xref: /openbmc/linux/arch/arm64/kvm/arm.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5  */
6 
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28 
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/kvm_pkvm.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42 
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46 
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 
49 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
50 
51 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
53 
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
55 
56 static bool vgic_present;
57 
58 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
59 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
60 
61 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
62 {
63 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
64 }
65 
66 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
67 			    struct kvm_enable_cap *cap)
68 {
69 	int r;
70 	u64 new_cap;
71 
72 	if (cap->flags)
73 		return -EINVAL;
74 
75 	switch (cap->cap) {
76 	case KVM_CAP_ARM_NISV_TO_USER:
77 		r = 0;
78 		set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
79 			&kvm->arch.flags);
80 		break;
81 	case KVM_CAP_ARM_MTE:
82 		mutex_lock(&kvm->lock);
83 		if (!system_supports_mte() || kvm->created_vcpus) {
84 			r = -EINVAL;
85 		} else {
86 			r = 0;
87 			set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
88 		}
89 		mutex_unlock(&kvm->lock);
90 		break;
91 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
92 		r = 0;
93 		set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
94 		break;
95 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
96 		new_cap = cap->args[0];
97 
98 		mutex_lock(&kvm->slots_lock);
99 		/*
100 		 * To keep things simple, allow changing the chunk
101 		 * size only when no memory slots have been created.
102 		 */
103 		if (!kvm_are_all_memslots_empty(kvm)) {
104 			r = -EINVAL;
105 		} else if (new_cap && !kvm_is_block_size_supported(new_cap)) {
106 			r = -EINVAL;
107 		} else {
108 			r = 0;
109 			kvm->arch.mmu.split_page_chunk_size = new_cap;
110 		}
111 		mutex_unlock(&kvm->slots_lock);
112 		break;
113 	default:
114 		r = -EINVAL;
115 		break;
116 	}
117 
118 	return r;
119 }
120 
121 static int kvm_arm_default_max_vcpus(void)
122 {
123 	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
124 }
125 
126 /**
127  * kvm_arch_init_vm - initializes a VM data structure
128  * @kvm:	pointer to the KVM struct
129  */
130 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
131 {
132 	int ret;
133 
134 	mutex_init(&kvm->arch.config_lock);
135 
136 #ifdef CONFIG_LOCKDEP
137 	/* Clue in lockdep that the config_lock must be taken inside kvm->lock */
138 	mutex_lock(&kvm->lock);
139 	mutex_lock(&kvm->arch.config_lock);
140 	mutex_unlock(&kvm->arch.config_lock);
141 	mutex_unlock(&kvm->lock);
142 #endif
143 
144 	ret = kvm_share_hyp(kvm, kvm + 1);
145 	if (ret)
146 		return ret;
147 
148 	ret = pkvm_init_host_vm(kvm);
149 	if (ret)
150 		goto err_unshare_kvm;
151 
152 	if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
153 		ret = -ENOMEM;
154 		goto err_unshare_kvm;
155 	}
156 	cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
157 
158 	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
159 	if (ret)
160 		goto err_free_cpumask;
161 
162 	kvm_vgic_early_init(kvm);
163 
164 	kvm_timer_init_vm(kvm);
165 
166 	/* The maximum number of VCPUs is limited by the host's GIC model */
167 	kvm->max_vcpus = kvm_arm_default_max_vcpus();
168 
169 	kvm_arm_init_hypercalls(kvm);
170 
171 	bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
172 
173 	return 0;
174 
175 err_free_cpumask:
176 	free_cpumask_var(kvm->arch.supported_cpus);
177 err_unshare_kvm:
178 	kvm_unshare_hyp(kvm, kvm + 1);
179 	return ret;
180 }
181 
182 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
183 {
184 	return VM_FAULT_SIGBUS;
185 }
186 
187 
188 /**
189  * kvm_arch_destroy_vm - destroy the VM data structure
190  * @kvm:	pointer to the KVM struct
191  */
192 void kvm_arch_destroy_vm(struct kvm *kvm)
193 {
194 	bitmap_free(kvm->arch.pmu_filter);
195 	free_cpumask_var(kvm->arch.supported_cpus);
196 
197 	kvm_vgic_destroy(kvm);
198 
199 	if (is_protected_kvm_enabled())
200 		pkvm_destroy_hyp_vm(kvm);
201 
202 	kvm_destroy_vcpus(kvm);
203 
204 	kvm_unshare_hyp(kvm, kvm + 1);
205 
206 	kvm_arm_teardown_hypercalls(kvm);
207 }
208 
209 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
210 {
211 	int r;
212 	switch (ext) {
213 	case KVM_CAP_IRQCHIP:
214 		r = vgic_present;
215 		break;
216 	case KVM_CAP_IOEVENTFD:
217 	case KVM_CAP_DEVICE_CTRL:
218 	case KVM_CAP_USER_MEMORY:
219 	case KVM_CAP_SYNC_MMU:
220 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
221 	case KVM_CAP_ONE_REG:
222 	case KVM_CAP_ARM_PSCI:
223 	case KVM_CAP_ARM_PSCI_0_2:
224 	case KVM_CAP_READONLY_MEM:
225 	case KVM_CAP_MP_STATE:
226 	case KVM_CAP_IMMEDIATE_EXIT:
227 	case KVM_CAP_VCPU_EVENTS:
228 	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
229 	case KVM_CAP_ARM_NISV_TO_USER:
230 	case KVM_CAP_ARM_INJECT_EXT_DABT:
231 	case KVM_CAP_SET_GUEST_DEBUG:
232 	case KVM_CAP_VCPU_ATTRIBUTES:
233 	case KVM_CAP_PTP_KVM:
234 	case KVM_CAP_ARM_SYSTEM_SUSPEND:
235 	case KVM_CAP_IRQFD_RESAMPLE:
236 	case KVM_CAP_COUNTER_OFFSET:
237 		r = 1;
238 		break;
239 	case KVM_CAP_SET_GUEST_DEBUG2:
240 		return KVM_GUESTDBG_VALID_MASK;
241 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
242 		r = 1;
243 		break;
244 	case KVM_CAP_NR_VCPUS:
245 		/*
246 		 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
247 		 * architectures, as it does not always bound it to
248 		 * KVM_CAP_MAX_VCPUS. It should not matter much because
249 		 * this is just an advisory value.
250 		 */
251 		r = min_t(unsigned int, num_online_cpus(),
252 			  kvm_arm_default_max_vcpus());
253 		break;
254 	case KVM_CAP_MAX_VCPUS:
255 	case KVM_CAP_MAX_VCPU_ID:
256 		if (kvm)
257 			r = kvm->max_vcpus;
258 		else
259 			r = kvm_arm_default_max_vcpus();
260 		break;
261 	case KVM_CAP_MSI_DEVID:
262 		if (!kvm)
263 			r = -EINVAL;
264 		else
265 			r = kvm->arch.vgic.msis_require_devid;
266 		break;
267 	case KVM_CAP_ARM_USER_IRQ:
268 		/*
269 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
270 		 * (bump this number if adding more devices)
271 		 */
272 		r = 1;
273 		break;
274 	case KVM_CAP_ARM_MTE:
275 		r = system_supports_mte();
276 		break;
277 	case KVM_CAP_STEAL_TIME:
278 		r = kvm_arm_pvtime_supported();
279 		break;
280 	case KVM_CAP_ARM_EL1_32BIT:
281 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
282 		break;
283 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
284 		r = get_num_brps();
285 		break;
286 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
287 		r = get_num_wrps();
288 		break;
289 	case KVM_CAP_ARM_PMU_V3:
290 		r = kvm_arm_support_pmu_v3();
291 		break;
292 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
293 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
294 		break;
295 	case KVM_CAP_ARM_VM_IPA_SIZE:
296 		r = get_kvm_ipa_limit();
297 		break;
298 	case KVM_CAP_ARM_SVE:
299 		r = system_supports_sve();
300 		break;
301 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
302 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
303 		r = system_has_full_ptr_auth();
304 		break;
305 	case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
306 		if (kvm)
307 			r = kvm->arch.mmu.split_page_chunk_size;
308 		else
309 			r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
310 		break;
311 	case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
312 		r = kvm_supported_block_sizes();
313 		break;
314 	default:
315 		r = 0;
316 	}
317 
318 	return r;
319 }
320 
321 long kvm_arch_dev_ioctl(struct file *filp,
322 			unsigned int ioctl, unsigned long arg)
323 {
324 	return -EINVAL;
325 }
326 
327 struct kvm *kvm_arch_alloc_vm(void)
328 {
329 	size_t sz = sizeof(struct kvm);
330 
331 	if (!has_vhe())
332 		return kzalloc(sz, GFP_KERNEL_ACCOUNT);
333 
334 	return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
335 }
336 
337 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
338 {
339 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
340 		return -EBUSY;
341 
342 	if (id >= kvm->max_vcpus)
343 		return -EINVAL;
344 
345 	return 0;
346 }
347 
348 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
349 {
350 	int err;
351 
352 	spin_lock_init(&vcpu->arch.mp_state_lock);
353 
354 #ifdef CONFIG_LOCKDEP
355 	/* Inform lockdep that the config_lock is acquired after vcpu->mutex */
356 	mutex_lock(&vcpu->mutex);
357 	mutex_lock(&vcpu->kvm->arch.config_lock);
358 	mutex_unlock(&vcpu->kvm->arch.config_lock);
359 	mutex_unlock(&vcpu->mutex);
360 #endif
361 
362 	/* Force users to call KVM_ARM_VCPU_INIT */
363 	vcpu->arch.target = -1;
364 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
365 
366 	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
367 
368 	/*
369 	 * Default value for the FP state, will be overloaded at load
370 	 * time if we support FP (pretty likely)
371 	 */
372 	vcpu->arch.fp_state = FP_STATE_FREE;
373 
374 	/* Set up the timer */
375 	kvm_timer_vcpu_init(vcpu);
376 
377 	kvm_pmu_vcpu_init(vcpu);
378 
379 	kvm_arm_reset_debug_ptr(vcpu);
380 
381 	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
382 
383 	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
384 
385 	err = kvm_vgic_vcpu_init(vcpu);
386 	if (err)
387 		return err;
388 
389 	return kvm_share_hyp(vcpu, vcpu + 1);
390 }
391 
392 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
393 {
394 }
395 
396 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
397 {
398 	if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
399 		static_branch_dec(&userspace_irqchip_in_use);
400 
401 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
402 	kvm_timer_vcpu_terminate(vcpu);
403 	kvm_pmu_vcpu_destroy(vcpu);
404 
405 	kvm_arm_vcpu_destroy(vcpu);
406 }
407 
408 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
409 {
410 
411 }
412 
413 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
414 {
415 
416 }
417 
418 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
419 {
420 	struct kvm_s2_mmu *mmu;
421 	int *last_ran;
422 
423 	mmu = vcpu->arch.hw_mmu;
424 	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
425 
426 	/*
427 	 * We guarantee that both TLBs and I-cache are private to each
428 	 * vcpu. If detecting that a vcpu from the same VM has
429 	 * previously run on the same physical CPU, call into the
430 	 * hypervisor code to nuke the relevant contexts.
