe on VHE. 935 */ 936 if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION | 937 KVM_ARM64_INCREMENT_PC))) 938 kvm_call_hyp(__kvm_adjust_pc, vcpu); 939 940 vcpu_put(vcpu); 941 return ret; 942 } 943 944 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) 945 { 946 int bit_index; 947 bool set; 948 unsigned long *hcr; 949 950 if (number == KVM_ARM_IRQ_CPU_IRQ) 951 bit_index = __ffs(HCR_VI); 952 else /* KVM_ARM_IRQ_CPU_FIQ */ 953 bit_index = __ffs(HCR_VF); 954 955 hcr = vcpu_hcr(vcpu); 956 if (level) 957 set = test_and_set_bit(bit_index, hcr); 958 else 959 set = test_and_clear_bit(bit_index, hcr); 960 961 /* 962 * If we didn't change anything, no need to wake up or kick other CPUs 963 */ 964 if (set == level) 965 return 0; 966 967 /* 968 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and 969 * trigger a world-switch round on the running physical CPU to set the 970 * virtual IRQ/FIQ fields in the HCR appropriately. 971 */ 972 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 973 kvm_vcpu_kick(vcpu); 974 975 return 0; 976 } 977 978 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 979 bool line_status) 980 { 981 u32 irq = irq_level->irq; 982 unsigned int irq_type, vcpu_idx, irq_num; 983 int nrcpus = atomic_read(&kvm->online_vcpus); 984 struct kvm_vcpu *vcpu = NULL; 985 bool level = irq_level->level; 986 987 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; 988 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; 989 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1); 990 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; 991 992 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); 993 994 switch (irq_type) { 995 case KVM_ARM_IRQ_TYPE_CPU: 996 if (irqchip_in_kernel(kvm)) 997 return -ENXIO; 998 999 if (vcpu_idx >= nrcpus) 1000 return -EINVAL; 1001 1002 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 1003 if (!vcpu) 1004 return -EINVAL; 1005 1006 if (irq_num > KVM_ARM_IRQ_CPU_FIQ) 1007 return -EINVAL; 1008 1009 return vcpu_interrupt_line(vcpu, irq_num, level); 1010 case KVM_ARM_IRQ_TYPE_PPI: 1011 if (!irqchip_in_kernel(kvm)) 1012 return -ENXIO; 1013 1014 if (vcpu_idx >= nrcpus) 1015 return -EINVAL; 1016 1017 vcpu = kvm_get_vcpu(kvm, vcpu_idx); 1018 if (!vcpu) 1019 return -EINVAL; 1020 1021 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) 1022 return -EINVAL; 1023 1024 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); 1025 case KVM_ARM_IRQ_TYPE_SPI: 1026 if (!irqchip_in_kernel(kvm)) 1027 return -ENXIO; 1028 1029 if (irq_num < VGIC_NR_PRIVATE_IRQS) 1030 return -EINVAL; 1031 1032 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); 1033 } 1034 1035 return -EINVAL; 1036 } 1037 1038 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, 1039 const struct kvm_vcpu_init *init) 1040 { 1041 unsigned int i, ret; 1042 int phys_target = kvm_target_cpu(); 1043 1044 if (init->target != phys_target) 1045 return -EINVAL; 1046 1047 /* 1048 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 1049 * use the same target. 1050 */ 1051 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) 1052 return -EINVAL; 1053 1054 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ 1055 for (i = 0; i < sizeof(init->features) * 8; i++) { 1056 bool set = (init->features[i / 32] & (1 << (i % 32))); 1057 1058 if (set && i >= KVM_VCPU_MAX_FEATURES) 1059 return -ENOENT; 1060 1061 /* 1062 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must 1063 * use the same feature set. 1064 */ 1065 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && 1066 test_bit(i, vcpu->arch.features) != set) 1067 return -EINVAL; 1068 1069 if (set) 1070 set_bit(i, vcpu->arch.features); 1071 } 1072 1073 vcpu->arch.target = phys_target; 1074 1075 /* Now we know what it is, we can reset it. */ 1076 ret = kvm_reset_vcpu(vcpu); 1077 if (ret) { 1078 vcpu->arch.target = -1; 1079 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); 1080 } 1081 1082 return ret; 1083 } 1084 1085 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, 1086 struct kvm_vcpu_init *init) 1087 { 1088 int ret; 1089 1090 ret = kvm_vcpu_set_target(vcpu, init); 1091 if (ret) 1092 return ret; 1093 1094 /* 1095 * Ensure a rebooted VM will fault in RAM pages and detect if the 1096 * guest MMU is turned off and flush the caches as needed. 