431 	 *
432 	 * We might get preempted before the vCPU actually runs, but
433 	 * over-invalidation doesn't affect correctness.
434 	 */
435 	if (*last_ran != vcpu->vcpu_id) {
436 		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
437 		*last_ran = vcpu->vcpu_id;
438 	}
439 
440 	vcpu->cpu = cpu;
441 
442 	kvm_vgic_load(vcpu);
443 	kvm_timer_vcpu_load(vcpu);
444 	if (has_vhe())
445 		kvm_vcpu_load_sysregs_vhe(vcpu);
446 	kvm_arch_vcpu_load_fp(vcpu);
447 	kvm_vcpu_pmu_restore_guest(vcpu);
448 	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
449 		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
450 
451 	if (single_task_running())
452 		vcpu_clear_wfx_traps(vcpu);
453 	else
454 		vcpu_set_wfx_traps(vcpu);
455 
456 	if (vcpu_has_ptrauth(vcpu))
457 		vcpu_ptrauth_disable(vcpu);
458 	kvm_arch_vcpu_load_debug_state_flags(vcpu);
459 
460 	if (!cpumask_test_cpu(smp_processor_id(), vcpu->kvm->arch.supported_cpus))
461 		vcpu_set_on_unsupported_cpu(vcpu);
462 }
463 
464 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
465 {
466 	kvm_arch_vcpu_put_debug_state_flags(vcpu);
467 	kvm_arch_vcpu_put_fp(vcpu);
468 	if (has_vhe())
469 		kvm_vcpu_put_sysregs_vhe(vcpu);
470 	kvm_timer_vcpu_put(vcpu);
471 	kvm_vgic_put(vcpu);
472 	kvm_vcpu_pmu_restore_host(vcpu);
473 	kvm_arm_vmid_clear_active();
474 
475 	vcpu_clear_on_unsupported_cpu(vcpu);
476 	vcpu->cpu = -1;
477 }
478 
479 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
480 {
481 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
482 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
483 	kvm_vcpu_kick(vcpu);
484 }
485 
486 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
487 {
488 	spin_lock(&vcpu->arch.mp_state_lock);
489 	__kvm_arm_vcpu_power_off(vcpu);
490 	spin_unlock(&vcpu->arch.mp_state_lock);
491 }
492 
493 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
494 {
495 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
496 }
497 
498 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
499 {
500 	WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
501 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
502 	kvm_vcpu_kick(vcpu);
503 }
504 
505 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
506 {
507 	return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
508 }
509 
510 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
511 				    struct kvm_mp_state *mp_state)
512 {
513 	*mp_state = READ_ONCE(vcpu->arch.mp_state);
514 
515 	return 0;
516 }
517 
518 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
519 				    struct kvm_mp_state *mp_state)
520 {
521 	int ret = 0;
522 
523 	spin_lock(&vcpu->arch.mp_state_lock);
524 
525 	switch (mp_state->mp_state) {
526 	case KVM_MP_STATE_RUNNABLE:
527 		WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
528 		break;
529 	case KVM_MP_STATE_STOPPED:
530 		__kvm_arm_vcpu_power_off(vcpu);
531 		break;
532 	case KVM_MP_STATE_SUSPENDED:
533 		kvm_arm_vcpu_suspend(vcpu);
534 		break;
535 	default:
536 		ret = -EINVAL;
537 	}
538 
539 	spin_unlock(&vcpu->arch.mp_state_lock);
540 
541 	return ret;
542 }
543 
544 /**
545  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
546  * @v:		The VCPU pointer
547  *
548  * If the guest CPU is not waiting for interrupts or an interrupt line is
549  * asserted, the CPU is by definition runnable.
550  */
551 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
552 {
553 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
554 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
555 		&& !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
556 }
557 
558 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
559 {
560 	return vcpu_mode_priv(vcpu);
561 }
562 
563 #ifdef CONFIG_GUEST_PERF_EVENTS
564 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
565 {
566 	return *vcpu_pc(vcpu);
567 }
568 #endif
569 
570 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
571 {
572 	return vcpu->arch.target >= 0;
573 }
574 
575 /*
576  * Handle both the initialisation that is being done when the vcpu is
577  * run for the first time, as well as the updates that must be
578  * performed each time we get a new thread dealing with this vcpu.
579  */
580 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
581 {
582 	struct kvm *kvm = vcpu->kvm;
583 	int ret;
584 
585 	if (!kvm_vcpu_initialized(vcpu))
586 		return -ENOEXEC;
587 
588 	if (!kvm_arm_vcpu_is_finalized(vcpu))
589 		return -EPERM;
590 
591 	ret = kvm_arch_vcpu_run_map_fp(vcpu);
592 	if (ret)
593 		return ret;
594 
595 	if (likely(vcpu_has_run_once(vcpu)))
596 		return 0;
597 
598 	kvm_arm_vcpu_init_debug(vcpu);
599 
600 	if (likely(irqchip_in_kernel(kvm))) {
601 		/*
602 		 * Map the VGIC hardware resources before running a vcpu the
603 		 * first time on this VM.
604 		 */
605 		ret = kvm_vgic_map_resources(kvm);
606 		if (ret)
607 			return ret;
608 	}
609 
610 	ret = kvm_timer_enable(vcpu);
611 	if (ret)
612 		return ret;
613 
614 	ret = kvm_arm_pmu_v3_enable(vcpu);
615 	if (ret)
616 		return ret;
617 
618 	if (is_protected_kvm_enabled()) {
619 		ret = pkvm_create_hyp_vm(kvm);
620 		if (ret)
621 			return ret;
622 	}
623 
624 	if (!irqchip_in_kernel(kvm)) {
625 		/*
626 		 * Tell the rest of the code that there are userspace irqchip
627 		 * VMs in the wild.
628 		 */
629 		static_branch_inc(&userspace_irqchip_in_use);
630 	}
631 
632 	/*
633 	 * Initialize traps for protected VMs.
634 	 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
635 	 * the code is in place for first run initialization at EL2.
636 	 */
637 	if (kvm_vm_is_protected(kvm))
638 		kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
639 
640 	mutex_lock(&kvm->arch.config_lock);
641 	set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
642 	mutex_unlock(&kvm->arch.config_lock);
643 
644 	return ret;
645 }
646 
647 bool kvm_arch_intc_initialized(struct kvm *kvm)
648 {
649 	return vgic_initialized(kvm);
650 }
651 
652 void kvm_arm_halt_guest(struct kvm *kvm)
653 {
654 	unsigned long i;
655 	struct kvm_vcpu *vcpu;
656 
657 	kvm_for_each_vcpu(i, vcpu, kvm)
658 		vcpu->arch.pause = true;
659 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
660 }
661 
662 void kvm_arm_resume_guest(struct kvm *kvm)
663 {
664 	unsigned long i;
665 	struct kvm_vcpu *vcpu;
666 
667 	kvm_for_each_vcpu(i, vcpu, kvm) {
668 		vcpu->arch.pause = false;
669 		__kvm_vcpu_wake_up(vcpu);
670 	}
671 }
672 
673 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
674 {
675 	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
676 
677 	rcuwait_wait_event(wait,
678 			   (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
679 			   TASK_INTERRUPTIBLE);
680 
681 	if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
682 		/* Awaken to handle a signal, request we sleep again later. */
683 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
684 	}
685 
686 	/*
687 	 * Make sure we will observe a potential reset request if we've
688 	 * observed a change to the power state. Pairs with the smp_wmb() in
689 	 * kvm_psci_vcpu_on().