1097 * 1098 * S2FWB enforces all memory accesses to RAM being cacheable, 1099 * ensuring that the data side is always coherent. We still 1100 * need to invalidate the I-cache though, as FWB does *not* 1101 * imply CTR_EL0.DIC. 1102 */ 1103 if (vcpu->arch.has_run_once) { 1104 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 1105 stage2_unmap_vm(vcpu->kvm); 1106 else 1107 icache_inval_all_pou(); 1108 } 1109 1110 vcpu_reset_hcr(vcpu); 1111 1112 /* 1113 * Handle the "start in power-off" case. 1114 */ 1115 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) 1116 vcpu_power_off(vcpu); 1117 else 1118 vcpu->arch.power_off = false; 1119 1120 return 0; 1121 } 1122 1123 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, 1124 struct kvm_device_attr *attr) 1125 { 1126 int ret = -ENXIO; 1127 1128 switch (attr->group) { 1129 default: 1130 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); 1131 break; 1132 } 1133 1134 return ret; 1135 } 1136 1137 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, 1138 struct kvm_device_attr *attr) 1139 { 1140 int ret = -ENXIO; 1141 1142 switch (attr->group) { 1143 default: 1144 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); 1145 break; 1146 } 1147 1148 return ret; 1149 } 1150 1151 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, 1152 struct kvm_device_attr *attr) 1153 { 1154 int ret = -ENXIO; 1155 1156 switch (attr->group) { 1157 default: 1158 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); 1159 break; 1160 } 1161 1162 return ret; 1163 } 1164 1165 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, 1166 struct kvm_vcpu_events *events) 1167 { 1168 memset(events, 0, sizeof(*events)); 1169 1170 return __kvm_arm_vcpu_get_events(vcpu, events); 1171 } 1172 1173 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, 1174 struct kvm_vcpu_events *events) 1175 { 1176 int i; 1177 1178 /* check whether the reserved field is zero */ 1179 for (i = 0; i < ARRAY_SIZE(events->reserved); i++) 1180 if (events->reserved[i]) 1181 return -EINVAL; 1182 1183 /* check whether the pad field is zero */ 1184 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) 1185 if (events->exception.pad[i]) 1186 return -EINVAL; 1187 1188 return __kvm_arm_vcpu_set_events(vcpu, events); 1189 } 1190 1191 long kvm_arch_vcpu_ioctl(struct file *filp, 1192 unsigned int ioctl, unsigned long arg) 1193 { 1194 struct kvm_vcpu *vcpu = filp->private_data; 1195 void __user *argp = (void __user *)arg; 1196 struct kvm_device_attr attr; 1197 long r; 1198 1199 switch (ioctl) { 1200 case KVM_ARM_VCPU_INIT: { 1201 struct kvm_vcpu_init init; 1202 1203 r = -EFAULT; 1204 if (copy_from_user(&init, argp, sizeof(init))) 1205 break; 1206 1207 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); 1208 break; 1209 } 1210 case KVM_SET_ONE_REG: 1211 case KVM_GET_ONE_REG: { 1212 struct kvm_one_reg reg; 1213 1214 r = -ENOEXEC; 1215 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1216 break; 1217 1218 r = -EFAULT; 1219 if (copy_from_user(®, argp, sizeof(reg))) 1220 break; 1221 1222 if (ioctl == KVM_SET_ONE_REG) 1223 r = kvm_arm_set_reg(vcpu, ®); 1224 else 1225 r = kvm_arm_get_reg(vcpu, ®); 1226 break; 1227 } 1228 case KVM_GET_REG_LIST: { 1229 struct kvm_reg_list __user *user_list = argp; 1230 struct kvm_reg_list reg_list; 1231 unsigned n; 1232 1233 r = -ENOEXEC; 1234 if (unlikely(!kvm_vcpu_initialized(vcpu))) 1235 break; 1236 1237 r = -EPERM; 1238 if (!kvm_arm_vcpu_is_finalized(vcpu)) 1239 break; 1240 1241 r = -EFAULT; 1242 if (copy_from_user(®_list, user_list, sizeof(reg_list))) 1243 break; 1244 n = reg_list.n; 1245 reg_list.n = kvm_arm_num_regs(vcpu); 1246 if (copy_to_user(user_list, ®_list, sizeof(reg_list))) 1247 break; 1248 r = -E2BIG; 1249 if (n < reg_list.n) 1250 break; 1251 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); 1252 break; 1253 } 1254 case KVM_SET_DEVICE_ATTR: { 1255 r = -EFAULT; 1256 if (copy_from_user(&attr, argp, sizeof(attr))) 1257 break; 1258 r = kvm_arm_vcpu_set_attr(vcpu, &attr); 1259 