690 	 */
691 	smp_rmb();
692 }
693 
694 /**
695  * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
696  * @vcpu:	The VCPU pointer
697  *
698  * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
699  * the vCPU is runnable.  The vCPU may or may not be scheduled out, depending
700  * on when a wake event arrives, e.g. there may already be a pending wake event.
701  */
702 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
703 {
704 	/*
705 	 * Sync back the state of the GIC CPU interface so that we have
706 	 * the latest PMR and group enables. This ensures that
707 	 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
708 	 * we have pending interrupts, e.g. when determining if the
709 	 * vCPU should block.
710 	 *
711 	 * For the same reason, we want to tell GICv4 that we need
712 	 * doorbells to be signalled, should an interrupt become pending.
713 	 */
714 	preempt_disable();
715 	kvm_vgic_vmcr_sync(vcpu);
716 	vgic_v4_put(vcpu, true);
717 	preempt_enable();
718 
719 	kvm_vcpu_halt(vcpu);
720 	vcpu_clear_flag(vcpu, IN_WFIT);
721 
722 	preempt_disable();
723 	vgic_v4_load(vcpu);
724 	preempt_enable();
725 }
726 
727 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
728 {
729 	if (!kvm_arm_vcpu_suspended(vcpu))
730 		return 1;
731 
732 	kvm_vcpu_wfi(vcpu);
733 
734 	/*
735 	 * The suspend state is sticky; we do not leave it until userspace
736 	 * explicitly marks the vCPU as runnable. Request that we suspend again
737 	 * later.
738 	 */
739 	kvm_make_request(KVM_REQ_SUSPEND, vcpu);
740 
741 	/*
742 	 * Check to make sure the vCPU is actually runnable. If so, exit to
743 	 * userspace informing it of the wakeup condition.
744 	 */
745 	if (kvm_arch_vcpu_runnable(vcpu)) {
746 		memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
747 		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
748 		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
749 		return 0;
750 	}
751 
752 	/*
753 	 * Otherwise, we were unblocked to process a different event, such as a
754 	 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
755 	 * process the event.
756 	 */
757 	return 1;
758 }
759 
760 /**
761  * check_vcpu_requests - check and handle pending vCPU requests
762  * @vcpu:	the VCPU pointer
763  *
764  * Return: 1 if we should enter the guest
765  *	   0 if we should exit to userspace
766  *	   < 0 if we should exit to userspace, where the return value indicates
767  *	   an error
768  */
769 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
770 {
771 	if (kvm_request_pending(vcpu)) {
772 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
773 			kvm_vcpu_sleep(vcpu);
774 
775 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
776 			kvm_reset_vcpu(vcpu);
777 
778 		/*
779 		 * Clear IRQ_PENDING requests that were made to guarantee
780 		 * that a VCPU sees new virtual interrupts.
781 		 */
782 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
783 
784 		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
785 			kvm_update_stolen_time(vcpu);
786 
787 		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
788 			/* The distributor enable bits were changed */
789 			preempt_disable();
790 			vgic_v4_put(vcpu, false);
791 			vgic_v4_load(vcpu);
792 			preempt_enable();
793 		}
794 
795 		if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
796 			kvm_pmu_handle_pmcr(vcpu,
797 					    __vcpu_sys_reg(vcpu, PMCR_EL0));
798 
799 		if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
800 			return kvm_vcpu_suspend(vcpu);
801 
802 		if (kvm_dirty_ring_check_request(vcpu))
803 			return 0;
804 	}
805 
806 	return 1;
807 }
808 
809 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
810 {
811 	if (likely(!vcpu_mode_is_32bit(vcpu)))
812 		return false;
813 
814 	return !kvm_supports_32bit_el0();
815 }
816 
817 /**
818  * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
819  * @vcpu:	The VCPU pointer
820  * @ret:	Pointer to write optional return code
821  *
822  * Returns: true if the VCPU needs to return to a preemptible + interruptible
823  *	    and skip guest entry.
824  *
825  * This function disambiguates between two different types of exits: exits to a
826  * preemptible + interruptible kernel context and exits to userspace. For an
827  * exit to userspace, this function will write the return code to ret and return
828  * true. For an exit to preemptible + interruptible kernel context (i.e. check
829  * for pending work and re-enter), return true without writing to ret.
830  */
831 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
832 {
833 	struct kvm_run *run = vcpu->run;
834 
835 	/*
836 	 * If we're using a userspace irqchip, then check if we need
837 	 * to tell a userspace irqchip about timer or PMU level
838 	 * changes and if so, exit to userspace (the actual level
839 	 * state gets updated in kvm_timer_update_run and
840 	 * kvm_pmu_update_run below).
841 	 */
842 	if (static_branch_unlikely(&userspace_irqchip_in_use)) {
843 		if (kvm_timer_should_notify_user(vcpu) ||
844 		    kvm_pmu_should_notify_user(vcpu)) {
845 			*ret = -EINTR;
846 			run->exit_reason = KVM_EXIT_INTR;
847 			return true;
848 		}
849 	}
850 
851 	if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
852 		run->exit_reason = KVM_EXIT_FAIL_ENTRY;
853 		run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
854 		run->fail_entry.cpu = smp_processor_id();
855 		*ret = 0;
856 		return true;
857 	}
858 
859 	return kvm_request_pending(vcpu) ||
860 			xfer_to_guest_mode_work_pending();
861 }
862 
863 /*
864  * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
865  * the vCPU is running.
866  *
867  * This must be noinstr as instrumentation may make use of RCU, and this is not
868  * safe during the EQS.
869  */
870 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
871 {
872 	int ret;
873 
874 	guest_state_enter_irqoff();
875 	ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
876 	guest_state_exit_irqoff();
877 
878 	return ret;
879 }
880 
881 /**
882  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
883  * @vcpu:	The VCPU pointer
884  *
885  * This function is called through the VCPU_RUN ioctl called from user space. It
886  * will execute VM code in a loop until the time slice for the process is used
887  * or some emulation is needed from user space in which case the function will
888  * return with return value 0 and with the kvm_run structure filled in with the
889  * required data for the requested emulation.
890  */
891 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
892 {
893 	struct kvm_run *run = vcpu->run;
894 	int ret;
895 
896 	if (run->exit_reason == KVM_EXIT_MMIO) {
897 		ret = kvm_handle_mmio_return(vcpu);
898 		if (ret)
899 			return ret;
900 	}
901 
902 	vcpu_load(vcpu);
903 
904 	if (run->immediate_exit) {
905 		ret = -EINTR;
906 		goto out;
907 	}
908 
909 	kvm_sigset_activate(vcpu);
910 
911 	ret = 1;
912 	run->exit_reason = KVM_EXIT_UNKNOWN;
913 	run->flags = 0;
914 	while (ret > 0) {
915 		/*
916 		 * Check conditions before entering the guest
917 		 */
918 		ret = xfer_to_guest_mode_handle_work(vcpu);
919 		if (!ret)
920 			ret = 1;
921 
922 		if (ret > 0)
923 			ret = check_vcpu_requests(vcpu);
924 
925 		/*
926 		 * Preparing the interrupts to be injected also
927 		 * involves poking the GIC, which must be done in a
928 		 * non-preemptible context.
929 		 */
930 		preempt_disable();
931 
932 		/*
933 		 * The VMID allocator only tracks active VMIDs per
934 		 * physical CPU, and therefore the VMID allocated may not be
935 		 * preserved on VMID roll-over if the task was preempted,
936 		 * making a thread's VMID inactive. So we need to call
937 		 * kvm_arm_vmid_update() in non-premptible context.
938 		 */
939 		kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid);
940 
941 		kvm_pmu_flush_hwstate(vcpu);
942 
943 		local_irq_disable();
944 
945 		kvm_vgic_flush_hwstate(vcpu);
946 
947 		kvm_pmu_update_vcpu_events(vcpu);
948 
949 		/*
950 		 * Ensure we set mode to IN_GUEST_MODE after we disable
951 		 * interrupts and before the final VCPU requests check.
952 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
953 		 * Documentation/virt/kvm/vcpu-requests.rst
954 		 */
955 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
956 
957 		if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
958 			vcpu->mode = OUTSIDE_GUEST_MODE;
959 			isb(); /* Ensure work in x_flush_hwstate is committed */
960 			kvm_pmu_sync_hwstate(vcpu);
961 			if (static_branch_unlikely(&userspace_irqchip_in_use))
962 				kvm_timer_sync_user(vcpu);
963 			kvm_vgic_sync_hwstate(vcpu);
964 			local_irq_enable();
965 			preempt_enable();
966 			continue;
967 		}
968 
969 		kvm_arm_setup_debug(vcpu);
970 		kvm_arch_vcpu_ctxflush_fp(vcpu);
971 
972 		/**************************************************************
973 		 * Enter the guest
974 		 */
975 		trace_kvm_entry(*vcpu_pc(vcpu));
976 		guest_timing_enter_irqoff();
977 
978 		ret = kvm_arm_vcpu_enter_exit(vcpu);
979 
980 		vcpu->mode = OUTSIDE_GUEST_MODE;
981 		vcpu->stat.exits++;
982 		/*
983 		 * Back from guest
984 		 *************************************************************/
985 
986 		kvm_arm_clear_debug(vcpu);
987 
988 		/*
989 		 * We must sync the PMU state before the vgic state so
990 		 * that the vgic can properly sample the updated state of the
991 		 * interrupt line.