break; 1260 } 1261 case KVM_GET_DEVICE_ATTR: { 1262 r = -EFAULT; 1263 if (copy_from_user(&attr, argp, sizeof(attr))) 1264 break; 1265 r = kvm_arm_vcpu_get_attr(vcpu, &attr); 1266 break; 1267 } 1268 case KVM_HAS_DEVICE_ATTR: { 1269 r = -EFAULT; 1270 if (copy_from_user(&attr, argp, sizeof(attr))) 1271 break; 1272 r = kvm_arm_vcpu_has_attr(vcpu, &attr); 1273 break; 1274 } 1275 case KVM_GET_VCPU_EVENTS: { 1276 struct kvm_vcpu_events events; 1277 1278 if (kvm_arm_vcpu_get_events(vcpu, &events)) 1279 return -EINVAL; 1280 1281 if (copy_to_user(argp, &events, sizeof(events))) 1282 return -EFAULT; 1283 1284 return 0; 1285 } 1286 case KVM_SET_VCPU_EVENTS: { 1287 struct kvm_vcpu_events events; 1288 1289 if (copy_from_user(&events, argp, sizeof(events))) 1290 return -EFAULT; 1291 1292 return kvm_arm_vcpu_set_events(vcpu, &events); 1293 } 1294 case KVM_ARM_VCPU_FINALIZE: { 1295 int what; 1296 1297 if (!kvm_vcpu_initialized(vcpu)) 1298 return -ENOEXEC; 1299 1300 if (get_user(what, (const int __user *)argp)) 1301 return -EFAULT; 1302 1303 return kvm_arm_vcpu_finalize(vcpu, what); 1304 } 1305 default: 1306 r = -EINVAL; 1307 } 1308 1309 return r; 1310 } 1311 1312 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 1313 { 1314 1315 } 1316 1317 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1318 const struct kvm_memory_slot *memslot) 1319 { 1320 kvm_flush_remote_tlbs(kvm); 1321 } 1322 1323 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, 1324 struct kvm_arm_device_addr *dev_addr) 1325 { 1326 unsigned long dev_id, type; 1327 1328 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> 1329 KVM_ARM_DEVICE_ID_SHIFT; 1330 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> 1331 KVM_ARM_DEVICE_TYPE_SHIFT; 1332 1333 switch (dev_id) { 1334 case KVM_ARM_DEVICE_VGIC_V2: 1335 if (!vgic_present) 1336 return -ENXIO; 1337 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); 1338 default: 1339 return -ENODEV; 1340 } 1341 } 1342 1343 long kvm_arch_vm_ioctl(struct file *filp, 1344 unsigned int ioctl, unsigned long arg) 1345 { 1346 struct kvm *kvm = filp->private_data; 1347 void __user *argp = (void __user *)arg; 1348 1349 switch (ioctl) { 1350 case KVM_CREATE_IRQCHIP: { 1351 int ret; 1352 if (!vgic_present) 1353 return -ENXIO; 1354 mutex_lock(&kvm->lock); 1355 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); 1356 mutex_unlock(&kvm->lock); 1357 return ret; 1358 } 1359 case KVM_ARM_SET_DEVICE_ADDR: { 1360 struct kvm_arm_device_addr dev_addr; 1361 1362 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) 1363 return -EFAULT; 1364 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); 1365 } 1366 case KVM_ARM_PREFERRED_TARGET: { 1367 int err; 1368 struct kvm_vcpu_init init; 1369 1370 err = kvm_vcpu_preferred_target(&init); 1371 if (err) 1372 return err; 1373 1374 if (copy_to_user(argp, &init, sizeof(init))) 1375 return -EFAULT; 1376 1377 return 0; 1378 } 1379 case KVM_ARM_MTE_COPY_TAGS: { 1380 struct kvm_arm_copy_mte_tags copy_tags; 1381 1382 if (copy_from_user(©_tags, argp, sizeof(copy_tags))) 1383 return -EFAULT; 1384 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags); 1385 } 1386 default: 1387 return -EINVAL; 1388 } 1389 } 1390 1391 static unsigned long nvhe_percpu_size(void) 1392 { 1393 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) - 1394 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start); 1395 } 1396 1397 static unsigned long nvhe_percpu_order(void) 1398 { 1399 unsigned long size = nvhe_percpu_size(); 1400 1401 return size ? get_order(size) : 0; 1402 } 1403 1404 /* A lookup table holding the hypervisor VA for each vector slot */ 1405 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS]; 1406 1407 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot) 1408 { 1409 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot); 1410 } 1411 1412 static int kvm_init_vector_slots(void) 1413 { 1414 int err; 1415 void *base; 1416 1417 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector)); 1418 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT); 1419 1420 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs)); 1421 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT); 1422 1423 if (!cpus_have_const_cap(ARM64_SPECTRE_V3A)) 1424 return 0; 1425 1426 if (!has_vhe()) { 1427 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs), 1428 __BP_HARDEN_HYP_VECS_SZ, &base); 1429 if (err) 1430 return err; 1431 } 1432 1433 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT); 1434 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT); 1435 return 0; 1436 } 1437 1438 static void cpu_prepare_hyp_mode(int cpu) 1439 { 1440 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu); 1441 unsigned long tcr; 1442 1443 /* 1444 * Calculate the raw per-cpu offset without a translation from the 1445 * kernel's mapping to the linear mapping, and store it in tpidr_el2 1446 * so that we can use adr_l to access per-cpu variables in EL2. 1447 * Also drop the KASAN tag which gets in the way... 1448 */ 1449 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) - 1450 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start)); 1451 1452 params->mair_el2 = read_sysreg(mair_el1); 1453 1454 /* 1455 * The ID map may be configured to use an extended virtual address 1456 * range. This is only the case if system RAM is out of range for the 1457 * currently configured page size and VA_BITS, in which case we will 1458 * also need the extended virtual range for the HYP ID map, or we won't 1459 * be able to enable the EL2 MMU. 1460 * 1461 * However, at EL2, there is only one TTBR register, and we can't switch 1462 * between translation tables *and* update TCR_EL2.T0SZ at the same 1463 * time. Bottom line: we need to use the extended range with *both* our 1464 * translation tables. 1465 * 1466 * So use the same T0SZ value we use for the ID map. 1467 */ 1468 tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1; 1469 tcr &= ~TCR_T0SZ_MASK; 1470 tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET; 1471 params->tcr_el2 = tcr; 1472 1473 params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE); 1474 params->pgd_pa = kvm_mmu_get_httbr(); 1475 if (is_protected_kvm_enabled()) 1476 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS; 1477 else 1478 params->hcr_el2 = HCR_HOST_NVHE_FLAGS; 1479 params->vttbr = params->vtcr = 0; 1480 1481 /* 1482 * Flush the init params from the data cache because the struct will 1483 * be read while the MMU is off. 1484 */ 1485 kvm_flush_dcache_to_poc(params, sizeof(*params)); 1486 } 1487 1488 static void hyp_install_host_vector(void) 1489 { 1490 struct kvm_nvhe_init_params *params; 1491 struct arm_smccc_res res; 1492 1493 /* Switch from the HYP stub to our own HYP init vector */ 1494 __hyp_set_vectors(kvm_get_idmap_vector()); 1495 1496 /* 1497 * Call initialization code, and switch to the full blown HYP code. 1498 * If the cpucaps haven't been finalized yet, something has gone very 1499 * wrong, and hyp will crash and burn when it uses any 1500 * cpus_have_const_cap() wrapper. 1501 */ 1502 BUG_ON(!system_capabilities_finalized()); 1503 params = this_cpu_ptr_nvhe_sym(kvm_init_params); 1504 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res); 1505 WARN_ON(res.a0 != SMCCC_RET_SUCCESS); 1506 } 1507 1508 static void cpu_init_hyp_mode(void) 1509 { 1510 hyp_install_host_vector(); 1511 1512 /* 1513 * Disabling SSBD on a non-VHE system requires us to enable SSBS 1514 * at EL2. 1515 */ 1516 if (this_cpu_has_cap(ARM64_SSBS) && 1517 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) { 1518 kvm_call_hyp_nvhe(__kvm_enable_ssbs); 1519 } 1520 } 1521 1522 static void cpu_hyp_reset(void) 1523 { 1524 if (!is_kernel_in_hyp_mode()) 1525 __hyp_reset_vectors(); 1526 } 1527 1528 /* 1529 * EL2 vectors can be mapped and rerouted in a number of ways, 1530 * depending on the kernel configuration and CPU present: 1531 * 1532 * - If the CPU is affected by Spectre-v2, the hardening sequence is 1533 * placed in one of the vector slots, which is executed before jumping 1534 * to the real vectors. 1535 * 1536 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot 1537 * containing the hardening sequence is mapped next to the idmap page, 1538 * and executed before jumping to the real vectors. 