992 		 */
993 		kvm_pmu_sync_hwstate(vcpu);
994 
995 		/*
996 		 * Sync the vgic state before syncing the timer state because
997 		 * the timer code needs to know if the virtual timer
998 		 * interrupts are active.
999 		 */
1000 		kvm_vgic_sync_hwstate(vcpu);
1001 
1002 		/*
1003 		 * Sync the timer hardware state before enabling interrupts as
1004 		 * we don't want vtimer interrupts to race with syncing the
1005 		 * timer virtual interrupt state.
1006 		 */
1007 		if (static_branch_unlikely(&userspace_irqchip_in_use))
1008 			kvm_timer_sync_user(vcpu);
1009 
1010 		kvm_arch_vcpu_ctxsync_fp(vcpu);
1011 
1012 		/*
1013 		 * We must ensure that any pending interrupts are taken before
1014 		 * we exit guest timing so that timer ticks are accounted as
1015 		 * guest time. Transiently unmask interrupts so that any
1016 		 * pending interrupts are taken.
1017 		 *
1018 		 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1019 		 * context synchronization event) is necessary to ensure that
1020 		 * pending interrupts are taken.
1021 		 */
1022 		if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1023 			local_irq_enable();
1024 			isb();
1025 			local_irq_disable();
1026 		}
1027 
1028 		guest_timing_exit_irqoff();
1029 
1030 		local_irq_enable();
1031 
1032 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1033 
1034 		/* Exit types that need handling before we can be preempted */
1035 		handle_exit_early(vcpu, ret);
1036 
1037 		preempt_enable();
1038 
1039 		/*
1040 		 * The ARMv8 architecture doesn't give the hypervisor
1041 		 * a mechanism to prevent a guest from dropping to AArch32 EL0
1042 		 * if implemented by the CPU. If we spot the guest in such
1043 		 * state and that we decided it wasn't supposed to do so (like
1044 		 * with the asymmetric AArch32 case), return to userspace with
1045 		 * a fatal error.
1046 		 */
1047 		if (vcpu_mode_is_bad_32bit(vcpu)) {
1048 			/*
1049 			 * As we have caught the guest red-handed, decide that
1050 			 * it isn't fit for purpose anymore by making the vcpu
1051 			 * invalid. The VMM can try and fix it by issuing  a
1052 			 * KVM_ARM_VCPU_INIT if it really wants to.
1053 			 */
1054 			vcpu->arch.target = -1;
1055 			ret = ARM_EXCEPTION_IL;
1056 		}
1057 
1058 		ret = handle_exit(vcpu, ret);
1059 	}
1060 
1061 	/* Tell userspace about in-kernel device output levels */
1062 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1063 		kvm_timer_update_run(vcpu);
1064 		kvm_pmu_update_run(vcpu);
1065 	}
1066 
1067 	kvm_sigset_deactivate(vcpu);
1068 
1069 out:
1070 	/*
1071 	 * In the unlikely event that we are returning to userspace
1072 	 * with pending exceptions or PC adjustment, commit these
1073 	 * adjustments in order to give userspace a consistent view of
1074 	 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1075 	 * being preempt-safe on VHE.
1076 	 */
1077 	if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1078 		     vcpu_get_flag(vcpu, INCREMENT_PC)))
1079 		kvm_call_hyp(__kvm_adjust_pc, vcpu);
1080 
1081 	vcpu_put(vcpu);
1082 	return ret;
1083 }
1084 
1085 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1086 {
1087 	int bit_index;
1088 	bool set;
1089 	unsigned long *hcr;
1090 
1091 	if (number == KVM_ARM_IRQ_CPU_IRQ)
1092 		bit_index = __ffs(HCR_VI);
1093 	else /* KVM_ARM_IRQ_CPU_FIQ */
1094 		bit_index = __ffs(HCR_VF);
1095 
1096 	hcr = vcpu_hcr(vcpu);
1097 	if (level)
1098 		set = test_and_set_bit(bit_index, hcr);
1099 	else
1100 		set = test_and_clear_bit(bit_index, hcr);
1101 
1102 	/*
1103 	 * If we didn't change anything, no need to wake up or kick other CPUs
1104 	 */
1105 	if (set == level)
1106 		return 0;
1107 
1108 	/*
1109 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1110 	 * trigger a world-switch round on the running physical CPU to set the
1111 	 * virtual IRQ/FIQ fields in the HCR appropriately.
1112 	 */
1113 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1114 	kvm_vcpu_kick(vcpu);
1115 
1116 	return 0;
1117 }
1118 
1119 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1120 			  bool line_status)
1121 {
1122 	u32 irq = irq_level->irq;
1123 	unsigned int irq_type, vcpu_idx, irq_num;
1124 	int nrcpus = atomic_read(&kvm->online_vcpus);
1125 	struct kvm_vcpu *vcpu = NULL;
1126 	bool level = irq_level->level;
1127 
1128 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1129 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1130 	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1131 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1132 
1133 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1134 
1135 	switch (irq_type) {
1136 	case KVM_ARM_IRQ_TYPE_CPU:
1137 		if (irqchip_in_kernel(kvm))
1138 			return -ENXIO;
1139 
1140 		if (vcpu_idx >= nrcpus)
1141 			return -EINVAL;
1142 
1143 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1144 		if (!vcpu)
1145 			return -EINVAL;
1146 
1147 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1148 			return -EINVAL;
1149 
1150 		return vcpu_interrupt_line(vcpu, irq_num, level);
1151 	case KVM_ARM_IRQ_TYPE_PPI:
1152 		if (!irqchip_in_kernel(kvm))
1153 			return -ENXIO;
1154 
1155 		if (vcpu_idx >= nrcpus)
1156 			return -EINVAL;
1157 
1158 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1159 		if (!vcpu)
1160 			return -EINVAL;
1161 
1162 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1163 			return -EINVAL;
1164 
1165 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1166 	case KVM_ARM_IRQ_TYPE_SPI:
1167 		if (!irqchip_in_kernel(kvm))
1168 			return -ENXIO;
1169 
1170 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
1171 			return -EINVAL;
1172 
1173 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1174 	}
1175 
1176 	return -EINVAL;
1177 }
1178 
1179 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1180 					const struct kvm_vcpu_init *init)
1181 {
1182 	unsigned long features = init->features[0];
1183 	int i;
1184 
1185 	if (features & ~KVM_VCPU_VALID_FEATURES)
1186 		return -ENOENT;
1187 
1188 	for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1189 		if (init->features[i])
1190 			return -ENOENT;
1191 	}
1192 
1193 	if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1194 		return 0;
1195 
1196 	if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1))
1197 		return -EINVAL;
1198 
1199 	/* MTE is incompatible with AArch32 */
1200 	if (kvm_has_mte(vcpu->kvm))
1201 		return -EINVAL;
1202 
1203 	/* NV is incompatible with AArch32 */
1204 	if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1205 		return -EINVAL;
1206 
1207 	return 0;
1208 }
1209 
1210 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1211 				  const struct kvm_vcpu_init *init)
1212 {
1213 	unsigned long features = init->features[0];
1214 
1215 	return !bitmap_equal(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES) ||
1216 			vcpu->arch.target != init->target;
1217 }
1218 
1219 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1220 				 const struct kvm_vcpu_init *init)
1221 {
1222 	unsigned long features = init->features[0];
1223 	struct kvm *kvm = vcpu->kvm;
1224 	int ret = -EINVAL;
1225 
1226 	mutex_lock(&kvm->arch.config_lock);
1227 
1228 	if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1229 	    !bitmap_equal(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES))
1230 		goto out_unlock;
1231 
1232 	vcpu->arch.target = init->target;
1233 	bitmap_copy(vcpu->arch.features, &features, KVM_VCPU_MAX_FEATURES);
1234 
1235 	/* Now we know what it is, we can reset it. */
1236 	ret = kvm_reset_vcpu(vcpu);
1237 	if (ret) {
1238 		vcpu->arch.target = -1;
1239 		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1240 		goto out_unlock;
1241 	}
1242 
1243 	bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1244 	set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1245 
1246 out_unlock:
1247 	mutex_unlock(&kvm->arch.config_lock);
1248 	return ret;
1249 }
1250 
1251 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1252 			       const struct kvm_vcpu_init *init)
1253 {
1254 	int ret;
1255 
1256 	if (init->target != kvm_target_cpu())
1257 		return -EINVAL;
1258 
1259 	ret = kvm_vcpu_init_check_features(vcpu, init);
1260 	if (ret)
1261 		return ret;
1262 
1263 	if (vcpu->arch.target == -1)
1264 		return __kvm_vcpu_set_target(vcpu, init);
1265 
1266 	if (kvm_vcpu_init_changed(vcpu, init))
1267 		return -EINVAL;
1268 
1269 	return kvm_reset_vcpu(vcpu);
1270 }
1271 
1272 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1273 					 struct kvm_vcpu_init *init)
1274 {
1275 	bool power_off = false;
1276 	int ret;
1277 
1278 	/*
1279 	 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1280 	 * reflecting it in the finalized feature set, thus limiting its scope
1281 	 * to a single KVM_ARM_VCPU_INIT call.