1539 * 1540 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an 1541 * empty slot is selected, mapped next to the idmap page, and 1542 * executed before jumping to the real vectors. 1543 * 1544 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with 1545 * VHE, as we don't have hypervisor-specific mappings. If the system 1546 * is VHE and yet selects this capability, it will be ignored. 1547 */ 1548 static void cpu_set_hyp_vector(void) 1549 { 1550 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data); 1551 void *vector = hyp_spectre_vector_selector[data->slot]; 1552 1553 if (!is_protected_kvm_enabled()) 1554 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector; 1555 else 1556 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot); 1557 } 1558 1559 static void cpu_hyp_reinit(void) 1560 { 1561 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt); 1562 1563 cpu_hyp_reset(); 1564 1565 if (is_kernel_in_hyp_mode()) 1566 kvm_timer_init_vhe(); 1567 else 1568 cpu_init_hyp_mode(); 1569 1570 cpu_set_hyp_vector(); 1571 1572 kvm_arm_init_debug(); 1573 1574 if (vgic_present) 1575 kvm_vgic_init_cpu_hardware(); 1576 } 1577 1578 static void _kvm_arch_hardware_enable(void *discard) 1579 { 1580 if (!__this_cpu_read(kvm_arm_hardware_enabled)) { 1581 cpu_hyp_reinit(); 1582 __this_cpu_write(kvm_arm_hardware_enabled, 1); 1583 } 1584 } 1585 1586 int kvm_arch_hardware_enable(void) 1587 { 1588 _kvm_arch_hardware_enable(NULL); 1589 return 0; 1590 } 1591 1592 static void _kvm_arch_hardware_disable(void *discard) 1593 { 1594 if (__this_cpu_read(kvm_arm_hardware_enabled)) { 1595 cpu_hyp_reset(); 1596 __this_cpu_write(kvm_arm_hardware_enabled, 0); 1597 } 1598 } 1599 1600 void kvm_arch_hardware_disable(void) 1601 { 1602 if (!is_protected_kvm_enabled()) 1603 _kvm_arch_hardware_disable(NULL); 1604 } 1605 1606 #ifdef CONFIG_CPU_PM 1607 static int hyp_init_cpu_pm_notifier(struct notifier_block *self, 1608 unsigned long cmd, 1609 void *v) 1610 { 1611 /* 1612 * kvm_arm_hardware_enabled is left with its old value over 1613 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should 1614 * re-enable hyp. 1615 */ 1616 switch (cmd) { 1617 case CPU_PM_ENTER: 1618 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1619 /* 1620 * don't update kvm_arm_hardware_enabled here 1621 * so that the hardware will be re-enabled 1622 * when we resume. See below. 1623 */ 1624 cpu_hyp_reset(); 1625 1626 return NOTIFY_OK; 1627 case CPU_PM_ENTER_FAILED: 1628 case CPU_PM_EXIT: 1629 if (__this_cpu_read(kvm_arm_hardware_enabled)) 1630 /* The hardware was enabled before suspend. */ 1631 cpu_hyp_reinit(); 1632 1633 return NOTIFY_OK; 1634 1635 default: 1636 return NOTIFY_DONE; 1637 } 1638 } 1639 1640 static struct notifier_block hyp_init_cpu_pm_nb = { 1641 .notifier_call = hyp_init_cpu_pm_notifier, 1642 }; 1643 1644 static void hyp_cpu_pm_init(void) 1645 { 1646 if (!is_protected_kvm_enabled()) 1647 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); 1648 } 1649 static void hyp_cpu_pm_exit(void) 1650 { 1651 if (!is_protected_kvm_enabled()) 1652 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); 1653 } 1654 #else 1655 static inline void hyp_cpu_pm_init(void) 1656 { 1657 } 1658 static inline void hyp_cpu_pm_exit(void) 1659 { 1660 } 1661 #endif 1662 1663 static void init_cpu_logical_map(void) 1664 { 1665 unsigned int cpu; 1666 1667 /* 1668 * Copy the MPIDR <-> logical CPU ID mapping to hyp. 1669 * Only copy the set of online CPUs whose features have been chacked 1670 * against the finalized system capabilities. The hypervisor will not 1671 * allow any other CPUs from the `possible` set to boot. 1672 */ 1673 for_each_online_cpu(cpu) 1674 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu); 1675 } 1676 1677 #define init_psci_0_1_impl_state(config, what) \ 1678 config.psci_0_1_ ## what ## _implemented = psci_ops.what 1679 1680 static bool init_psci_relay(void) 1681 { 1682 /* 1683 * If PSCI has not been initialized, protected KVM cannot install 1684 * itself on newly booted CPUs. 1685 */ 1686 if (!psci_ops.get_version) { 1687 kvm_err("Cannot initialize protected mode without PSCI\n"); 1688 return false; 1689 } 1690 1691 kvm_host_psci_config.version = psci_ops.get_version(); 1692 1693 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) { 1694 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids(); 1695 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend); 1696 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on); 1697 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off); 1698 init_psci_0_1_impl_state(kvm_host_psci_config, migrate); 1699 } 1700 return true; 1701 } 1702 1703 static int init_common_resources(void) 1704 { 1705 return kvm_set_ipa_limit(); 1706 } 1707 1708 static int init_subsystems(void) 1709 { 1710 int err = 0; 1711 1712 /* 1713 * Enable hardware so that subsystem initialisation can access EL2. 1714 */ 1715 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); 1716 1717 /* 1718 * Register CPU lower-power notifier 1719 */ 1720 hyp_cpu_pm_init(); 1721 1722 /* 1723 * Init HYP view of VGIC 1724 */ 1725 err = kvm_vgic_hyp_init(); 1726 switch (err) { 1727 case 0: 1728 vgic_present = true; 1729 break; 1730 case -ENODEV: 1731 case -ENXIO: 1732 vgic_present = false; 1733 err = 0; 1734 break; 1735 default: 1736 goto out; 1737 } 1738 1739 /* 1740 * Init HYP architected timer support 1741 */ 1742 err = kvm_timer_hyp_init(vgic_present); 1743 if (err) 1744 goto out; 1745 1746 kvm_perf_init(); 1747 kvm_sys_reg_table_init(); 1748 1749 out: 1750 if (err || !is_protected_kvm_enabled()) 1751 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); 1752 1753 return err; 1754 } 1755 1756 static void teardown_hyp_mode(void) 1757 { 1758 int cpu; 1759 1760 free_hyp_pgds(); 1761 for_each_possible_cpu(cpu) { 1762 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); 1763 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order()); 1764 } 1765 } 1766 1767 static int do_pkvm_init(u32 hyp_va_bits) 1768 { 1769 void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base); 1770 int ret; 1771 1772 preempt_disable(); 1773 hyp_install_host_vector(); 1774 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size, 1775 num_possible_cpus(), kern_hyp_va(per_cpu_base), 1776 hyp_va_bits); 1777 preempt_enable(); 1778 1779 return ret; 1780 } 1781 1782 static int kvm_hyp_init_protection(u32 hyp_va_bits) 1783 { 1784 void *addr = phys_to_virt(hyp_mem_base); 1785 int ret; 1786 1787 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 1788 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 1789 1790 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP); 1791 if (ret) 1792 return ret; 1793 1794 ret = do_pkvm_init(hyp_va_bits); 1795 if (ret) 1796 return ret; 1797 1798 free_hyp_pgds(); 1799 1800 return 0; 1801 } 1802 1803 /** 1804 * Inits Hyp-mode on all online CPUs 1805 */ 1806 static int init_hyp_mode(void) 1807 { 1808 u32 hyp_va_bits; 1809 int cpu; 1810 int err = -ENOMEM; 1811 1812 /* 1813 * The protected Hyp-mode cannot be initialized if the memory pool 1814 * allocation has failed. 1815 */ 1816 if (is_protected_kvm_enabled() && !hyp_mem_base) 1817 goto out_err; 1818 1819 /* 1820 * Allocate Hyp PGD and setup Hyp identity mapping 1821 */ 1822 err = kvm_mmu_init(&hyp_va_bits); 1823 if (err) 1824 goto out_err; 1825 1826 /* 1827 * Allocate stack pages for Hypervisor-mode 1828 */ 1829 for_each_possible_cpu(cpu) { 1830 unsigned long stack_page; 1831 1832 stack_page = __get_free_page(GFP_KERNEL); 1833 if (!stack_page) { 1834 err = -ENOMEM; 1835 goto out_err; 1836 } 1837 1838 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; 1839 } 1840 1841 /* 1842 * Allocate and initialize pages for Hypervisor-mode percpu regions. 1843 */ 1844 for_each_possible_cpu(cpu) { 1845 struct page *page; 1846 void *page_addr; 1847 1848 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order()); 1849 if (!page) { 1850 err = -ENOMEM; 1851 goto out_err; 1852 } 1853 1854 page_addr = page_address(page); 1855 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size()); 1856 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr; 1857 } 1858 1859 /* 1860 * Map the Hyp-code called directly from the host 1861 */ 1862 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), 1863 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); 1864 if (err) { 1865 kvm_err("Cannot map world-switch code\n"); 1866 goto out_err; 1867 } 1868 1869 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start), 1870 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO); 1871 if (err) { 1872 kvm_err("Cannot map .hyp.rodata section\n"); 1873 goto out_err; 1874 } 1875 1876 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), 1877 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); 1878 if (err) { 1879 kvm_err("Cannot map rodata section\n"); 1880 goto out_err; 1881 } 1882 1883 /* 1884 * .hyp.bss is guaranteed to be placed at the beginning of the .bss 1885 * section thanks to an assertion in the linker script. Map it RW and 1886 * the rest of .bss RO. 1887 */ 1888 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start), 1889 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP); 1890 if (err) { 1891 kvm_err("Cannot map hyp bss section: %d\n", err); 1892 goto out_err; 1893 } 1894 1895 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end), 1896 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); 1897 if (err) { 1898 kvm_err("Cannot map bss section\n"); 1899 goto out_err; 1900 } 1901 1902 /* 1903 * Map the Hyp stack pages 1904 */ 1905 for_each_possible_cpu(cpu) { 1906 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); 1907 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, 1908 PAGE_HYP); 1909 1910 if (err) { 1911 kvm_err("Cannot map hyp stack\n"); 1912 goto out_err; 1913 } 1914 } 1915 1916 for_each_possible_cpu(cpu) { 1917 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu]; 1918 char *percpu_end = percpu_begin + nvhe_percpu_size(); 1919 1920 /* Map Hyp percpu pages */ 1921 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP); 1922 if (err) { 1923 kvm_err("Cannot map hyp percpu region\n"); 1924 goto out_err; 1925 } 1926 1927 /* Prepare the CPU initialization parameters */ 1928 cpu_prepare_hyp_mode(cpu); 1929 } 1930 1931 if (is_protected_kvm_enabled()) { 1932 init_cpu_logical_map(); 1933 1934 if (!init_psci_relay()) { 1935 err = -ENODEV; 1936 goto out_err; 1937 } 1938 } 1939 1940 if (is_protected_kvm_enabled()) { 1941 err = kvm_hyp_init_protection(hyp_va_bits); 1942 if (err) { 1943 kvm_err("Failed to init hyp memory protection\n"); 1944 goto out_err; 1945 } 1946 } 1947 1948 return 0; 1949 1950 out_err: 1951 teardown_hyp_mode(); 1952 kvm_err("error initializing Hyp mode: %d\n", err); 1953 return err; 1954 } 1955 1956 static void _kvm_host_prot_finalize(void *discard) 1957 { 1958 WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)); 1959 } 1960 1961 static inline int pkvm_mark_hyp(phys_addr_t start, phys_addr_t end) 1962 { 1963 return kvm_call_hyp_nvhe(__pkvm_mark_hyp, start, end); 1964 } 1965 1966 #define pkvm_mark_hyp_section(__section) \ 1967 pkvm_mark_hyp(__pa_symbol(__section##_start), \ 1968 __pa_symbol(__section##_end)) 1969 1970 static int finalize_hyp_mode(void) 1971 { 1972 int cpu, ret; 1973 1974 if (!is_protected_kvm_enabled()) 1975 return 0; 1976 1977 ret = pkvm_mark_hyp_section(__hyp_idmap_text); 1978 if (ret) 1979 return ret; 1980 1981 ret = pkvm_mark_hyp_section(__hyp_text); 1982 if (ret) 1983 return ret; 1984 1985 ret = pkvm_mark_hyp_section(__hyp_rodata); 1986 if (ret) 1987 return ret; 1988 1989 ret = pkvm_mark_hyp_section(__hyp_bss); 1990 if (ret) 1991 return ret; 1992 1993 ret = pkvm_mark_hyp(hyp_mem_base, hyp_mem_base + hyp_mem_size); 1994 if (ret) 1995 return ret; 1996 1997 for_each_possible_cpu(cpu) { 1998 phys_addr_t start = virt_to_phys((void *)kvm_arm_hyp_percpu_base[cpu]); 1999 phys_addr_t end = start + (PAGE_SIZE << nvhe_percpu_order()); 2000 2001 ret = pkvm_mark_hyp(start, end); 2002 if (ret) 2003 return ret; 2004 2005 start = virt_to_phys((void *)per_cpu(kvm_arm_hyp_stack_page, cpu)); 2006 end = start + PAGE_SIZE; 2007 ret = pkvm_mark_hyp(start, end); 2008 if (ret) 2009 return ret; 2010 } 2011 2012 /* 2013 * Flip the static key upfront as that may no longer be possible 2014 * once the host stage 2 is installed. 