1282 	 */
1283 	if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1284 		init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1285 		power_off = true;
1286 	}
1287 
1288 	ret = kvm_vcpu_set_target(vcpu, init);
1289 	if (ret)
1290 		return ret;
1291 
1292 	/*
1293 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1294 	 * guest MMU is turned off and flush the caches as needed.
1295 	 *
1296 	 * S2FWB enforces all memory accesses to RAM being cacheable,
1297 	 * ensuring that the data side is always coherent. We still
1298 	 * need to invalidate the I-cache though, as FWB does *not*
1299 	 * imply CTR_EL0.DIC.
1300 	 */
1301 	if (vcpu_has_run_once(vcpu)) {
1302 		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1303 			stage2_unmap_vm(vcpu->kvm);
1304 		else
1305 			icache_inval_all_pou();
1306 	}
1307 
1308 	vcpu_reset_hcr(vcpu);
1309 	vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1310 
1311 	/*
1312 	 * Handle the "start in power-off" case.
1313 	 */
1314 	spin_lock(&vcpu->arch.mp_state_lock);
1315 
1316 	if (power_off)
1317 		__kvm_arm_vcpu_power_off(vcpu);
1318 	else
1319 		WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1320 
1321 	spin_unlock(&vcpu->arch.mp_state_lock);
1322 
1323 	return 0;
1324 }
1325 
1326 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1327 				 struct kvm_device_attr *attr)
1328 {
1329 	int ret = -ENXIO;
1330 
1331 	switch (attr->group) {
1332 	default:
1333 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1334 		break;
1335 	}
1336 
1337 	return ret;
1338 }
1339 
1340 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1341 				 struct kvm_device_attr *attr)
1342 {
1343 	int ret = -ENXIO;
1344 
1345 	switch (attr->group) {
1346 	default:
1347 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1348 		break;
1349 	}
1350 
1351 	return ret;
1352 }
1353 
1354 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1355 				 struct kvm_device_attr *attr)
1356 {
1357 	int ret = -ENXIO;
1358 
1359 	switch (attr->group) {
1360 	default:
1361 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1362 		break;
1363 	}
1364 
1365 	return ret;
1366 }
1367 
1368 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1369 				   struct kvm_vcpu_events *events)
1370 {
1371 	memset(events, 0, sizeof(*events));
1372 
1373 	return __kvm_arm_vcpu_get_events(vcpu, events);
1374 }
1375 
1376 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1377 				   struct kvm_vcpu_events *events)
1378 {
1379 	int i;
1380 
1381 	/* check whether the reserved field is zero */
1382 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1383 		if (events->reserved[i])
1384 			return -EINVAL;
1385 
1386 	/* check whether the pad field is zero */
1387 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1388 		if (events->exception.pad[i])
1389 			return -EINVAL;
1390 
1391 	return __kvm_arm_vcpu_set_events(vcpu, events);
1392 }
1393 
1394 long kvm_arch_vcpu_ioctl(struct file *filp,
1395 			 unsigned int ioctl, unsigned long arg)
1396 {
1397 	struct kvm_vcpu *vcpu = filp->private_data;
1398 	void __user *argp = (void __user *)arg;
1399 	struct kvm_device_attr attr;
1400 	long r;
1401 
1402 	switch (ioctl) {
1403 	case KVM_ARM_VCPU_INIT: {
1404 		struct kvm_vcpu_init init;
1405 
1406 		r = -EFAULT;
1407 		if (copy_from_user(&init, argp, sizeof(init)))
1408 			break;
1409 
1410 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1411 		break;
1412 	}
1413 	case KVM_SET_ONE_REG:
1414 	case KVM_GET_ONE_REG: {
1415 		struct kvm_one_reg reg;
1416 
1417 		r = -ENOEXEC;
1418 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1419 			break;
1420 
1421 		r = -EFAULT;
1422 		if (copy_from_user(&reg, argp, sizeof(reg)))
1423 			break;
1424 
1425 		/*
1426 		 * We could owe a reset due to PSCI. Handle the pending reset
1427 		 * here to ensure userspace register accesses are ordered after
1428 		 * the reset.
1429 		 */
1430 		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1431 			kvm_reset_vcpu(vcpu);
1432 
1433 		if (ioctl == KVM_SET_ONE_REG)
1434 			r = kvm_arm_set_reg(vcpu, &reg);
1435 		else
1436 			r = kvm_arm_get_reg(vcpu, &reg);
1437 		break;
1438 	}
1439 	case KVM_GET_REG_LIST: {
1440 		struct kvm_reg_list __user *user_list = argp;
1441 		struct kvm_reg_list reg_list;
1442 		unsigned n;
1443 
1444 		r = -ENOEXEC;
1445 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1446 			break;
1447 
1448 		r = -EPERM;
1449 		if (!kvm_arm_vcpu_is_finalized(vcpu))
1450 			break;
1451 
1452 		r = -EFAULT;
1453 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1454 			break;
1455 		n = reg_list.n;
1456 		reg_list.n = kvm_arm_num_regs(vcpu);
1457 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1458 			break;
1459 		r = -E2BIG;
1460 		if (n < reg_list.n)
1461 			break;
1462 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1463 		break;
1464 	}
1465 	case KVM_SET_DEVICE_ATTR: {
1466 		r = -EFAULT;
1467 		if (copy_from_user(&attr, argp, sizeof(attr)))
1468 			break;
1469 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1470 		break;
1471 	}
1472 	case KVM_GET_DEVICE_ATTR: {
1473 		r = -EFAULT;
1474 		if (copy_from_user(&attr, argp, sizeof(attr)))
1475 			break;
1476 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1477 		break;
1478 	}
1479 	case KVM_HAS_DEVICE_ATTR: {
1480 		r = -EFAULT;
1481 		if (copy_from_user(&attr, argp, sizeof(attr)))
1482 			break;
1483 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1484 		break;
1485 	}
1486 	case KVM_GET_VCPU_EVENTS: {
1487 		struct kvm_vcpu_events events;
1488 
1489 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1490 			return -EINVAL;
1491 
1492 		if (copy_to_user(argp, &events, sizeof(events)))
1493 			return -EFAULT;
1494 
1495 		return 0;
1496 	}
1497 	case KVM_SET_VCPU_EVENTS: {
1498 		struct kvm_vcpu_events events;
1499 
1500 		if (copy_from_user(&events, argp, sizeof(events)))
1501 			return -EFAULT;
1502 
1503 		return kvm_arm_vcpu_set_events(vcpu, &events);
1504 	}
1505 	case KVM_ARM_VCPU_FINALIZE: {
1506 		int what;
1507 
1508 		if (!kvm_vcpu_initialized(vcpu))
1509 			return -ENOEXEC;
1510 
1511 		if (get_user(what, (const int __user *)argp))
1512 			return -EFAULT;
1513 
1514 		return kvm_arm_vcpu_finalize(vcpu, what);
1515 	}
1516 	default:
1517 		r = -EINVAL;
1518 	}
1519 
1520 	return r;
1521 }
1522 
1523 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1524 {
1525 
1526 }
1527 
1528 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1529 					const struct kvm_memory_slot *memslot)
1530 {
1531 	kvm_flush_remote_tlbs(kvm);
1532 }
1533 
1534 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1535 					struct kvm_arm_device_addr *dev_addr)
1536 {
1537 	switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1538 	case KVM_ARM_DEVICE_VGIC_V2:
1539 		if (!vgic_present)
1540 			return -ENXIO;
1541 		return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1542 	default:
1543 		return -ENODEV;
1544 	}
1545 }
1546 
1547 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1548 {
1549 	switch (attr->group) {
1550 	case KVM_ARM_VM_SMCCC_CTRL:
1551 		return kvm_vm_smccc_has_attr(kvm, attr);
1552 	default:
1553 		return -ENXIO;
1554 	}
1555 }
1556 
1557 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1558 {
1559 	switch (attr->group) {
1560 	case KVM_ARM_VM_SMCCC_CTRL:
1561 		return kvm_vm_smccc_set_attr(kvm, attr);
1562 	default:
1563 		return -ENXIO;
1564 	}
1565 }
1566 
1567 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1568 {
1569 	struct kvm *kvm = filp->private_data;
1570 	void __user *argp = (void __user *)arg;
1571 	struct kvm_device_attr attr;
1572 
1573 	switch (ioctl) {
1574 	case KVM_CREATE_IRQCHIP: {
1575 		int ret;
1576 		if (!vgic_present)
1577 			return -ENXIO;
1578 		mutex_lock(&kvm->lock);
1579 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1580 		mutex_unlock(&kvm->lock);
1581 		return ret;
1582 	}
1583 	case KVM_ARM_SET_DEVICE_ADDR: {
1584 		struct kvm_arm_device_addr dev_addr;
1585 
1586 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1587 			return -EFAULT;
1588 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1589 	}
1590 	case KVM_ARM_PREFERRED_TARGET: {
1591 		struct kvm_vcpu_init init;
1592 
1593 		kvm_vcpu_preferred_target(&init);
1594 
1595 		if (copy_to_user(argp, &init, sizeof(init)))
1596 			return -EFAULT;
1597 
1598 		return 0;
1599 	}
1600 	case KVM_ARM_MTE_COPY_TAGS: {
1601 		struct kvm_arm_copy_mte_tags copy_tags;
1602 
1603 		if (copy_from_user(&copy_tags, argp, sizeof(copy_tags)))
1604 			return -EFAULT;
1605 		return kvm_vm_ioctl_mte_copy_tags(kvm, &copy_tags);
1606 	}
1607 	case KVM_ARM_SET_COUNTER_OFFSET: {
1608 		struct kvm_arm_counter_offset offset;
1609 
1610 		if (copy_from_user(&offset, argp, sizeof(offset)))
1611 			return -EFAULT;
1612 		return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1613 	}
1614 	case KVM_HAS_DEVICE_ATTR: {
1615 		if (copy_from_user(&attr, argp, sizeof(attr)))
1616 			return -EFAULT;
1617 
1618 		return kvm_vm_has_attr(kvm, &attr);
1619 	}
1620 	case KVM_SET_DEVICE_ATTR: {
1621 		if (copy_from_user(&attr, argp, sizeof(attr)))
1622 			return -EFAULT;
1623 
1624 		return kvm_vm_set_attr(kvm, &attr);
1625 	}
1626 	default:
1627 		return -EINVAL;
1628 	}
1629 }
1630 
1631 /* unlocks vcpus from @vcpu_lock_idx and smaller */
1632 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1633 {
1634 	struct kvm_vcpu *tmp_vcpu;
1635 
1636 	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1637 		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1638 		mutex_unlock(&tmp_vcpu->mutex);
1639 	}
1640 }
1641 
1642 void unlock_all_vcpus(struct kvm *kvm)
1643 {
1644 	lockdep_assert_held(&kvm->lock);
1645 
1646 	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1647 }
1648 
1649 /* Returns true if all vcpus were locked, false otherwise */
1650 bool lock_all_vcpus(struct kvm *kvm)
1651 {
1652 	struct kvm_vcpu *tmp_vcpu;
1653 	unsigned long c;
1654 
1655 	lockdep_assert_held(&kvm->lock);
1656 
1657 	/*
1658 	 * Any time a vcpu is in an ioctl (including running), the
1659 	 * core KVM code tries to grab the vcpu->mutex.
1660 	 *
1661 	 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1662 	 * other VCPUs can fiddle with the state while we access it.
1663 	 */
1664 	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1665 		if (!mutex_trylock(&tmp_vcpu->mutex)) {
1666 			unlock_vcpus(kvm, c - 1);
1667 			return false;
1668 		}
1669 	}
1670 
1671 	return true;
1672 }
1673 
1674 static unsigned long nvhe_percpu_size(void)
1675 {
1676 	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1677 		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1678 }
1679 
1680 static unsigned long nvhe_percpu_order(void)
1681 {
1682 	unsigned long size = nvhe_percpu_size();
1683 
1684 	return size ? get_order(size) : 0;
1685 }
1686 
1687 /* A lookup table holding the hypervisor VA for each vector slot */
1688 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1689 
1690 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1691 {
1692 	hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1693 }
1694 
1695 static int kvm_init_vector_slots(void)
1696 {
1697 	int err;
1698 	void *base;
1699 
1700 	base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1701 	kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1702 
1703 	base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1704 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1705 
1706 	if (kvm_system_needs_idmapped_vectors() &&
1707 	    !is_protected_kvm_enabled()) {
1708 		err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1709 					       __BP_HARDEN_HYP_VECS_SZ, &base);
1710 		if (err)
1711 			return err;
1712 	}
1713 
1714 	kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1715 	kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1716 	return 0;
1717 }
1718 
1719 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
1720 {
1721 	struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1722 	unsigned long tcr;
1723 
1724 	/*
1725 	 * Calculate the raw per-cpu offset without a translation from the
1726 	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1727 	 * so that we can use adr_l to access per-cpu variables in EL2.
1728 	 * Also drop the KASAN tag which gets in the way...
1729 	 */
1730 	params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1731 			    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1732 
1733 	params->mair_el2 = read_sysreg(mair_el1);
1734 
1735 	tcr = read_sysreg(tcr_el1);
1736 	if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
1737 		tcr |= TCR_EPD1_MASK;
1738 	} else {
1739 		tcr &= TCR_EL2_MASK;
1740 		tcr |= TCR_EL2_RES1;
1741 	}
1742 	tcr &= ~TCR_T0SZ_MASK;
1743 	tcr |= TCR_T0SZ(hyp_va_bits);
1744 	params->tcr_el2 = tcr;
1745 
1746 	params->pgd_pa = kvm_mmu_get_httbr();
1747 	if (is_protected_kvm_enabled())
1748 		params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1749 	else
1750 		params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1751 	if (cpus_have_final_cap(ARM64_KVM_HVHE))
1752 		params->hcr_el2 |= HCR_E2H;
1753 	params->vttbr = params->vtcr = 0;
1754 
1755 	/*
1756 	 * Flush the init params from the data cache because the struct will
1757 	 * be read while the MMU is off.
1758 	 */
1759 	kvm_flush_dcache_to_poc(params, sizeof(*params));
1760 }
1761 
1762 static void hyp_install_host_vector(void)
1763 {
1764 	struct kvm_nvhe_init_params *params;
1765 	struct arm_smccc_res res;
1766 
1767 	/* Switch from the HYP stub to our own HYP init vector */
1768 	__hyp_set_vectors(kvm_get_idmap_vector());
1769 
1770 	/*
1771 	 * Call initialization code, and switch to the full blown HYP code.
1772 	 * If the cpucaps haven't been finalized yet, something has gone very
1773 	 * wrong, and hyp will crash and burn when it uses any
1774 	 * cpus_have_const_cap() wrapper.
1775 	 */
1776 	BUG_ON(!system_capabilities_finalized());
1777 	params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1778 	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1779 	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1780 }
1781 
1782 static void cpu_init_hyp_mode(void)
1783 {
1784 	hyp_install_host_vector();
1785 
1786 	/*
1787 	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1788 	 * at EL2.
1789 	 */
1790 	if (this_cpu_has_cap(ARM64_SSBS) &&
1791 	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1792 		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1793 	}
1794 }
1795 
1796 static void cpu_hyp_reset(void)
1797 {
1798 	if (!is_kernel_in_hyp_mode())
1799 		__hyp_reset_vectors();
1800 }
1801 
1802 /*
1803  * EL2 vectors can be mapped and rerouted in a number of ways,
1804  * depending on the kernel configuration and CPU present:
1805  *
1806  * - If the CPU is affected by Spectre-v2, the hardening sequence is
1807  *   placed in one of the vector slots, which is executed before jumping
1808  *   to the real vectors.
1809  *
1810  * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1811  *   containing the hardening sequence is mapped next to the idmap page,
1812  *   and executed before jumping to the real vectors.
1813  *
1814  * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1815  *   empty slot is selected, mapped next to the idmap page, and
1816  *   executed before jumping to the real vectors.
1817  *
1818  * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1819  * VHE, as we don't have hypervisor-specific mappings. If the system
1820  * is VHE and yet selects this capability, it will be ignored.
1821  */
1822 static void cpu_set_hyp_vector(void)
1823 {
1824 	struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1825 	void *vector = hyp_spectre_vector_selector[data->slot];
1826 
1827 	if (!is_protected_kvm_enabled())
1828 		*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1829 	else
1830 		kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1831 }
1832 
1833 static void cpu_hyp_init_context(void)
1834 {
1835 	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1836 
1837 	if (!is_kernel_in_hyp_mode())
1838 		cpu_init_hyp_mode();
1839 }
1840 
1841 static void cpu_hyp_init_features(void)
1842 {
1843 	cpu_set_hyp_vector();
1844 	kvm_arm_init_debug();
1845 
1846 	if (is_kernel_in_hyp_mode())
1847 		kvm_timer_init_vhe();
1848 
1849 	if (vgic_present)
1850 		kvm_vgic_init_cpu_hardware();
1851 }
1852 
1853 static void cpu_hyp_reinit(void)
1854 {
1855 	cpu_hyp_reset();
1856 	cpu_hyp_init_context();
1857 	cpu_hyp_init_features();
1858 }
1859 
1860 static void _kvm_arch_hardware_enable(void *discard)
1861 {
1862 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1863 		cpu_hyp_reinit();
1864 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1865 	}
1866 }
1867 
1868 int kvm_arch_hardware_enable(void)
1869 {
1870 	int was_enabled = __this_cpu_read(kvm_arm_hardware_enabled);
1871 
1872 	_kvm_arch_hardware_enable(NULL);
1873 
1874 	if (!was_enabled) {
1875 		kvm_vgic_cpu_up();
1876 		kvm_timer_cpu_up();
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 static void _kvm_arch_hardware_disable(void *discard)
1883 {
1884 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1885 		cpu_hyp_reset();
1886 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1887 	}
1888 }
1889 
1890 void kvm_arch_hardware_disable(void)
1891 {
1892 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1893 		kvm_timer_cpu_down();
1894 		kvm_vgic_cpu_down();
1895 	}
1896 
1897 	if (!is_protected_kvm_enabled())
1898 		_kvm_arch_hardware_disable(NULL);
1899 }
1900 
1901 #ifdef CONFIG_CPU_PM
1902 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1903 				    unsigned long cmd,
1904 				    void *v)
1905 {
1906 	/*
1907 	 * kvm_arm_hardware_enabled is left with its old value over
1908 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1909 	 * re-enable hyp.