2015 */ 2016 static_branch_enable(&kvm_protected_mode_initialized); 2017 on_each_cpu(_kvm_host_prot_finalize, NULL, 1); 2018 2019 return 0; 2020 } 2021 2022 static void check_kvm_target_cpu(void *ret) 2023 { 2024 *(int *)ret = kvm_target_cpu(); 2025 } 2026 2027 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) 2028 { 2029 struct kvm_vcpu *vcpu; 2030 int i; 2031 2032 mpidr &= MPIDR_HWID_BITMASK; 2033 kvm_for_each_vcpu(i, vcpu, kvm) { 2034 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) 2035 return vcpu; 2036 } 2037 return NULL; 2038 } 2039 2040 bool kvm_arch_has_irq_bypass(void) 2041 { 2042 return true; 2043 } 2044 2045 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 2046 struct irq_bypass_producer *prod) 2047 { 2048 struct kvm_kernel_irqfd *irqfd = 2049 container_of(cons, struct kvm_kernel_irqfd, consumer); 2050 2051 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, 2052 &irqfd->irq_entry); 2053 } 2054 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 2055 struct irq_bypass_producer *prod) 2056 { 2057 struct kvm_kernel_irqfd *irqfd = 2058 container_of(cons, struct kvm_kernel_irqfd, consumer); 2059 2060 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, 2061 &irqfd->irq_entry); 2062 } 2063 2064 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) 2065 { 2066 struct kvm_kernel_irqfd *irqfd = 2067 container_of(cons, struct kvm_kernel_irqfd, consumer); 2068 2069 kvm_arm_halt_guest(irqfd->kvm); 2070 } 2071 2072 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) 2073 { 2074 struct kvm_kernel_irqfd *irqfd = 2075 container_of(cons, struct kvm_kernel_irqfd, consumer); 2076 2077 kvm_arm_resume_guest(irqfd->kvm); 2078 } 2079 2080 /** 2081 * Initialize Hyp-mode and memory mappings on all CPUs. 2082 */ 2083 int kvm_arch_init(void *opaque) 2084 { 2085 int err; 2086 int ret, cpu; 2087 bool in_hyp_mode; 2088 2089 if (!is_hyp_mode_available()) { 2090 kvm_info("HYP mode not available\n"); 2091 return -ENODEV; 2092 } 2093 2094 in_hyp_mode = is_kernel_in_hyp_mode(); 2095 2096 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) || 2097 cpus_have_final_cap(ARM64_WORKAROUND_1508412)) 2098 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \ 2099 "Only trusted guests should be used on this system.\n"); 2100 2101 for_each_online_cpu(cpu) { 2102 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); 2103 if (ret < 0) { 2104 kvm_err("Error, CPU %d not supported!\n", cpu); 2105 return -ENODEV; 2106 } 2107 } 2108 2109 err = init_common_resources(); 2110 if (err) 2111 return err; 2112 2113 err = kvm_arm_init_sve(); 2114 if (err) 2115 return err; 2116 2117 if (!in_hyp_mode) { 2118 err = init_hyp_mode(); 2119 if (err) 2120 goto out_err; 2121 } 2122 2123 err = kvm_init_vector_slots(); 2124 if (err) { 2125 kvm_err("Cannot initialise vector slots\n"); 2126 goto out_err; 2127 } 2128 2129 err = init_subsystems(); 2130 if (err) 2131 goto out_hyp; 2132 2133 if (!in_hyp_mode) { 2134 err = finalize_hyp_mode(); 2135 if (err) { 2136 kvm_err("Failed to finalize Hyp protection\n"); 2137 goto out_hyp; 2138 } 2139 } 2140 2141 if (is_protected_kvm_enabled()) { 2142 kvm_info("Protected nVHE mode initialized successfully\n"); 2143 } else if (in_hyp_mode) { 2144 kvm_info("VHE mode initialized successfully\n"); 2145 } else { 2146 kvm_info("Hyp mode initialized successfully\n"); 2147 } 2148 2149 return 0; 2150 2151 out_hyp: 2152 hyp_cpu_pm_exit(); 2153 if (!in_hyp_mode) 2154 teardown_hyp_mode(); 2155 out_err: 2156 return err; 2157 } 2158 2159 /* NOP: Compiling as a module not supported */ 2160 void kvm_arch_exit(void) 2161 { 2162 kvm_perf_teardown(); 2163 } 2164 2165 static int __init early_kvm_mode_cfg(char *arg) 2166 { 2167 if (!arg) 2168 return -EINVAL; 2169 2170 if (strcmp(arg, "protected") == 0) { 2171 kvm_mode = KVM_MODE_PROTECTED; 2172 return 0; 2173 } 2174 2175 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) 2176 return 0; 2177 2178 return -EINVAL; 2179 } 2180 early_param("kvm-arm.mode", early_kvm_mode_cfg); 2181 2182 enum kvm_mode kvm_get_mode(void) 2183 { 2184 return kvm_mode; 2185 } 2186 2187 static int arm_init(void) 2188 { 2189 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 2190 return rc; 2191 } 2192 2193 module_init(arm_init); 2194