1910 	 */
1911 	switch (cmd) {
1912 	case CPU_PM_ENTER:
1913 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1914 			/*
1915 			 * don't update kvm_arm_hardware_enabled here
1916 			 * so that the hardware will be re-enabled
1917 			 * when we resume. See below.
1918 			 */
1919 			cpu_hyp_reset();
1920 
1921 		return NOTIFY_OK;
1922 	case CPU_PM_ENTER_FAILED:
1923 	case CPU_PM_EXIT:
1924 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1925 			/* The hardware was enabled before suspend. */
1926 			cpu_hyp_reinit();
1927 
1928 		return NOTIFY_OK;
1929 
1930 	default:
1931 		return NOTIFY_DONE;
1932 	}
1933 }
1934 
1935 static struct notifier_block hyp_init_cpu_pm_nb = {
1936 	.notifier_call = hyp_init_cpu_pm_notifier,
1937 };
1938 
1939 static void __init hyp_cpu_pm_init(void)
1940 {
1941 	if (!is_protected_kvm_enabled())
1942 		cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1943 }
1944 static void __init hyp_cpu_pm_exit(void)
1945 {
1946 	if (!is_protected_kvm_enabled())
1947 		cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1948 }
1949 #else
1950 static inline void __init hyp_cpu_pm_init(void)
1951 {
1952 }
1953 static inline void __init hyp_cpu_pm_exit(void)
1954 {
1955 }
1956 #endif
1957 
1958 static void __init init_cpu_logical_map(void)
1959 {
1960 	unsigned int cpu;
1961 
1962 	/*
1963 	 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1964 	 * Only copy the set of online CPUs whose features have been checked
1965 	 * against the finalized system capabilities. The hypervisor will not
1966 	 * allow any other CPUs from the `possible` set to boot.
1967 	 */
1968 	for_each_online_cpu(cpu)
1969 		hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1970 }
1971 
1972 #define init_psci_0_1_impl_state(config, what)	\
1973 	config.psci_0_1_ ## what ## _implemented = psci_ops.what
1974 
1975 static bool __init init_psci_relay(void)
1976 {
1977 	/*
1978 	 * If PSCI has not been initialized, protected KVM cannot install
1979 	 * itself on newly booted CPUs.
1980 	 */
1981 	if (!psci_ops.get_version) {
1982 		kvm_err("Cannot initialize protected mode without PSCI\n");
1983 		return false;
1984 	}
1985 
1986 	kvm_host_psci_config.version = psci_ops.get_version();
1987 	kvm_host_psci_config.smccc_version = arm_smccc_get_version();
1988 
1989 	if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1990 		kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1991 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1992 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1993 		init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1994 		init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1995 	}
1996 	return true;
1997 }
1998 
1999 static int __init init_subsystems(void)
2000 {
2001 	int err = 0;
2002 
2003 	/*
2004 	 * Enable hardware so that subsystem initialisation can access EL2.
2005 	 */
2006 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
2007 
2008 	/*
2009 	 * Register CPU lower-power notifier
2010 	 */
2011 	hyp_cpu_pm_init();
2012 
2013 	/*
2014 	 * Init HYP view of VGIC
2015 	 */
2016 	err = kvm_vgic_hyp_init();
2017 	switch (err) {
2018 	case 0:
2019 		vgic_present = true;
2020 		break;
2021 	case -ENODEV:
2022 	case -ENXIO:
2023 		vgic_present = false;
2024 		err = 0;
2025 		break;
2026 	default:
2027 		goto out;
2028 	}
2029 
2030 	/*
2031 	 * Init HYP architected timer support
2032 	 */
2033 	err = kvm_timer_hyp_init(vgic_present);
2034 	if (err)
2035 		goto out;
2036 
2037 	kvm_register_perf_callbacks(NULL);
2038 
2039 out:
2040 	if (err)
2041 		hyp_cpu_pm_exit();
2042 
2043 	if (err || !is_protected_kvm_enabled())
2044 		on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
2045 
2046 	return err;
2047 }
2048 
2049 static void __init teardown_subsystems(void)
2050 {
2051 	kvm_unregister_perf_callbacks();
2052 	hyp_cpu_pm_exit();
2053 }
2054 
2055 static void __init teardown_hyp_mode(void)
2056 {
2057 	int cpu;
2058 
2059 	free_hyp_pgds();
2060 	for_each_possible_cpu(cpu) {
2061 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2062 		free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2063 	}
2064 }
2065 
2066 static int __init do_pkvm_init(u32 hyp_va_bits)
2067 {
2068 	void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2069 	int ret;
2070 
2071 	preempt_disable();
2072 	cpu_hyp_init_context();
2073 	ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2074 				num_possible_cpus(), kern_hyp_va(per_cpu_base),
2075 				hyp_va_bits);
2076 	cpu_hyp_init_features();
2077 
2078 	/*
2079 	 * The stub hypercalls are now disabled, so set our local flag to
2080 	 * prevent a later re-init attempt in kvm_arch_hardware_enable().
2081 	 */
2082 	__this_cpu_write(kvm_arm_hardware_enabled, 1);
2083 	preempt_enable();
2084 
2085 	return ret;
2086 }
2087 
2088 static u64 get_hyp_id_aa64pfr0_el1(void)
2089 {
2090 	/*
2091 	 * Track whether the system isn't affected by spectre/meltdown in the
2092 	 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2093 	 * Although this is per-CPU, we make it global for simplicity, e.g., not
2094 	 * to have to worry about vcpu migration.
2095 	 *
2096 	 * Unlike for non-protected VMs, userspace cannot override this for
2097 	 * protected VMs.
2098 	 */
2099 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2100 
2101 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2102 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2103 
2104 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2105 			  arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2106 	val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2107 			  arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2108 
2109 	return val;
2110 }
2111 
2112 static void kvm_hyp_init_symbols(void)
2113 {
2114 	kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2115 	kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2116 	kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2117 	kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2118 	kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2119 	kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2120 	kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2121 	kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2122 	kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2123 	kvm_nvhe_sym(__icache_flags) = __icache_flags;
2124 	kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2125 }
2126 
2127 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2128 {
2129 	void *addr = phys_to_virt(hyp_mem_base);
2130 	int ret;
2131 
2132 	ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2133 	if (ret)
2134 		return ret;
2135 
2136 	ret = do_pkvm_init(hyp_va_bits);
2137 	if (ret)
2138 		return ret;
2139 
2140 	free_hyp_pgds();
2141 
2142 	return 0;
2143 }
2144 
2145 static void pkvm_hyp_init_ptrauth(void)
2146 {
2147 	struct kvm_cpu_context *hyp_ctxt;
2148 	int cpu;
2149 
2150 	for_each_possible_cpu(cpu) {
2151 		hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2152 		hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2153 		hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2154 		hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2155 		hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2156 		hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2157 		hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2158 		hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2159 		hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2160 		hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2161 		hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2162 	}
2163 }
2164 
2165 /* Inits Hyp-mode on all online CPUs */
2166 static int __init init_hyp_mode(void)
2167 {
2168 	u32 hyp_va_bits;
2169 	int cpu;
2170 	int err = -ENOMEM;
2171 
2172 	/*
2173 	 * The protected Hyp-mode cannot be initialized if the memory pool
2174 	 * allocation has failed.
2175 	 */
2176 	if (is_protected_kvm_enabled() && !hyp_mem_base)
2177 		goto out_err;
2178 
2179 	/*
2180 	 * Allocate Hyp PGD and setup Hyp identity mapping
2181 	 */
2182 	err = kvm_mmu_init(&hyp_va_bits);
2183 	if (err)
2184 		goto out_err;
2185 
2186 	/*
2187 	 * Allocate stack pages for Hypervisor-mode
2188 	 */
2189 	for_each_possible_cpu(cpu) {
2190 		unsigned long stack_page;
2191 
2192 		stack_page = __get_free_page(GFP_KERNEL);
2193 		if (!stack_page) {
2194 			err = -ENOMEM;
2195 			goto out_err;
2196 		}
2197 
2198 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2199 	}
2200 
2201 	/*
2202 	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2203 	 */
2204 	for_each_possible_cpu(cpu) {
2205 		struct page *page;
2206 		void *page_addr;
2207 
2208 		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2209 		if (!page) {
2210 			err = -ENOMEM;
2211 			goto out_err;
2212 		}
2213 
2214 		page_addr = page_address(page);
2215 		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2216 		kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2217 	}
2218 
2219 	/*
2220 	 * Map the Hyp-code called directly from the host
2221 	 */
2222 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2223 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2224 	if (err) {
2225 		kvm_err("Cannot map world-switch code\n");
2226 		goto out_err;
2227 	}
2228 
2229 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2230 				  kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2231 	if (err) {
2232 		kvm_err("Cannot map .hyp.rodata section\n");
2233 		goto out_err;
2234 	}
2235 
2236 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2237 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2238 	if (err) {
2239 		kvm_err("Cannot map rodata section\n");
2240 		goto out_err;
2241 	}
2242 
2243 	/*
2244 	 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2245 	 * section thanks to an assertion in the linker script. Map it RW and
2246 	 * the rest of .bss RO.
2247 	 */
2248 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2249 				  kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2250 	if (err) {
2251 		kvm_err("Cannot map hyp bss section: %d\n", err);
2252 		goto out_err;
2253 	}
2254 
2255 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2256 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2257 	if (err) {
2258 		kvm_err("Cannot map bss section\n");
2259 		goto out_err;
2260 	}
2261 
2262 	/*
2263 	 * Map the Hyp stack pages
2264 	 */
2265 	for_each_possible_cpu(cpu) {
2266 		struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2267 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2268 		unsigned long hyp_addr;
2269 
2270 		/*
2271 		 * Allocate a contiguous HYP private VA range for the stack
2272 		 * and guard page. The allocation is also aligned based on
2273 		 * the order of its size.
2274 		 */
2275 		err = hyp_alloc_private_va_range(PAGE_SIZE * 2, &hyp_addr);
2276 		if (err) {
2277 			kvm_err("Cannot allocate hyp stack guard page\n");
2278 			goto out_err;
2279 		}
2280 
2281 		/*
2282 		 * Since the stack grows downwards, map the stack to the page
2283 		 * at the higher address and leave the lower guard page
2284 		 * unbacked.
2285 		 *
2286 		 * Any valid stack address now has the PAGE_SHIFT bit as 1
2287 		 * and addresses corresponding to the guard page have the
2288 		 * PAGE_SHIFT bit as 0 - this is used for overflow detection.
2289 		 */
2290 		err = __create_hyp_mappings(hyp_addr + PAGE_SIZE, PAGE_SIZE,
2291 					    __pa(stack_page), PAGE_HYP);
2292 		if (err) {
2293 			kvm_err("Cannot map hyp stack\n");
2294 			goto out_err;
2295 		}
2296 
2297 		/*
2298 		 * Save the stack PA in nvhe_init_params. This will be needed
2299 		 * to recreate the stack mapping in protected nVHE mode.
2300 		 * __hyp_pa() won't do the right thing there, since the stack
2301 		 * has been mapped in the flexible private VA space.
2302 		 */
2303 		params->stack_pa = __pa(stack_page);
2304 
2305 		params->stack_hyp_va = hyp_addr + (2 * PAGE_SIZE);
2306 	}
2307 
2308 	for_each_possible_cpu(cpu) {
2309 		char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2310 		char *percpu_end = percpu_begin + nvhe_percpu_size();
2311 
2312 		/* Map Hyp percpu pages */
2313 		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2314 		if (err) {
2315 			kvm_err("Cannot map hyp percpu region\n");
2316 			goto out_err;
2317 		}
2318 
2319 		/* Prepare the CPU initialization parameters */
2320 		cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2321 	}
2322 
2323 	kvm_hyp_init_symbols();
2324 
2325 	if (is_protected_kvm_enabled()) {
2326 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2327 		    cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH))
2328 			pkvm_hyp_init_ptrauth();
2329 
2330 		init_cpu_logical_map();
2331 
2332 		if (!init_psci_relay()) {
2333 			err = -ENODEV;
2334 			goto out_err;
2335 		}
2336 
2337 		err = kvm_hyp_init_protection(hyp_va_bits);
2338 		if (err) {
2339 			kvm_err("Failed to init hyp memory protection\n");
2340 			goto out_err;
2341 		}
2342 	}
2343 
2344 	return 0;
2345 
2346 out_err:
2347 	teardown_hyp_mode();
2348 	kvm_err("error initializing Hyp mode: %d\n", err);
2349 	return err;
2350 }
2351 
2352 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2353 {
2354 	struct kvm_vcpu *vcpu;
2355 	unsigned long i;
2356 
2357 	mpidr &= MPIDR_HWID_BITMASK;
2358 	kvm_for_each_vcpu(i, vcpu, kvm) {
2359 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2360 			return vcpu;
2361 	}
2362 	return NULL;
2363 }
2364 
2365 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2366 {
2367 	return irqchip_in_kernel(kvm);
2368 }
2369 
2370 bool kvm_arch_has_irq_bypass(void)
2371 {
2372 	return true;
2373 }
2374 
2375 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2376 				      struct irq_bypass_producer *prod)
2377 {
2378 	struct kvm_kernel_irqfd *irqfd =
2379 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2380 
2381 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2382 					  &irqfd->irq_entry);
2383 }
2384 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2385 				      struct irq_bypass_producer *prod)
2386 {
2387 	struct kvm_kernel_irqfd *irqfd =
2388 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2389 
2390 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2391 				     &irqfd->irq_entry);
2392 }
2393 
2394 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2395 {
2396 	struct kvm_kernel_irqfd *irqfd =
2397 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2398 
2399 	kvm_arm_halt_guest(irqfd->kvm);
2400 }
2401 
2402 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2403 {
2404 	struct kvm_kernel_irqfd *irqfd =
2405 		container_of(cons, struct kvm_kernel_irqfd, consumer);
2406 
2407 	kvm_arm_resume_guest(irqfd->kvm);
2408 }
2409 
2410 /* Initialize Hyp-mode and memory mappings on all CPUs */
2411 static __init int kvm_arm_init(void)
2412 {
2413 	int err;
2414 	bool in_hyp_mode;
2415 
2416 	if (!is_hyp_mode_available()) {
2417 		kvm_info("HYP mode not available\n");
2418 		return -ENODEV;
2419 	}
2420 
2421 	if (kvm_get_mode() == KVM_MODE_NONE) {
2422 		kvm_info("KVM disabled from command line\n");
2423 		return -ENODEV;
2424 	}
2425 
2426 	err = kvm_sys_reg_table_init();
2427 	if (err) {
2428 		kvm_info("Error initializing system register tables");
2429 		return err;
2430 	}
2431 
2432 	in_hyp_mode = is_kernel_in_hyp_mode();
2433 
2434 	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2435 	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2436 		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2437 			 "Only trusted guests should be used on this system.\n");
2438 
2439 	err = kvm_set_ipa_limit();
2440 	if (err)
2441 		return err;
2442 
2443 	err = kvm_arm_init_sve();
2444 	if (err)
2445 		return err;
2446 
2447 	err = kvm_arm_vmid_alloc_init();
2448 	if (err) {
2449 		kvm_err("Failed to initialize VMID allocator.\n");
2450 		return err;
2451 	}
2452 
2453 	if (!in_hyp_mode) {
2454 		err = init_hyp_mode();
2455 		if (err)
2456 			goto out_err;
2457 	}
2458 
2459 	err = kvm_init_vector_slots();
2460 	if (err) {
2461 		kvm_err("Cannot initialise vector slots\n");
2462 		goto out_hyp;
2463 	}
2464 
2465 	err = init_subsystems();
2466 	if (err)
2467 		goto out_hyp;
2468 
2469 	if (is_protected_kvm_enabled()) {
2470 		kvm_info("Protected nVHE mode initialized successfully\n");
2471 	} else if (in_hyp_mode) {
2472 		kvm_info("VHE mode initialized successfully\n");
2473 	} else {
2474 		kvm_info("Hyp mode initialized successfully\n");
2475 	}
2476 
2477 	/*
2478 	 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2479 	 * hypervisor protection is finalized.
2480 	 */
2481 	err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2482 	if (err)
2483 		goto out_subs;
2484 
2485 	return 0;
2486 
2487 out_subs:
2488 	teardown_subsystems();
2489 out_hyp:
2490 	if (!in_hyp_mode)
2491 		teardown_hyp_mode();
2492 out_err:
2493 	kvm_arm_vmid_alloc_free();
2494 	return err;
2495 }
2496 
2497 static int __init early_kvm_mode_cfg(char *arg)
2498 {
2499 	if (!arg)
2500 		return -EINVAL;
2501 
2502 	if (strcmp(arg, "none") == 0) {
2503 		kvm_mode = KVM_MODE_NONE;
2504 		return 0;
2505 	}
2506 
2507 	if (!is_hyp_mode_available()) {
2508 		pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2509 		return 0;
2510 	}
2511 
2512 	if (strcmp(arg, "protected") == 0) {
2513 		if (!is_kernel_in_hyp_mode())
2514 			kvm_mode = KVM_MODE_PROTECTED;
2515 		else
2516 			pr_warn_once("Protected KVM not available with VHE\n");
2517 
2518 		return 0;
2519 	}
2520 
2521 	if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2522 		kvm_mode = KVM_MODE_DEFAULT;
2523 		return 0;
2524 	}
2525 
2526 	if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2527 		kvm_mode = KVM_MODE_NV;
2528 		return 0;
2529 	}
2530 
2531 	return -EINVAL;
2532 }
2533 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2534 
2535 enum kvm_mode kvm_get_mode(void)
2536 {
2537 	return kvm_mode;
2538 }
2539 
2540 module_init(kvm_arm_init);
2541